Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

KAP-1 phosphorylation regulates CHD3 nucleosome remodeling during the DNA double-strand break response

Abstract

KAP-1 poses a substantial barrier to DNA double-strand break (DSB) repair within heterochromatin that is alleviated by ATM-dependent KAP-1 phosphorylation (pKAP-1). Here we address the mechanistic consequences of pKAP-1 that promote heterochromatic DSB repair and chromatin relaxation. KAP-1 function involves autoSUMOylation and recruitment of nucleosome deacetylation, methylation and remodeling activities. Although heterochromatin acetylation or methylation changes were not detected, radiation-induced pKAP-1 dispersed the nucleosome remodeler CHD3 from DSBs and triggered concomitant chromatin relaxation; pKAP-1 loss reversed these effects. Depletion or inactivation of CHD3, or ablation of its interaction with KAP-1SUMO1, bypassed pKAP-1's role in repair. Though KAP-1 SUMOylation was unaffected after irradiation, CHD3 dissociated from KAP-1SUMO1 in a pKAP-1–dependent manner. We demonstrate that KAP-1Ser824 phosphorylation generates a motif that directly perturbs interactions between CHD3′s SUMO-interacting motif and SUMO1, dispersing CHD3 from heterochromatin DSBs and enabling repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Heterochromatic DSB repair and DSB-induced nucleosome spacing alterations require sustained ATM activity and KAP-1 phosphorylation.
Figure 2: Ionizing radiation reduces CHD3 retention at sites of damage after ionizing radiation in an ATM-dependent, rapid and reversible manner.
Figure 3: Depletion or catalytic mutation of CHD3 alleviates the need for ATM activity or KAP-1 phosphorylation in DSB repair.
Figure 4: Ablating KAP-1 SUMOylation alleviates the need for pKAP-1 in DSB repair, and CHD3 interactions with KAP-1SUMO, but not overall KAP-1 SUMOylation, are altered after ionizing radiation.
Figure 5: pKAP-1 peptides disrupt interactions between SUMO1 and the SIM domain of CHD3 in vitro.

Similar content being viewed by others

References

  1. Yunis, J.J. & Yasmineh, W.G. Heterochromatin, satellite DNA, and cell function. Structural DNA of eucaryotes may support and protect genes and aid in speciation. Science 174, 1200–1209 (1971).

    Article  CAS  Google Scholar 

  2. Miklos, G.L. & John, B. Heterochromatin and satellite DNA in man: properties and prospects. Am. J. Hum. Genet. 31, 264–280 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Craig, J.M. Heterochromatin—many flavours, common themes. Bioessays 27, 17–28 (2005).

    Article  CAS  Google Scholar 

  4. Grewal, S.I. & Jia, S. Heterochromatin revisited. Nat. Rev. Genet. 8, 35–46 (2007).

    Article  CAS  Google Scholar 

  5. Becker, P.B. & Horz, W. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71, 247–273 (2002).

    Article  CAS  Google Scholar 

  6. Martin, C. & Zhang, Y. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol. 6, 838–849 (2005).

    Article  CAS  Google Scholar 

  7. Hediger, F. & Gasser, S.M. Heterochromatin protein 1: don't judge the book by its cover! Curr. Opin. Genet. Dev. 16, 143–150 (2006).

    Article  CAS  Google Scholar 

  8. Denslow, S.A. & Wade, P.A. The human Mi-2/NuRD complex and gene regulation. Oncogene 26, 5433–5438 (2007).

    Article  CAS  Google Scholar 

  9. Guenatri, M., Bailly, D., Maison, C. & Almouzni, G. Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J. Cell Biol. 166, 493–505 (2004).

    Article  CAS  Google Scholar 

  10. Downs, J.A., Nussenzweig, M.C. & Nussenzweig, A. Chromatin dynamics and the preservation of genetic information. Nature 447, 951–958 (2007).

    Article  CAS  Google Scholar 

  11. Falk, M., Lukasova, E. & Kozubek, S. Higher-order chromatin structure in DSB induction, repair and misrepair. Mutat. Res. 704, 88–100 (2010).

    Article  CAS  Google Scholar 

  12. Kim, J.A., Kruhlak, M., Dotiwala, F., Nussenzweig, A. & Haber, J.E. Heterochromatin is refractory to γ-H2AX modification in yeast and mammals. J. Cell Biol. 178, 209–218 (2007).

    Article  CAS  Google Scholar 

  13. Cowell, I.G. et al. γH2AX foci form preferentially in euchromatin after ionising-radiation. PLoS ONE 2, e1057 (2007).

    Article  Google Scholar 

  14. Goodarzi, A.A. et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol. Cell 31, 167–177 (2008).

    Article  CAS  Google Scholar 

  15. Goodarzi, A.A., Jeggo, P. & Lobrich, M. The influence of heterochromatin on DNA double strand break repair: getting the strong, silent type to relax. DNA Repair (Amst.) 9, 1273–1282 (2010).

    Article  CAS  Google Scholar 

  16. Ayoub, N., Jeyasekharan, A.D. & Venkitaraman, A.R. Mobilization and recruitment of HP1: a bimodal response to DNA breakage. Cell Cycle 8, 2945–2950 (2009).

    PubMed  Google Scholar 

  17. Dinant, C. & Luijsterburg, M.S. The emerging role of HP1 in the DNA damage response. Mol. Cell. Biol. 29, 6335–6340 (2009).

    Article  CAS  Google Scholar 

  18. Ziv, Y. et al. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat. Cell Biol. 8, 870–876 (2006).

    Article  CAS  Google Scholar 

  19. Noon, A.T. et al. 53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Nat. Cell Biol. 12, 177–184 (2010).

    Article  CAS  Google Scholar 

  20. Tjeertes, J.V., Miller, K.M. & Jackson, S.P. Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO J. 28, 1878–1889 (2009).

    Article  CAS  Google Scholar 

  21. Lee, Y.K., Thomas, S.N., Yang, A.J. & Ann, D.K. Doxorubicin down-regulates Kruppel-associated box domain-associated protein 1 sumoylation that relieves its transcription repression on p21WAF1/CIP1 in breast cancer MCF-7 cells. J. Biol. Chem. 282, 1595–1606 (2007).

    Article  CAS  Google Scholar 

  22. Li, X. et al. Role for KAP1 serine 824 phosphorylation and sumoylation/desumoylation switch in regulating KAP1-mediated transcriptional repression. J. Biol. Chem. 282, 36177–36189 (2007).

    Article  CAS  Google Scholar 

  23. Ivanov, A.V. et al. PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol. Cell 28, 823–837 (2007).

    Article  CAS  Google Scholar 

  24. Löbrich, M. et al. γH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle 9, 662–669 (2010).

    Article  Google Scholar 

  25. Schultz, D.C., Friedman, J.R. & Rauscher, F.J. III . Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2α subunit of NuRD. Genes Dev. 15, 428–443 (2001).

    Article  CAS  Google Scholar 

  26. Polo, S.E., Kaidi, A., Baskcomb, L., Galanty, Y. & Jackson, S.P. Regulation of DNA-damage responses and cell-cycle progression by the chromatin remodelling factor CHD4. EMBO J. 29, 3130–3139 (2010).

    Article  CAS  Google Scholar 

  27. Smeenk, G. et al. The NuRD chromatin-remodeling complex regulates signaling and repair of DNA damage. J. Cell Biol. 190, 741–749 (2010).

    Article  CAS  Google Scholar 

  28. Larsen, D.H. et al. The chromatin-remodeling factor CHD4 coordinates signaling and repair after DNA damage. J. Cell Biol. 190, 731–740 (2010).

    Article  CAS  Google Scholar 

  29. Riballo, E. et al. A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to γ-H2AX foci. Mol. Cell 16, 715–724 (2004).

    Article  CAS  Google Scholar 

  30. Kerscher, O. SUMO junction—what's your function? New insights through SUMO-interacting motifs. EMBO Rep. 8, 550–555 (2007).

    Article  CAS  Google Scholar 

  31. Hecker, C.M., Rabiller, M., Haglund, K., Bayer, P. & Dikic, I. Specification of SUMO1- and SUMO2-interacting motifs. J. Biol. Chem. 281, 16117–16127 (2006).

    Article  CAS  Google Scholar 

  32. Stehmeier, P. & Muller, S. Phospho-regulated SUMO interaction modules connect the SUMO system to CK2 signaling. Mol. Cell 33, 400–409 (2009).

    Article  CAS  Google Scholar 

  33. Miller, K.M. et al. Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nat. Struct. Mol. Biol. 17, 1144–1151 (2010).

    Article  CAS  Google Scholar 

  34. Saether, T. et al. The chromatin remodeling factor Mi-2α acts as a novel co-activator for human c-Myb. J. Biol. Chem. 282, 13994–14005 (2007).

    Article  CAS  Google Scholar 

  35. Seeler, J.S. et al. Common properties of nuclear body protein SP100 and TIF1α chromatin factor: role of SUMO modification. Mol. Cell. Biol. 21, 3314–3324 (2001).

    Article  CAS  Google Scholar 

  36. Goodarzi, A.A. et al. DNA-PK autophosphorylation facilitates Artemis endonuclease activity. EMBO J. 25, 3880–3889 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank O.S. Gabrielsen and T. Sæther (University of Oslo) for the CHD3 construct, A. Oliver (University of Sussex) for helpful structural biology discussions and Y. Ziv (University of Tel Aviv) for advice on MNase assays. A.A.G. was supported by a grant from the Association for International Cancer Research (AICR). The P.A.J. lab is funded by the Medical Research Council (UK), AICR, the Wellcome Research Trust and the Department of Health Radiation Protection Programme (UK).

Author information

Authors and Affiliations

Authors

Contributions

A.A.G. and T. K. conducted the experiments. A.A.G. and P.A.J. coauthored the manuscript and conceived of and designed the study.

Corresponding authors

Correspondence to Aaron A Goodarzi or Penelope A Jeggo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Discussion (PDF 2272 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodarzi, A., Kurka, T. & Jeggo, P. KAP-1 phosphorylation regulates CHD3 nucleosome remodeling during the DNA double-strand break response. Nat Struct Mol Biol 18, 831–839 (2011). https://doi.org/10.1038/nsmb.2077

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2077

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing