Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The resistance of DMC1 D-loops to dissociation may account for the DMC1 requirement in meiosis

A Corrigendum to this article was published on 05 February 2013

A Corrigendum to this article was published on 06 September 2011

This article has been updated

Abstract

The ubiquitously expressed Rad51 recombinase and the meiosis-specific Dmc1 recombinase promote the formation of strand-invasion products (D-loops) between homologous molecules. Strand-invasion products are processed by either the double-strand break repair (DSBR) or synthesis-dependent strand annealing (SDSA) pathway. D-loops destined to be processed by SDSA need to dissociate, producing non-crossovers, and those destined for DSBR should resist dissociation to generate crossovers. The mechanism that channels recombination intermediates into different homologous-recombination pathways is unknown. Here we show that D-loops in a human DMC1-driven reaction are substantially more resistant to dissociation by branch-migration proteins such as RAD54 than those formed by RAD51. We propose that the intrinsic resistance to dissociation of DMC1 strand-invasion intermediates may account for why DMC1 is essential to ensure the proper segregation of chromosomes in meiosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways of homologous recombination.
Figure 2: RAD54 does not dissociate non-deproteinized joint molecules (D-loops) formed by DMC1.
Figure 3: RAD54 dissociates native D-loops formed by RAD51, but not DMC1, in the presence of Hop2–Mnd1.

Similar content being viewed by others

Change history

  • 09 August 2011

    In the version of this article initially published, the legend for Figure 2d,e did not include the source of the data in those panels. These data originally appeared in ref. 20. The error has been corrected in the HTML and PDF versions of the article.

  • 10 October 2012

    In the version of this article initially published, support from the Oklahoma Center for the Advancement of Science and Technology to R.J.P. was not acknowledged. The error has been corrected in the PDF and HTML versions of this article.

References

  1. Haber, J.E. DNA recombination: the replication connection. Trends Biochem. Sci. 24, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Johnson, R.D. & Jasin, M. Double-strand-break-induced homologous recombination in mammalian cells. Biochem. Soc. Trans. 29, 196–201 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Pâques, F. & Haber, J.E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349–404 (1999).

    PubMed  PubMed Central  Google Scholar 

  4. Whitby, M.C. Making crossovers during meiosis. Biochem. Soc. Trans. 33, 1451–1455 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Petronczki, M., Siomos, M.F. & Nasmyth, K. Un menage a quatre: the molecular biology of chromosome segregation in meiosis. Cell 112, 423–440 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Krogh, B.O. & Symington, L.S. Recombination proteins in yeast. Annu. Rev. Genet. 38, 233–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Neale, M.J. & Keeney, S. Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature 442, 153–158 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mimitou, E.P. & Symington, L.S. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455, 770–774 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Zhu, Z., Chung, W.H., Shim, E.Y., Lee, S.E. & Ira, G. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134, 981–994 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gravel, S., Chapman, J.R., Magill, C. & Jackson, S.P. DNA helicases Sgs1 and BLM promote DNA double-strand break resection. Genes Dev. 22, 2767–2772 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bianco, P.R., Tracy, R.B. & Kowalczykowski, S.C. DNA strand exchange proteins: a biochemical and physical comparison. Front. Biosci. 3, D570–D603 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Sung, P., Krejci, L., Van Komen, S. & Sehorn, M.G. Rad51 recombinase and recombination mediators. J. Biol. Chem. 278, 42729–42732 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Allers, T. & Lichten, M. Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106, 47–57 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Jessop, L., Rockmill, B., Roeder, G.S. & Lichten, M. Meiotic chromosome synapsis-promoting proteins antagonize the anti-crossover activity of sgs1. PLoS Genet. 2, e155 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hunter, N. & Kleckner, N. The single-end invasion: an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination. Cell 106, 59–70 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Börner, G.V., Kleckner, N. & Hunter, N. Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117, 29–45 (2004).

    Article  PubMed  Google Scholar 

  17. Szostak, J.W., Orr-Weaver, T.L., Rothstein, R.J. & Stahl, F.W. The double-strand break repair model for recombination. Cell 33, 25–35 (1983).

    Article  CAS  PubMed  Google Scholar 

  18. Schwacha, A. & Kleckner, N. Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83, 783–791 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Nassif, N., Penney, J., Pal, S., Engels, W.R. & Gloor, G.B. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol. Cell. Biol. 14, 1613–1625 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bugreev, D.V., Hanaoka, F. & Mazin, A.V. Rad54 dissociates homologous recombination intermediates by branch migration. Nat. Struct. Mol. Biol. 14, 746–753 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Masson, J.Y. & West, S.C. The Rad51 and Dmc1 recombinases: a non-identical twin relationship. Trends Biochem. Sci. 26, 131–136 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Bishop, D.K., Park, D., Xu, L. & Kleckner, N. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69, 439–456 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Schwacha, A. & Kleckner, N. Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell 90, 1123–1135 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Lim, D.S. & Hasty, P. A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol. Cell. Biol. 16, 7133–7143 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pittman, D.L. et al. Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog. Mol. Cell 1, 697–705 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Bannister, L.A. et al. A dominant, recombination-defective allele of Dmc1 causing male-specific sterility. PLoS Biol. 5, e105 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sung, P. Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265, 1241–1243 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Sehorn, M.G., Sigurdsson, S., Bussen, W., Unger, V.M. & Sung, P. Human meiotic recombinase Dmc1 promotes ATP-dependent homologous DNA strand exchange. Nature 429, 433–437 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Symington, L.S. & Heyer, W.D. Some disassembly required: role of DNA translocases in the disruption of recombination intermediates and dead-end complexes. Genes Dev. 20, 2479–2486 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. van Brabant, A.J. et al. Binding and melting of D-loops by the Bloom syndrome helicase. Biochemistry 39, 14617–14625 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Bachrati, C.Z., Borts, R.H. & Hickson, I.D. Mobile D-loops are a preferred substrate for the Bloom′s syndrome helicase. Nucleic Acids Res. 34, 2269–2279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bugreev, D.V., Yu, X., Egelman, E.H. & Mazin, A.V. Novel pro- and anti-recombination activities of the Bloom′s syndrome helicase. Genes Dev. 21, 3085–3094 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bugreev, D.V., Mazina, O.M. & Mazin, A.V. Rad54 protein promotes branch migration of Holliday junctions. Nature 442, 590–593 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Karow, J.K., Constantinou, A., Li, J.L., West, S.C. & Hickson, I.D. The Bloom′s syndrome gene product promotes branch migration of holliday junctions. Proc. Natl. Acad. Sci. USA 97, 6504–6508 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McVey, M., Larocque, J.R., Adams, M.D. & Sekelsky, J.J. Formation of deletions during double-strand break repair in Drosophila DmBlm mutants occurs after strand invasion. Proc. Natl. Acad. Sci. USA 101, 15694–15699 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ira, G., Malkova, A., Liberi, G., Foiani, M. & Haber, J.E. Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115, 401–411 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Prakash, R. et al. Yeast Mph1 helicase dissociates Rad51-made D-loops: implications for crossover control in mitotic recombination. Genes Dev. 23, 67–79 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Oh, S.D. et al. BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell 130, 259–272 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moynahan, M.E. & Jasin, M. Loss of heterozygosity induced by a chromosomal double-strand break. Proc. Natl. Acad. Sci. USA 94, 8988–8993 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lasko, D., Cavenee, W. & Nordenskjold, M. Loss of constitutional heterozygosity in human cancer. Annu. Rev. Genet. 25, 281–314 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Bugreev, D.V. & Mazin, A.V. Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity. Proc. Natl. Acad. Sci. USA 101, 9988–9993 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bugreev, D.V., Golub, E.I., Stasiak, A.Z., Stasiak, A. & Mazin, A.V. Activation of human meiosis-specific recombinase Dmc1 by Ca2+. J. Biol. Chem. 280, 26886–26895 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Petukhova, G.V. et al. The Hop2 and Mnd1 proteins act in concert with Rad51 and Dmc1 in meiotic recombination. Nat. Struct. Mol. Biol. 12, 449–453 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Pezza, R.J., Petukhova, G.V., Ghirlando, R. & Camerini-Otero, R.D. Molecular activities of meiosis-specific proteins Hop2, Mnd1, and the Hop2-Mnd1 complex. J. Biol. Chem. 281, 18426–18434 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Chi, P., San Filippo, J., Sehorn, M.G., Petukhova, G.V. & Sung, P. Bipartite stimulatory action of the Hop2-Mnd1 complex on the Rad51 recombinase. Genes Dev. 21, 1747–1757 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pezza, R.J., Voloshin, O.N., Vanevski, F. & Camerini-Otero, R.D. Hop2/Mnd1 acts on two critical steps in Dmc1-promoted homologous pairing. Genes Dev. 21, 1758–1766 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hsieh, P. & Camerini-Otero, C.S. & Camerini-Otero, R.D. The synapsis event in the homologous pairing of DNAs: RecA recognizes and pairs less than one helical repeat of DNA. Proc. Natl. Acad. Sci. USA 89, 6492–6496 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Voloshin, O.N., Wang, L. & Camerini-Otero, R.D. Homologous DNA pairing promoted by a 20-amino acid peptide derived from RecA. Science 272, 868–872 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Voloshin, O.N. & Camerini-Otero, R.D. The duplex DNA is very underwound in the three-stranded RecA protein-mediated synaptic complex. Genes Cells 2, 303–314 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Busygina, V. et al. Hed1 regulates Rad51-mediated recombination via a novel mechanism. Genes Dev. 22, 786–795 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shinohara, M., Sakai, K., Shinohara, A. & Bishop, D.K. Crossover interference in Saccharomyces cerevisiae requires a TID1/RDH54- and DMC1-dependent pathway. Genetics 163, 1273–1286 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hayase, A. et al. A protein complex containing Mei5 and Sae3 promotes the assembly of the meiosis-specific RecA homolog Dmc1. Cell 119, 927–940 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Chi, P. et al. Functional interactions of meiotic recombination factors Rdh54 and Dmc1. DNA Repair (Amst.) 8, 279–284 (2009).

    Article  CAS  Google Scholar 

  54. Petukhova, G., Sung, P. & Klein, H. Promotion of Rad51-dependent D-loop formation by yeast recombination factor Rdh54/Tid1. Genes Dev. 14, 2206–2215 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Okorokov, A.L. et al. Structure of the hDmc1-ssDNA filament reveals the principles of its architecture. PLoS ONE 5, e8586 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ramesh, M.A., Malik, S.B. & Logsdon, J.M. Jr. A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr. Biol. 15, 185–191 (2005).

    CAS  PubMed  Google Scholar 

  57. Dernburg, A.F. et al. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94, 387–398 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. MacQueen, A.J., Colaiacovo, M.P., McDonald, K. & Villeneuve, A.M. Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev. 16, 2428–2442 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vazquez, J., Belmont, A.S. & Sedat, J.W. The dynamics of homologous chromosome pairing during male Drosophila meiosis. Curr. Biol. 12, 1473–1483 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Mazina, O.M. & Mazin, A.V. Human Rad54 protein stimulates DNA strand exchange activity of hRad51 protein in the presence of Ca2+. J. Biol. Chem. 279, 52042–52051 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Sung (Yale University) and W. Holloman (Cornell University) for RAD51 and BLM expression vectors, members of the Camerini-Otero and Mazin labs for comments and discussion, and M. Lichten and P. Hsieh for critical reading of this manuscript. This work was supported by US National Institutes of Health grants CA100839 and MH084119, the Leukemia and Lymphoma Society Scholar Award 1054-09 (to A.V.M.), the Oklahoma Center for the Advancement of Science and Technology Project HR10-048S (to R.J.P.) and the Intramural Research Program of the US National Institute of Diabetes and Digestive and Kidney Diseases (to R.D.C.-O.).

Author information

Authors and Affiliations

Authors

Contributions

D.V.B., R.J.P., A.V.M. and R.D.C.-O. conceived the general ideas for this study. All authors planned experiments and interpreted data. D.V.B., R.J.P., O.N.V. and O.M.M. performed experiments. A.V.M. and R.D.C.-O. wrote the manuscript, and all authors provided editorial input.

Corresponding authors

Correspondence to R Daniel Camerini-Otero or Alexander V Mazin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–5 and Supplementary Table 1 (PDF 2614 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bugreev, D., Pezza, R., Mazina, O. et al. The resistance of DMC1 D-loops to dissociation may account for the DMC1 requirement in meiosis. Nat Struct Mol Biol 18, 56–60 (2011). https://doi.org/10.1038/nsmb.1946

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1946

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing