Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complexin activates and clamps SNAREpins by a common mechanism involving an intermediate energetic state

Abstract

The core mechanism of intracellular vesicle fusion consists of SNAREpin zippering between vesicular and target membranes. Recent studies indicate that the same SNARE-binding protein, complexin (CPX), can act either as a facilitator or as an inhibitor of membrane fusion, constituting a controversial dilemma. Here we take energetic measurements with the surface force apparatus that reveal that CPX acts sequentially on assembling SNAREpins, first facilitating zippering by nearly doubling the distance at which v- and t-SNAREs can engage and then clamping them into a half-zippered fusion-incompetent state. Specifically, we find that the central helix of CPX allows SNAREs to form this intermediate energetic state at 9–15 nm but not when the bilayers are closer than 9 nm. Stabilizing the activated-clamped state at separations of less than 9 nm requires the accessory helix of CPX, which prevents membrane-proximal assembly of SNAREpins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CPX affects the structural-energetic landscape of SNAREpins as they assemble across membranes.
Figure 2: CPX allows SNAREpins to assemble at a larger distance.
Figure 3: CPX activates and clamps SNAREpin assembly.
Figure 4: Affinity of CPX variants for the SNAREpin.
Figure 5: CPX reshapes the energy landscape of SNAREpin folding.
Figure 6: CPX directly interacts with membrane-anchored t-SNAREs.

Similar content being viewed by others

References

  1. Südhof, T.C. & Rothman, J.E. Membrane fusion: grappling with SNARE and SM proteins. Science 323, 474–477 (2009).

    Article  Google Scholar 

  2. Sørensen, J.B. Conflicting views on the membrane fusion machinery and the fusion pore. Annu. Rev. Cell Dev. Biol. 25, 513–537 (2009).

    Article  Google Scholar 

  3. Hobson, R.J. et al. Complexin maintains vesicles in the primed state in C. elegans. Curr. Biol. 21, 106–113 (2011).

    Article  CAS  Google Scholar 

  4. Söllner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324 (1993).

    Article  Google Scholar 

  5. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  Google Scholar 

  6. Brose, N. For better or for worse: complexins regulate SNARE function and vesicle fusion. Traffic 9, 1403–1413 (2008).

    Article  CAS  Google Scholar 

  7. Reim, K. et al. Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell 104, 71–81 (2001).

    Article  CAS  Google Scholar 

  8. Tang, J. et al. A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126, 1175–1187 (2006).

    Article  CAS  Google Scholar 

  9. Maximov, A. et al. Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science 323, 516–521 (2009).

    Article  CAS  Google Scholar 

  10. Schaub, J.R. et al. Hemifusion arrest by complexin is relieved by Ca2+-synaptotagmin I. Nat. Struct. Mol. Biol. 13, 748–750 (2006).

    Article  CAS  Google Scholar 

  11. Giraudo, C.G. et al. A clamping mechanism involved in SNARE-dependent exocytosis. Science 313, 676–680 (2006).

    Article  CAS  Google Scholar 

  12. Yoon, T.Y. et al. Complexin and Ca2+ stimulate SNARE-mediated membrane fusion. Nat. Struct. Mol. Biol. 15, 707–713 (2008).

    Article  CAS  Google Scholar 

  13. Malsam, J. et al. The carboxy-terminal domain of complexin I stimulates liposome fusion. Proc. Natl. Acad. Sci. USA 106, 2001–2006 (2009).

    Article  CAS  Google Scholar 

  14. Xue, M. et al. Complexins facilitate neurotransmitter release at excitatory and inhibitory synapses in mammalian central nervous system. Proc. Natl. Acad. Sci. USA 105, 7875–7880 (2008).

    Article  CAS  Google Scholar 

  15. Huntwork, S. & Littleton, J.T. A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nat. Neurosci. 10, 1235–1237 (2007).

    Article  CAS  Google Scholar 

  16. Xue, M. et al. Tilting the balance between facilitatory and inhibitory functions of mammalian and Drosophila complexins orchestrates synaptic vesicle exocytosis. Neuron 64, 367–380 (2009).

    Article  CAS  Google Scholar 

  17. Cho, R.W., Song, Y. & Littleton, J.T. Comparative analysis of Drosophila and mammalian complexins as fusion clamps and facilitators of neurotransmitter release. Mol. Cell. Neurosci. 45, 389–397 (2010).

    Article  CAS  Google Scholar 

  18. Xue, M. et al. Distinct domains of complexin I differentially regulate neurotransmitter release. Nat. Struct. Mol. Biol. 14, 949–958 (2007).

    Article  CAS  Google Scholar 

  19. Li, F. et al. Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat. Struct. Mol. Biol. 14, 890–896 (2007).

    Article  CAS  Google Scholar 

  20. Sutton, R.B. et al. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395, 347–353 (1998).

    Article  CAS  Google Scholar 

  21. Hua, S.Y. & Charlton, M.P. Activity-dependent changes in partial VAMP complexes during neurotransmitter release. Nat. Neurosci. 2, 1078–1083 (1999).

    Article  CAS  Google Scholar 

  22. McNew, J.A. et al. Close is not enough: SNARE-dependent membrane fusion requires an active mechanism that transduces force to membrane anchors. J. Cell Biol. 150, 105–117 (2000).

    Article  CAS  Google Scholar 

  23. Weninger, K. et al. Accessory proteins stabilize the acceptor complex for synaptobrevin, the 1:1 syntaxin/SNAP-25 complex. Structure 16, 308–320 (2008).

    Article  CAS  Google Scholar 

  24. Guan, R., Dai, H. & Rizo, J. Binding of the Munc13–1 MUN domain to membrane-anchored SNARE complexes. Biochemistry 47, 1474–1481 (2008).

    Article  CAS  Google Scholar 

  25. Pabst, S. et al. Rapid and selective binding to the synaptic SNARE complex suggests a modulatory role of complexins in neuroexocytosis. J. Biol. Chem. 277, 7838–7848 (2002).

    Article  CAS  Google Scholar 

  26. Bracher, A. et al. X-ray structure of a neuronal complexin-SNARE complex from squid. J. Biol. Chem. 277, 26517–26523 (2002).

    Article  CAS  Google Scholar 

  27. Chen, X. et al. Three-dimensional structure of the complexin/SNARE complex. Neuron 33, 397–409 (2002).

    Article  CAS  Google Scholar 

  28. Giraudo, C.G. et al. Distinct domains of complexins bind SNARE complexes and clamp fusion in vitro. J. Biol. Chem. 283, 21211–21219 (2008).

    Article  CAS  Google Scholar 

  29. Giraudo, C.G. et al. Alternative zippering as an on-off switch for SNARE-mediated fusion. Science 323, 512–516 (2009).

    Article  CAS  Google Scholar 

  30. Xue, M. et al. Binding of the complexin N terminus to the SNARE complex potentiates synaptic-vesicle fusogenicity. Nat. Struct. Mol. Biol. 17, 568–575 (2010).

    Article  CAS  Google Scholar 

  31. Kümmel, D. et al. Complexin cross-links prefusion SNAREs into a zigzag array. Nat. Struct. Mol. Biol. doi:10.1038/nsmb.2101 (2011).

  32. Krishnakumar, S.S. et al. A conformational switch in complexin is required for synaptotagmin to trigger synaptic fusion. Nat. Struct. Mol. Biol. doi:10.1038/nsmb.2103 (2011).

  33. Israelachvili, J.N. & Adams, G.E. Measurement of forces between 2 mica surfaces in aqueous-electrolyte solutions in range 0-100 nm. J. Chem. Soc., Faraday Trans. 74, 975–1001 (1978).

    Article  CAS  Google Scholar 

  34. Israelachvili, J. Thin-film studies using multiple-beam interferometry. J. Colloid Interface Sci. 44, 259–272 (1973).

    Article  CAS  Google Scholar 

  35. Derjaguin, B.V., Muller, V.M. & Toporov, Y.P. Effect of contact deformations on adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Human Frontier Science Program, Agence Nationale de la Recherche (ANR) Physique et Chimie du Vivant (PCV) grant ANR-08-PCVI-0014 to F.P., US National Institutes of Health grants to J.E.R. and a Partner University Funds exchange grant between the Yale and Ecole Normale Supérieure laboratories. D.T. is funded by the ANR Jeunes Chercheuses et Jeunes Chercheurs (JCJC) grant ANR-09-JCJC-0062-01. We thank T. Melia for many helpful discussions, as well as J. Coleman, W. Eng and A. Garcia-Diaz for technical help.

Author information

Authors and Affiliations

Authors

Contributions

F.L. and C.G.G. made constructs and did protein purification. F.L. carried out SFA and ITC measurements. C.G.G. did cell-cell fusion assay. F.L., F.P. and D.T. analyzed the data. F.L., F.P., E.P., D.T. and J.E.R. interpreted the results and prepared the manuscript.

Corresponding author

Correspondence to James E Rothman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Table 1, Supplementary Discussion and Supplementary Methods (PDF 1120 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, F., Pincet, F., Perez, E. et al. Complexin activates and clamps SNAREpins by a common mechanism involving an intermediate energetic state. Nat Struct Mol Biol 18, 941–946 (2011). https://doi.org/10.1038/nsmb.2102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing