Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

H2B Tyr37 phosphorylation suppresses expression of replication-dependent core histone genes

Abstract

Histone gene transcription is actively downregulated after completion of DNA synthesis to avoid overproduction. However, the precise mechanistic details of the cessation of histone mRNA synthesis are not clear. We found that histone H2B phosphorylation at Tyr37 occurs upstream of histone cluster 1, Hist1, during the late S phase. We identified WEE1 as the kinase that phosphorylates H2B at Tyr37. Loss of expression or inhibition of WEE1 kinase abrogated H2B Tyr37 phosphorylation with a concomitant increase in histone transcription in yeast and mammalian cells. H2B Tyr37 phosphorylation excluded binding of the transcriptional coactivator NPAT and RNA polymerase II and recruited the histone chaperone HIRA upstream of the Hist1 cluster. Taken together, our data show a previously unknown and evolutionarily conserved function for WEE1 kinase as an epigenetic modulator that marks chromatin with H2B Tyr37 phosphorylation, thereby inhibiting the transcription of multiple histone genes to lower the burden on the histone mRNA turnover machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: WEE1 phosphorylates histone H2B at Tyr37.
Figure 2: H2BpY37 occurs upstream of the histone gene cluster Hist1.
Figure 3: H2BpY37 suppresses the transcription of histone genes located in the Hist1 cluster.
Figure 4: Histone tyrosine phosphorylation by SWE1 is required for the transcriptional suppression of histones in yeast.
Figure 5: H2BpY37 differentially regulates NPAT and HIRA recruitment.
Figure 6: A model of H2B Tyr37 phosphorylation upstream of the major histone gene cluster Hist1 suppresses histone mRNA transcription.

Similar content being viewed by others

References

  1. Marzluff, W.F., Gongidi, P., Woods, K.R., Jin, J. & Maltais, L.J. The human and mouse replication-dependent histone genes. Genomics 80, 487–498 (2002).

    Article  CAS  Google Scholar 

  2. Heintz, N., Sive, H.L. & Roeder, R.G. Regulation of human histone gene expression: kinetics of accumulation and changes in the rate of synthesis and in the half-lives of individual histone mRNAs during the HeLa cell cycle. Mol. Cell. Biol. 3, 539–550 (1983).

    Article  CAS  Google Scholar 

  3. Osley, M.A. The regulation of histone synthesis in the cell cycle. Annu. Rev. Biochem. 60, 827–861 (1991).

    Article  CAS  Google Scholar 

  4. Borun, T.W., Gabrielli, F., Ajiro, K., Zweidler, A. & Baglioni, C. Further evidence of transcriptional and translational control of histone messenger RNA during the HeLa S3 cycle. Cell 4, 59–67 (1975).

    Article  CAS  Google Scholar 

  5. Hereford, L., Bromley, S. & Osley, M.A. Periodic transcription of yeast histone genes. Cell 30, 305–310 (1982).

    Article  CAS  Google Scholar 

  6. Hereford, L.M., Osley, M.A., Ludwig, T.R. II & McLaughlin, C.S. Cell-cycle regulation of yeast histone mRNA. Cell 24, 367–375 (1981).

    Article  CAS  Google Scholar 

  7. Osley, M.A. & Hereford, L. Identification of a sequence responsible for periodic synthesis of yeast histone 2A mRNA. Proc. Natl. Acad. Sci. USA 79, 7689–7693 (1982).

    Article  CAS  Google Scholar 

  8. Osley, M.A. & Lycan, D. Trans-acting regulatory mutations that alter transcription of Saccharomyces cerevisiae histone genes. Mol. Cell. Biol. 7, 4204–4210 (1987).

    Article  CAS  Google Scholar 

  9. Marzluff, W.F., Wagner, E.J. & Duronio, R.J. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat. Rev. Genet. 9, 843–854 (2008).

    Article  CAS  Google Scholar 

  10. Takayama, Y. et al. Hsk1- and SCF(Pof3)-dependent proteolysis of S. pombe Ams2 ensures histone homeostasis and centromere function. Dev. Cell 18, 385–396 (2010).

    Article  CAS  Google Scholar 

  11. Matsumoto, S., Yanagida, M. & Nurse, P. Histone transcription in cell cycle mutants of fission yeast. EMBO J. 6, 1093–1097 (1987).

    Article  CAS  Google Scholar 

  12. Singh, R.K. & Gunjan, A. Histone tyrosine phosphorylation comes of age. Epigenetics 6, 153–160 (2011).

    Article  CAS  Google Scholar 

  13. Berger, S.L. Cell signaling and transcriptional regulation via histone phosphorylation. Cold Spring Harb. Symp. Quant. Biol. 75, 23–26 (2010).

    Article  CAS  Google Scholar 

  14. Russell, P. & Nurse, P. Negative regulation of mitosis by wee1+, a gene encoding a protein kinase homolog. Cell 49, 559–567 (1987).

    Article  CAS  Google Scholar 

  15. Featherstone, C. & Russell, P. Fission yeast p107wee1 mitotic inhibitor is a tyrosine/serine kinase. Nature 349, 808–811 (1991).

    Article  CAS  Google Scholar 

  16. McGowan, C.H. & Russell, P. Cell cycle regulation of human WEE1. EMBO J. 14, 2166–2175 (1995).

    Article  CAS  Google Scholar 

  17. Lundgren, K. et al. mik1 and wee1 cooperate in the inhibitory tyrosine phosphorylation of cdc2. Cell 64, 1111–1122 (1991).

    Article  CAS  Google Scholar 

  18. Hirai, H. et al. Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol. Cancer Ther. 8, 2992–3000 (2009).

    Article  CAS  Google Scholar 

  19. Mahajan, K. et al. Ack1 mediated AKT/PKB tyrosine 176 phosphorylation regulates its activation. PLoS ONE 5, e9646 (2010).

    Article  Google Scholar 

  20. Kim, T.H. et al. A high-resolution map of active promoters in the human genome. Nature 436, 876–880 (2005).

    Article  CAS  Google Scholar 

  21. Albig, W. & Doenecke, D. The human histone gene cluster at the D6S105 locus. Hum. Genet. 101, 284–294 (1997).

    Article  CAS  Google Scholar 

  22. Albig, W., Kioschis, P., Poustka, A., Meergans, K. & Doenecke, D. Human histone gene organization: nonregular arrangement within a large cluster. Genomics 40, 314–322 (1997).

    Article  CAS  Google Scholar 

  23. Wang, Z.F. et al. Characterization of the mouse histone gene cluster on chromosome 13: 45 histone genes in three patches spread over 1 Mb. Genome Res. 6, 688–701 (1996).

    Article  CAS  Google Scholar 

  24. Mahajan, K. et al. Effect of Ack1 tyrosine kinase inhibitor on ligand-independent androgen receptor activity. Prostate 70, 1274–1285 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mahajan, K. et al. Ack1-mediated androgen receptor phosphorylation modulates radiation resistance in castration-resistant prostate cancer. J. Biol. Chem. 287, 22112–22122 (2012).

    Article  CAS  Google Scholar 

  26. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  Google Scholar 

  27. Berger, S.L. The complex language of chromatin regulation during transcription. Nature 447, 407–412 (2007).

    Article  CAS  Google Scholar 

  28. Laribee, R.N., Fuchs, S.M. & Strahl, B.D. H2B ubiquitylation in transcriptional control: a FACT-finding mission. Genes Dev. 21, 737–743 (2007).

    Article  CAS  Google Scholar 

  29. Bungard, D. et al. Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 329, 1201–1205 (2010).

    Article  CAS  Google Scholar 

  30. Robzyk, K., Recht, J. & Osley, M.A. Rad6-dependent ubiquitination of histone H2B in yeast. Science 287, 501–504 (2000).

    Article  CAS  Google Scholar 

  31. Gardner, K.E., Zhou, L., Parra, M.A., Chen, X. & Strahl, B.D. Identification of lysine 37 of histone H2B as a novel site of methylation. PLoS ONE 6, e16244 (2011).

    Article  CAS  Google Scholar 

  32. Tsukuda, T., Fleming, A.B., Nickoloff, J.A. & Osley, M.A. Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature 438, 379–383 (2005).

    Article  CAS  Google Scholar 

  33. Nakanishi, S. et al. A comprehensive library of histone mutants identifies nucleosomal residues required for H3K4 methylation. Nat. Struct. Mol. Biol. 15, 881–888 (2008).

    Article  CAS  Google Scholar 

  34. Booher, R.N., Deshaies, R.J. & Kirschner, M.W. Properties of Saccharomyces cerevisiae wee1 and its differential regulation of p34CDC28 in response to G1 and G2 cyclins. EMBO J. 12, 3417–3426 (1993).

    Article  CAS  Google Scholar 

  35. Mollapour, M. et al. Swe1Wee1-dependent tyrosine phosphorylation of Hsp90 regulates distinct facets of chaperone function. Mol. Cell 37, 333–343 (2010).

    Article  CAS  Google Scholar 

  36. Wei, Y., Jin, J. & Harper, J.W. The cyclin E/Cdk2 substrate and Cajal body component p220(NPAT) activates histone transcription through a novel LisH-like domain. Mol. Cell. Biol. 23, 3669–3680 (2003).

    Article  CAS  Google Scholar 

  37. Zhao, J. et al. NPAT links cyclin E-Cdk2 to the regulation of replication-dependent histone gene transcription. Genes Dev. 14, 2283–2297 (2000).

    Article  CAS  Google Scholar 

  38. Osley, M.A., Gould, J., Kim, S., Kane, M.Y. & Hereford, L. Identification of sequences in a yeast histone promoter involved in periodic transcription. Cell 45, 537–544 (1986).

    Article  CAS  Google Scholar 

  39. Xu, H., Kim, U.J., Schuster, T. & Grunstein, M. Identification of a new set of cell cycle-regulatory genes that regulate S-phase transcription of histone genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 5249–5259 (1992).

    Article  CAS  Google Scholar 

  40. Prochasson, P., Florens, L., Swanson, S.K., Washburn, M.P. & Workman, J.L. The HIR corepressor complex binds to nucleosomes generating a distinct protein/DNA complex resistant to remodeling by SWI/SNF. Genes Dev. 19, 2534–2539 (2005).

    Article  CAS  Google Scholar 

  41. Green, E.M. et al. Replication-independent histone deposition by the HIR complex and Asf1. Curr. Biol. 15, 2044–2049 (2005).

    Article  CAS  Google Scholar 

  42. Dimova, D., Nackerdien, Z., Furgeson, S., Eguchi, S. & Osley, M.A. A role for transcriptional repressors in targeting the yeast Swi/Snf complex. Mol. Cell 4, 75–83 (1999).

    Article  CAS  Google Scholar 

  43. Sherwood, P.W., Tsang, S.V. & Osley, M.A. Characterization of HIR1 and HIR2, two genes required for regulation of histone gene transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 13, 28–38 (1993).

    Article  CAS  Google Scholar 

  44. Spector, M.S., Raff, A., DeSilva, H., Lee, K. & Osley, M.A. Hir1p and Hir2p function as transcriptional corepressors to regulate histone gene transcription in the Saccharomyces cerevisiae cell cycle. Mol. Cell. Biol. 17, 545–552 (1997).

    Article  CAS  Google Scholar 

  45. Fillingham, J. et al. Two-color cell array screen reveals interdependent roles for histone chaperones and a chromatin boundary regulator in histone gene repression. Mol. Cell 35, 340–351 (2009).

    Article  CAS  Google Scholar 

  46. Kaufman, P.D., Cohen, J.L. & Osley, M.A. Hir proteins are required for position-dependent gene silencing in Saccharomyces cerevisiae in the absence of chromatin assembly factor I. Mol. Cell. Biol. 18, 4793–4806 (1998).

    Article  CAS  Google Scholar 

  47. Yamane, K. et al. Asf1/HIRA facilitate global histone deacetylation and associate with HP1 to promote nucleosome occupancy at heterochromatic loci. Mol. Cell 41, 56–66 (2011).

    Article  CAS  Google Scholar 

  48. Nelson, D.M. et al. Coupling of DNA synthesis and histone synthesis in S phase independent of cyclin/cdk2 activity. Mol. Cell. Biol. 22, 7459–7472 (2002).

    Article  CAS  Google Scholar 

  49. Xiao, A. et al. WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature 457, 57–62 (2009).

    Article  CAS  Google Scholar 

  50. Cook, P.J. et al. Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 458, 591–596 (2009).

    Article  CAS  Google Scholar 

  51. Dawson, M.A. et al. JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature 461, 819–822 (2009).

    Article  CAS  Google Scholar 

  52. Singh, R.K., Kabbaj, M.H., Paik, J. & Gunjan, A. Histone levels are regulated by phosphorylation and ubiquitylation-dependent proteolysis. Nat. Cell Biol. 11, 925–933 (2009).

    Article  CAS  Google Scholar 

  53. Dollard, C., Ricupero-Hovasse, S.L., Natsoulis, G., Boeke, J.D. & Winston, F. SPT10 and SPT21 are required for transcription of particular histone genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 14, 5223–5228 (1994).

    Article  CAS  Google Scholar 

  54. Hess, D., Liu, B., Roan, N.R., Sternglanz, R. & Winston, F. Spt10-dependent transcriptional activation in Saccharomyces cerevisiae requires both the Spt10 acetyltransferase domain and Spt21. Mol. Cell. Biol. 24, 135–143 (2004).

    Article  CAS  Google Scholar 

  55. Yates, J.R. III, Eng, J.K., McCormack, A.L. & Schieltz, D. Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal. Chem. 67, 1426–1436 (1995).

    Article  CAS  Google Scholar 

  56. Perkins, D.N., Pappin, D.J., Creasy, D.M. & Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).

    Article  CAS  Google Scholar 

  57. Mahajan, N.P. et al. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc. Natl. Acad. Sci. USA 104, 8438–8443 (2007).

    Article  CAS  Google Scholar 

  58. Mahajan, N.P., Whang, Y.E., Mohler, J.L. & Earp, H.S. Activated tyrosine kinase Ack1 promotes prostate tumorigenesis: role of Ack1 in polyubiquitination of tumor suppressor Wwox. Cancer Res. 65, 10514–10523 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Shilatifard (Stowers Institute) for WT and the Y40A mutant of S. cerevisiae, M. Mollapour (US National Institutes of Health) for WT and the swe1Δ mutant of S. cerevisiae and G. Enders (Fox Chase Cancer Center) for myc-tagged WEE1 constructs. We thank X. Qu for bioinformatics analysis; L. Hall and J. Repass for qRT-PCR analysis; K. Shapland and J. Kroeger for flow cytometry; and E. Seto for critical reading of the manuscript. We thank the Moffitt Flow Cytometry, Molecular Biology core facilities, Lung Cancer Spore and the Comprehensive Melanoma Research Center. The project was supported by a Moffitt Support grant to N.P.M.

Author information

Authors and Affiliations

Authors

Contributions

K.M. and N.P.M. conceived the idea and designed all the experiments. K.M. and N.P.M. performed all the experiments except the mass spectrometric identification of H2B Tyr37 phosphorylation, which was performed by B.F. and J.M.K. K.M. and N.P.M. analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Nupam P Mahajan.

Ethics declarations

Competing interests

K.M. and N.P.M. are named as inventors on US patent application 61/583,864 titled “Antibodies specific for phosphorylated histones and uses thereof.”

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Tables 1–7 and Supplementary Note. (PDF 3335 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahajan, K., Fang, B., Koomen, J. et al. H2B Tyr37 phosphorylation suppresses expression of replication-dependent core histone genes. Nat Struct Mol Biol 19, 930–937 (2012). https://doi.org/10.1038/nsmb.2356

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2356

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing