Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structures of the extracellular domain of LRP6 and its complex with DKK1

Abstract

Low-density-lipoprotein (LDL) receptor-related proteins 5 and 6 (LRP5/6) are Wnt co-receptors essential for Wnt/β-catenin signaling. Dickkopf 1 (DKK1) inhibits Wnt signaling by interacting with the extracellular domains of LRP5/6 and is a drug target for multiple diseases. Here we present the crystal structures of a human LRP6-E3E4–DKK1 complex and the first and second halves of human LRP6's four propeller–epidermal growth factor (EGF) pairs (LRP6-E1E2 and LRP6-E3E4). Combined with EM analysis, these data demonstrate that LRP6-E1E2 and LRP6-E3E4 form two rigid structural blocks, with a short intervening hinge that restrains their relative orientation. The C-terminal domain of DKK1 (DKK1c) interacts with the top surface of the LRP6-E3 YWTD propeller and given their structural similarity, probably also that of the LRP6-E1 propeller, through conserved hydrophobic patches buttressed by a network of salt bridges and hydrogen bonds. Our work provides key insights for understanding LRP5/6 structure and the interaction of LRP5/6 with DKK, as well as for drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of LRP6-E1E2.
Figure 2: Crystal structure of LRP6-E3E4.
Figure 3: Rigidity of the two LRP6-ECD structural blocks and the hinge between them.
Figure 4: Crystal structure of the LRP6-E3E4–DKK1c complex.
Figure 5: Specific interactions in the two LRP6-E3–DKK1c interfaces.
Figure 6: DKK1 residues in the DKK1-LRP5/6 interface are important for its inhibitory effects on Wnt/β-catenin signaling.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005).

    Article  CAS  Google Scholar 

  2. Moon, R.T., Bowerman, B., Boutros, M. & Perrimon, N. The promise and perils of Wnt signaling through β-catenin. Science 296, 1644–1646 (2002).

    Article  CAS  Google Scholar 

  3. Nelson, W.J. & Nusse, R. Convergence of Wnt, β-catenin, and cadherin pathways. Science 303, 1483–1487 (2004).

    Article  CAS  Google Scholar 

  4. Petersen, C.P. & Reddien, P.W. Wnt signaling and the polarity of the primary body axis. Cell 139, 1056–1068 (2009).

    Article  CAS  Google Scholar 

  5. MacDonald, B.T., Tamai, K. & He, X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).

    Article  CAS  Google Scholar 

  6. Niehrs, C. & Shen, J. Regulation of Lrp6 phosphorylation. Cell Mol. Life Sci. 67, 2551–2562 (2010).

    Article  CAS  Google Scholar 

  7. Wehrli, M. et al. Arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407, 527–530 (2000).

    Article  CAS  Google Scholar 

  8. Pinson, K.I., Brennan, J., Monkley, S., Avery, B.J. & Skarnes, W.C. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407, 535–538 (2000).

    Article  CAS  Google Scholar 

  9. Tamai, K. et al. LDL-receptor-related proteins in Wnt signal transduction. Nature 407, 530–535 (2000).

    Article  CAS  Google Scholar 

  10. Semënov, M.V. et al. Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr. Biol. 11, 951–961 (2001).

    Article  Google Scholar 

  11. He, X., Semenov, M., Tamai, K. & Zeng, X. LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way. Development 131, 1663–1677 (2004).

    Article  CAS  Google Scholar 

  12. Bafico, A., Liu, G., Yaniv, A., Gazit, A. & Aaronson, S.A. Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat. Cell Biol. 3, 683–686 (2001).

    Article  CAS  Google Scholar 

  13. Mao, B. et al. LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411, 321–325 (2001).

    Article  CAS  Google Scholar 

  14. Jeon, H. et al. Implications for familial hypercholesterolemia from the structure of the LDL receptor YWTD-EGF domain pair. Nat. Struct. Biol. 8, 499–504 (2001).

    Article  CAS  Google Scholar 

  15. Springer, T.A. An extracellular β-propeller module predicted in lipoprotein and scavenger receptors, tyrosine kinases, epidermal growth factor precursor, and extracellular matrix components. J. Mol. Biol. 283, 837–862 (1998).

    Article  CAS  Google Scholar 

  16. Rudenko, G. et al. Structure of the LDL receptor extracellular domain at endosomal pH. Science 298, 2353–2358 (2002).

    Article  CAS  Google Scholar 

  17. Bourhis, E. et al. Reconstitution of a frizzled8.Wnt3a.LRP6 signaling complex reveals multiple Wnt and Dkk1 binding sites on LRP6. J. Biol. Chem. 285, 9172–9179 (2010).

    Article  CAS  Google Scholar 

  18. Aravind, L. & Koonin, E.V. A colipase fold in the carboxy-terminal domain of the Wnt antagonists—the Dickkopfs. Curr. Biol. 8, R477–R478 (1998).

    Article  CAS  Google Scholar 

  19. Brott, B.K. & Sokol, S.Y. Regulation of Wnt/LRP signaling by distinct domains of Dickkopf proteins. Mol. Cell Biol. 22, 6100–6110 (2002).

    Article  CAS  Google Scholar 

  20. Mao, B. et al. Kremen proteins are Dickkopf receptors that regulate Wnt/β-catenin signalling. Nature 417, 664–667 (2002).

    Article  CAS  Google Scholar 

  21. Ellwanger, K. et al. Targeted disruption of the Wnt regulator Kremen induces limb defects and high bone density. Mol. Cell Biol. 28, 4875–4882 (2008).

    Article  CAS  Google Scholar 

  22. Chien, A.J. et al. Activated Wnt/β-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc. Natl. Acad. Sci. USA 106, 1193–1198 (2009).

    Article  CAS  Google Scholar 

  23. Pinzone, J.J. et al. The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood 113, 517–525 (2009).

    Article  CAS  Google Scholar 

  24. Lee, N. et al. A potential role for Dkk-1 in the pathogenesis of osteosarcoma predicts novel diagnostic and treatment strategies. Br. J. Cancer 97, 1552–1559 (2007).

    Article  CAS  Google Scholar 

  25. Gong, Y. et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107, 513–523 (2001).

    Article  CAS  Google Scholar 

  26. Boyden, L.M. et al. High bone density due to a mutation in LDL-receptor-related protein 5. N. Engl. J. Med. 346, 1513–1521 (2002).

    Article  CAS  Google Scholar 

  27. Little, R.D. et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet. 70, 11–19 (2002).

    Article  CAS  Google Scholar 

  28. Mani, A. et al. LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science 315, 1278–1282 (2007).

    Article  CAS  Google Scholar 

  29. Williams, B.O. & Insogna, K.L. Where Wnts went: the exploding field of Lrp5 and Lrp6 signaling in bone. J. Bone Miner. Res. 24, 171–178 (2009).

    Article  CAS  Google Scholar 

  30. Baron, R., Rawadi, G. & Roman-Roman, S. Wnt signaling: a key regulator of bone mass. Curr. Top. Dev. Biol. 76, 103–127 (2006).

    Article  CAS  Google Scholar 

  31. Yaccoby, S. et al. Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 109, 2106–2111 (2007).

    Article  CAS  Google Scholar 

  32. Ai, M., Holmen, S.L., Van Hul, W., Williams, B.O. & Warman, M.L. Reduced affinity to and inhibition by DKK1 form a common mechanism by which high bone mass-associated missense mutations in LRP5 affect canonical Wnt signaling. Mol. Cell Biol. 25, 4946–4955 (2005).

    Article  CAS  Google Scholar 

  33. Liu, C.C., Pearson, C. & Bu, G. Cooperative folding and ligand-binding properties of LRP6 β-propeller domains. J. Biol. Chem. 284, 15299–15307 (2009).

    Article  CAS  Google Scholar 

  34. Chen, L. et al. Structural insight into the mechanisms of Wnt signaling antagonism by Dkk. J. Biol. Chem. 283, 23364–23370 (2008).

    Article  CAS  Google Scholar 

  35. Wang, K. et al. Characterization of the Kremen-binding site on Dkk1 and elucidation of the role of Kremen in Dkk-mediated Wnt antagonism. J. Biol. Chem. 283, 23371–23375 (2008).

    Article  CAS  Google Scholar 

  36. Jones, S. & Thornton, J.M. Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA 93, 13–20 (1996).

    Article  CAS  Google Scholar 

  37. Bilic, J. et al. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 316, 1619–1622 (2007).

    Article  CAS  Google Scholar 

  38. Johnson, M.L. & Summerfield, D.T. Parameters of LRP5 from a structural and molecular perspective. Crit. Rev. Eukaryot. Gene Expr. 15, 229–242 (2005).

    Article  CAS  Google Scholar 

  39. Niehrs, C. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 25, 7469–7481 (2006).

    Article  CAS  Google Scholar 

  40. Jeon, H. & Blacklow, S.C. Structure and physiologic function of the low-density lipoprotein receptor. Annu. Rev. Biochem. 74, 535–562 (2005).

    Article  CAS  Google Scholar 

  41. Semënov, M., Tamai, K. & He, X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J. Biol. Chem. 280, 26770–26775 (2005).

    Article  Google Scholar 

  42. Li, X. et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem. 280, 19883–19887 (2005).

    Article  CAS  Google Scholar 

  43. Ellies, D.L. et al. Bone density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J. Bone Miner. Res. 21, 1738–1749 (2006).

    Article  CAS  Google Scholar 

  44. Balemans, W. et al. The binding between sclerostin and LRP5 is altered by DKK1 and by high-bone mass LRP5 mutations. Calcif. Tissue Int. 82, 445–453 (2008).

    Article  CAS  Google Scholar 

  45. Weidauer, S.E. et al. NMR structure of the Wnt modulator protein Sclerostin. Biochem. Biophys. Res. Commun. 380, 160–165 (2009).

    Article  CAS  Google Scholar 

  46. Murrills, R.J. et al. A cell-based Dkk1 binding assay reveals roles for extracellular domains of LRP5 in Dkk1 interaction and highlights differences between wild-type and the high bone mass mutant LRP5(G171V). J. Cell Biochem. 108, 1066–1075 (2009).

    Article  CAS  Google Scholar 

  47. Ettenberg, S.A. et al. Inhibition of tumorigenesis driven by different Wnt proteins requires blockade of distinct ligand-binding regions by LRP6 antibodies. Proc. Natl. Acad. Sci. USA 107, 15473–15478 (2010).

    Article  CAS  Google Scholar 

  48. Gong, Y. et al. Wnt isoform-specific interactions with coreceptor specify inhibition or potentiation of signaling by LRP6 antibodies. PLoS ONE 5, e12682 (2010).

    Article  Google Scholar 

  49. CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  50. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  51. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  52. Winn, M.D., Murshudov, G.N. & Papiz, M.Z. Macromolecular TLS refinement in REFMAC at moderate resolutions. Methods Enzymol. 374, 300–321 (2003).

    Article  CAS  Google Scholar 

  53. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  54. Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003).

    Article  CAS  Google Scholar 

  55. Biechele, T.L. & Moon, R.T. Assaying β-catenin/TCF transcription with β-catenin/TCF transcription-based reporter constructs. Methods Mol. Biol. 468, 99–110 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the staff at ALS beamlines BL 8.2.1 and 8.2.2 for assistance with synchrotron data collection. We thank G. Bu (Washington University) for human LRP6 cDNA. This work was supported by US National Institutes of Health (NIH) grants CA90351 to W.X. R.T.M. is funded by the Howard Hughes Medical Institute. T.B. was supported by a Training Grant from NIH/National Institute of Arthritis and Musculoskeletal and Skin (T32AR056969).

Author information

Authors and Affiliations

Authors

Contributions

Z.C., T.B., R.T.M., L.W. and W.X. participated in the experimental design and wrote the paper. Z.C. did protein purification, crystallization, crystal structural determination, Alpha Technology binding assay, size-exclusion chromatography and dynamic light scattering analysis. T.B. did the β-catenin activated reporter assay. Z.W. developed protein expression systems. L.W. did EM analysis. S.M. provided technical support.

Corresponding author

Correspondence to Wenqing Xu.

Ethics declarations

Competing interests

R.T.M. is a cofounder of, and consultant with, FATE Therapeutics. The other authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 4970 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Z., Biechele, T., Wei, Z. et al. Crystal structures of the extracellular domain of LRP6 and its complex with DKK1. Nat Struct Mol Biol 18, 1204–1210 (2011). https://doi.org/10.1038/nsmb.2139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing