Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A processed noncoding RNA regulates an altruistic bacterial antiviral system

This article has been updated

Abstract

The ≥1030 bacteriophages on Earth relentlessly drive adaptive coevolution, forcing the generation of protective mechanisms in their bacterial hosts. One such bacterial phage-resistance system, ToxIN, consists of a protein toxin (ToxN) that is inhibited in vivo by a specific RNA antitoxin (ToxI); however, the mechanisms for this toxicity and inhibition have not been defined. Here we present the crystal structure of the ToxN–ToxI complex from Pectobacterium atrosepticum, determined to 2.75-Å resolution. ToxI is a 36-nucleotide noncoding RNA pseudoknot, and three ToxI monomers bind to three ToxN monomers to generate a trimeric ToxN–ToxI complex. Assembly of this complex is mediated entirely through extensive RNA-protein interactions. Furthermore, a 2′-3′ cyclic phosphate at the 3′ end of ToxI, and catalytic residues, identify ToxN as an endoRNase that processes ToxI from a repetitive precursor but is regulated by its own catalytic product.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of TA systems.
Figure 2: ToxIN complex structure.
Figure 3: ToxI pseudoknot structure.
Figure 4: ToxN has an endoRNase active site.
Figure 5: Identification of ToxN–ToxI residues that are vital for toxicity and interaction.
Figure 6: Structural comparisons in the ToxN family.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

Change history

  • 28 January 2011

    In the version of this article initially published online, there was a mistake in the cell dimension values in row 3 of Table 1 (SeMet). These should read 182.85, 118.13, 41.90. The error has been corrected in all versions of the article.

References

  1. Wommack, K.E. & Colwell, R.R. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64, 69–114 (2000).

    Article  CAS  Google Scholar 

  2. Lima-Mendez, G., Toussaint, A. & Leplae, R. Analysis of the phage sequence space: the benefit of structured information. Virology 365, 241–249 (2007).

    Article  CAS  Google Scholar 

  3. Labrie, S.J., Samson, J.E. & Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317–327 (2010).

    Article  CAS  Google Scholar 

  4. Chopin, M.C., Chopin, A. & Bidnenko, E. Phage abortive infection in lactococci: variations on a theme. Curr. Opin. Microbiol. 8, 473–479 (2005).

    Article  CAS  Google Scholar 

  5. Shub, D.A. Bacterial viruses. Bacterial altruism? Curr. Biol. 4, 555–556 (1994).

    Article  CAS  Google Scholar 

  6. Fineran, P.C. et al. The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc. Natl. Acad. Sci. USA 106, 894–899 (2009).

    Article  CAS  Google Scholar 

  7. Blower, T.R. et al. Mutagenesis and functional characterization of the RNA and protein components of the toxIN abortive infection and toxin-antitoxin locus of Erwinia. J. Bacteriol. 191, 6029–6039 (2009).

    Article  CAS  Google Scholar 

  8. Pandey, D.P. & Gerdes, K. Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res. 33, 966–976 (2005).

    Article  CAS  Google Scholar 

  9. Hayes, F. Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301, 1496–1499 (2003).

    Article  CAS  Google Scholar 

  10. Gerdes, K., Christensen, S.K. & Lobner-Olesen, A. Prokaryotic toxin-antitoxin stress response loci. Nat. Rev. Microbiol. 3, 371–382 (2005).

    Article  CAS  Google Scholar 

  11. Keren, I. et al. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol. 186, 8172–8180 (2004).

    Article  CAS  Google Scholar 

  12. Gerdes, K., Rasmussen, P.B. & Molin, S. Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells. Proc. Natl. Acad. Sci. USA 83, 3116–3120 (1986).

    Article  CAS  Google Scholar 

  13. Gerdes, K. & Wagner, E.G. RNA antitoxins. Curr. Opin. Microbiol. 10, 117–124 (2007).

    Article  CAS  Google Scholar 

  14. Hargreaves, D. et al. Structural and functional analysis of the Kid toxin protein from E. coli plasmid R1. Structure 10, 1425–1433 (2002).

    Article  CAS  Google Scholar 

  15. Jørgensen, M.G., Pandey, D.P., Jaskolska, M. & Gerdes, K. HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea. J. Bacteriol. 191, 1191–1199 (2009).

    Article  Google Scholar 

  16. Miallau, L. et al. Structure and proposed activity of a member of the VapBC family of toxin-antitoxin systems. VapBC-5 from Mycobacterium tuberculosis. J. Biol. Chem. 284, 276–283 (2009).

    Article  CAS  Google Scholar 

  17. Neubauer, C. et al. The structural basis for mRNA recognition and cleavage by the ribosome-dependent endonuclease RelE. Cell 139, 1084–1095 (2009).

    Article  CAS  Google Scholar 

  18. Liu, M., Zhang, Y., Inouye, M. & Woychik, N.A. Bacterial addiction module toxin Doc inhibits translation elongation through its association with the 30S ribosomal subunit. Proc. Natl. Acad. Sci. USA 105, 5885–5890 (2008).

    Article  CAS  Google Scholar 

  19. Loris, R. et al. Crystal structure of CcdB, a topoisomerase poison from E. coli. J. Mol. Biol. 285, 1667–1677 (1999).

    Article  CAS  Google Scholar 

  20. Jiang, Y., Pogliano, J., Helinski, D.R. & Konieczny, I. ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of Escherichia coli gyrase. Mol. Microbiol. 44, 971–979 (2002).

    Article  CAS  Google Scholar 

  21. Yamamoto, S. et al. Novel toxin-antitoxin system composed of serine protease and AAA-ATPase homologues determines the high level of stability and incompatibility of the tumor-inducing plasmid pTiC58. J. Bacteriol. 191, 4656–4666 (2009).

    Article  CAS  Google Scholar 

  22. Meinhart, A., Alonso, J.C., Strater, N. & Saenger, W. Crystal structure of the plasmid maintenance system ɛ/ζ: functional mechanism of toxin ζ and inactivation by ɛ2ζ2 complex formation. Proc. Natl. Acad. Sci. USA 100, 1661–1666 (2003).

    Article  CAS  Google Scholar 

  23. Repoila, F. & Darfeuille, F. Small regulatory non-coding RNAs in bacteria: physiology and mechanistic aspects. Biol. Cell 101, 117–131 (2009).

    Article  CAS  Google Scholar 

  24. Chakrabarti, P. & Janin, J. Dissecting protein-protein recognition sites. Proteins 47, 334–343 (2002).

    Article  CAS  Google Scholar 

  25. Puglisi, J.D., Wyatt, J.R. & Tinoco, I. Jr. A pseudoknotted RNA oligonucleotide. Nature 331, 283–286 (1988).

    Article  CAS  Google Scholar 

  26. Nissen, P. et al. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl. Acad. Sci. USA 98, 4899–4903 (2001).

    Article  CAS  Google Scholar 

  27. Wimberly, B.T. et al. Structure of the 30S ribosomal subunit. Nature 407, 327–339 (2000).

    Article  CAS  Google Scholar 

  28. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  29. Buts, L. et al. Toxin-antitoxin modules as bacterial metabolic stress managers. Trends Biochem. Sci. 30, 672–679 (2005).

    Article  CAS  Google Scholar 

  30. Kamada, K., Hanaoka, F. & Burley, S.K. Crystal structure of the MazE/MazF complex: molecular bases of antidote-toxin recognition. Mol. Cell 11, 875–884 (2003).

    Article  CAS  Google Scholar 

  31. Diago-Navarro, E. et al. parD toxin-antitoxin system of plasmid R1—basic contributions, biotechnological applications and relationships with closely-related toxin-antitoxin systems. FEBS J. 277, 3097–3117 (2010).

    Article  CAS  Google Scholar 

  32. Sussman, D., Nix, J.C. & Wilson, C. The structural basis for molecular recognition by the vitamin B12 RNA aptamer. Nat. Struct. Biol. 7, 53–57 (2000).

    Article  CAS  Google Scholar 

  33. Klein, D.J., Edwards, T.E. & Ferre-D'Amare, A.R. Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase. Nat. Struct. Mol. Biol. 16, 343–344 (2009).

    Article  CAS  Google Scholar 

  34. Christensen-Dalsgaard, M., Jorgensen, M.G. & Gerdes, K. Three new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses. Mol. Microbiol. 75, 333–348 (2010).

    Article  CAS  Google Scholar 

  35. Fozo, E.M. et al. Abundance of type I toxin-antitoxin systems in bacteria: searches for new candidates and discovery of novel families. Nucleic Acids Res. 38, 3743–3759 (2010).

    Article  CAS  Google Scholar 

  36. Makarova, K.S., Wolf, Y.I. & Koonin, E.V. Comprehensive comparative-genomic analysis of Type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol. Direct 4, 19 (2009).

    Article  Google Scholar 

  37. Su, L. et al. Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot. Nat. Struct. Biol. 6, 285–292 (1999).

    Article  CAS  Google Scholar 

  38. Brierley, I., Pennell, S. & Gilbert, R.J. Viral RNA pseudoknots: versatile motifs in gene expression and replication. Nat. Rev. Microbiol. 5, 598–610 (2007).

    Article  CAS  Google Scholar 

  39. Theimer, C.A., Blois, C.A. & Feigon, J. Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. Mol. Cell 17, 671–682 (2005).

    Article  CAS  Google Scholar 

  40. Tuerk, C., MacDougal, S. & Gold, L. RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc. Natl. Acad. Sci. USA 89, 6988–6992 (1992).

    Article  CAS  Google Scholar 

  41. Vogel, J. & Wagner, E.G. Target identification of small noncoding RNAs in bacteria. Curr. Opin. Microbiol. 10, 262–270 (2007).

    Article  CAS  Google Scholar 

  42. Chang, A.C. & Cohen, S.N. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 134, 1141–1156 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Paterson, N.G., Riboldi-Tunnicliffe, A., Mitchell, T.J. & Isaacs, N.W. Purification, crystallization and preliminary X-ray diffraction analysis of RafE, a sugar-binding lipoprotein from Streptococcus pneumoniae. Acta Crystallogr. F Struct. Biol. Cryst. Commun. 62, 676–679 (2006).

    Article  CAS  Google Scholar 

  44. D'Arcy, A., Villard, F. & Marsh, M. An automated microseed matrix-screening method for protein crystallization. Acta Crystallogr. D Biol. Crystallogr. 63, 550–554 (2007).

    Article  CAS  Google Scholar 

  45. Otwinowski, Z. & Minor, R. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  46. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  47. Sheldrick, G.M. Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr. A 46, 467–473 (1990).

    Article  Google Scholar 

  48. Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215–230 (2007).

    CAS  Google Scholar 

  49. Terwilliger, T.C. et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr. D Biol. Crystallogr. 64, 61–69 (2008).

    Article  CAS  Google Scholar 

  50. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  51. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  52. Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  Google Scholar 

  53. Gouet, P., Courcelle, E., Stuart, D.I. & Metoz, F. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305–308 (1999).

    Article  CAS  Google Scholar 

  54. Guzman, L.M., Belin, D., Carson, M.J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).

    Article  CAS  Google Scholar 

  55. Ellis, E.L. & Delbrück, M. The growth of bacteriophage. J. Gen. Physiol. 22, 365–384 (1939).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the beamline scientists at station ID23.1 in the European Synchrotron Research Facility, Grenoble, France, and at stations I03 and I04 in the Diamond Light Source, Oxford, UK. This work was supported by grants from the Biotechnology and Biological Sciences Research Council (UK), the Wellcome Trust (UK) and the Marsden Fund, Royal Society of New Zealand. Work with P. atrosepticum was performed under a plant health license from the Department for Environment, Food and Rural Affairs (UK). T.R.B. was supported by a Collaborative Award in Science and Engineering Studentship from UCB Ltd. F.L.S. was supported by a Commonwealth Scholarship from the Commonwealth Scholarships Commission (UK).

Author information

Authors and Affiliations

Authors

Contributions

T.R.B., X.Y.P., F.L.S. and B.F.L. conducted experiments and analyzed data, with input from G.P.C.S. Experiments were designed by T.R.B., X.Y.P., P.C.F., B.F.L. and G.P.C.S. All authors interpreted experiments and contributed to writing the paper.

Corresponding author

Correspondence to George P C Salmond.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Table 1 (PDF 629 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blower, T., Pei, X., Short, F. et al. A processed noncoding RNA regulates an altruistic bacterial antiviral system. Nat Struct Mol Biol 18, 185–190 (2011). https://doi.org/10.1038/nsmb.1981

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1981

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology