Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Analysis of replication profiles reveals key role of RFC-Ctf18 in yeast replication stress response

Abstract

Maintenance of genome integrity relies on surveillance mechanisms that detect and signal arrested replication forks. Although evidence from budding yeast indicates that the DNA replication checkpoint (DRC) is primarily activated by single-stranded DNA (ssDNA), studies in higher eukaryotes have implicated primer ends in this process. To identify factors that signal primed ssDNA in Saccharomyces cerevisiae, we have screened a collection of checkpoint mutants for their ability to activate the DRC, using the repression of late origins as readout for checkpoint activity. This quantitative analysis reveals that neither RFCRad24 and the 9-1-1 clamp nor the alternative clamp loader RFCElg1 is required to signal paused forks. In contrast, we found that RFCCtf18 is essential for the Mrc1-dependent activation of Rad53 and for the maintenance of paused forks. These data identify RFCCtf18 as a key DRC mediator, potentially bridging Mrc1 and primed ssDNA to signal paused forks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RFCCtf18 is the only RFC-like clamp loader implicated in the DRC pathway.
Figure 2: Hierarchical clustering analysis of replication profiles places RFCCtf18 in the DRC pathway.
Figure 3: RFCCtf18 acts together with Mrc1 in the replication stress response.
Figure 4: Replication-fork maintenance is compromised in hydroxyurea-treated ctf18Δ cells.
Figure 5: The DDC pathway represses dormant origins in hydroxyurea-treated ctf18Δ mutants.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Raghuraman, M.K. & Brewer, B.J. Molecular analysis of the replication program in unicellular model organisms. Chromosome Res. 18, 19–34 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tourrière, H. & Pasero, P. Maintenance of fork integrity at damaged DNA and natural pause sites. DNA Repair (Amst.) 6, 900–913 (2007).

    Article  Google Scholar 

  3. Labib, K. & Hodgson, B. Replication fork barriers: pausing for a break or stalling for time? EMBO Rep. 8, 346–353 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Branzei, D. & Foiani, M. The checkpoint response to replication stress. DNA Repair (Amst.) 8, 1038–1046 (2009).

    Article  CAS  Google Scholar 

  5. Zegerman, P. & Diffley, J.F.X. DNA replication as a target of the DNA damage checkpoint. DNA Repair (Amst.) 8, 1077–1088 (2009).

    Article  CAS  Google Scholar 

  6. Friedel, A.M., Pike, B.L. & Gasser, S.M. ATR/Mec1: coordinating fork stability and repair. Curr. Opin. Cell Biol. 21, 237–244 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Alcasabas, A.A. et al. Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat. Cell Biol. 3, 958–965 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Putnam, C.D., Jaehnig, E.J. & Kolodner, R.D. Perspectives on the DNA damage and replication checkpoint responses in Saccharomyces cerevisiae. DNA Repair (Amst.) 8, 974–982 (2009).

    Article  CAS  Google Scholar 

  9. Alabert, C., Bianco, J.N. & Pasero, P. Differential regulation of homologous recombination at DNA breaks and replication forks by the Mrc1 branch of the S-phase checkpoint. EMBO J. 28, 1131–1141 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pan, X. et al. A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124, 1069–1081 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Shimada, K., Pasero, P. & Gasser, S.M. ORC and the intra-S-phase checkpoint: a threshold regulates Rad53p activation in S phase. Genes Dev. 16, 3236–3252 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cimprich, K.A. & Cortez, D. ATR: an essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol. 9, 616–627 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bellaoui, M. et al. Elg1 forms an alternative RFC complex important for DNA replication and genome integrity. EMBO J. 22, 4304–4313 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kanellis, P., Agyei, R. & Durocher, D. Elg1 forms an alternative PCNA-interacting RFC complex required to maintain genome stability. Curr. Biol. 13, 1583–1595 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Ben-Aroya, S., Koren, A., Liefshitz, B., Steinlauf, R. & Kupiec, M. ELG1, a yeast gene required for genome stability, forms a complex related to replication factor C. Proc. Natl. Acad. Sci. USA 100, 9906–9911 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Raghuraman, M.K. et al. Replication dynamics of the yeast genome. Science 294, 115–121 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Katou, Y. et al. S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424, 1078–1083 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Knott, S.R., Viggiani, C.J., Tavare, S. & Aparicio, O.M. Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae. Genes Dev. 23, 1077–1090 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yabuki, N., Terashima, H. & Kitada, K. Mapping of early firing origins on a replication profile of budding yeast. Genes Cells 7, 781–789 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Feng, W. et al. Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication. Nat. Cell Biol. 8, 148–155 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nieduszynski, C.A., Knox, Y. & Donaldson, A.D. Genome-wide identification of replication origins in yeast by comparative genomics. Genes Dev. 20, 1874–1879 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nieduszynski, C.A., Hiraga, S., Ak, P., Benham, C.J. & Donaldson, A.D. OriDB: a DNA replication origin database. Nucleic Acids Res. 35, D40–D46 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Santocanale, C. & Diffley, J.F.A. Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395, 615–618 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Tourrière, H., Versini, G., Cordon-Preciado, V., Alabert, C. & Pasero, P. Mrc1 and tof1 promote replication fork progression and recovery independently of Rad53. Mol. Cell 19, 699–706 (2005).

    Article  PubMed  Google Scholar 

  25. Garcia, V., Furuya, K. & Carr, A.M. Identification and functional analysis of TopBP1 and its homologs. DNA Repair (Amst.) 4, 1227–1239 (2005).

    Article  CAS  Google Scholar 

  26. Melo, J.A., Cohen, J. & Toczyski, D.P. Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev. 15, 2809–2821 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, H. & Elledge, S.J. Genetic and physical interactions between DPB11 and DDC1 in the yeast DNA damage response pathway. Genetics 160, 1295–1304 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Puddu, F. et al. Phosphorylation of the budding yeast 9–1-1 complex is required for Dpb11 function in the full activation of the UV-induced DNA damage checkpoint. Mol. Cell. Biol. 28, 4782–4793 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kanoh, Y., Tamai, K. & Shirahige, K. Different requirements for the association of ATR-ATRIP and 9-1-1 to the stalled replication forks. Gene 377, 88–95 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Santocanale, C., Sharma, K. & Diffley, J.F. Activation of dormant origins of DNA replication in budding yeast. Genes Dev. 13, 2360–2364 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ansbach, A.B. et al. RFCCtf18 and the Swi1-Swi3 complex function in separate and redundant pathways required for the stabilization of replication forks to facilitate sister chromatid cohesion in Schizosaccharomyces pombe. Mol. Biol. Cell 19, 595–607 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Naiki, T., Kondo, T., Nakada, D., Matsumoto, K. & Sugimoto, K. Chl12 (Ctf18) forms a novel replication factor C-related complex and functions redundantly with Rad24 in the DNA replication checkpoint pathway. Mol. Cell. Biol. 21, 5838–5845 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pan, X. et al. A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124, 1069–1081 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Hanna, J.S., Kroll, E.S., Lundblad, V. & Spencer, F.A. Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion. Mol. Cell. Biol. 21, 3144–3158 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mayer, M.L., Gygi, S.P., Aebersold, R. & Hieter, P. Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. Mol. Cell 7, 959–970 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Lengronne, A. et al. Establishment of sister chromatid cohesion at the S. cerevisiae replication fork. Mol. Cell 23, 787–799 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Raveendranathan, M. et al. Genome-wide replication profiles of S-phase checkpoint mutants reveal fragile sites in yeast. EMBO J. 25, 3627–3639 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Paciotti, V., Clerici, M., Scotti, M., Lucchini, G. & Longhese, M.P. Characterization of mec1 kinase-deficient mutants and of new hypomorphic mec1 alleles impairing subsets of the DNA damage response pathway. Mol. Cell. Biol. 21, 3913–3925 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tercero, J.A., Longhese, M.P. & Diffley, J.F. A central role for DNA replication forks in checkpoint activation and response. Mol. Cell 11, 1323–1336 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Osborn, A.J. & Elledge, S.J. Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev. 17, 1755–1767 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Foss, E.J. Tof1p regulates DNA damage responses during S phase in Saccharomyces cerevisiae. Genetics 157, 567–577 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Navas, T.A., Zhou, Z. & Elledge, S.J. DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint. Cell 80, 29–39 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Rogakou, E.P., Boon, C., Redon, C. & Bonner, W.M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–916 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tuduri, S. et al. Topoisomerase 1 suppresses replication stress and genomic instability by preventing interference between replication and transcription. Nat. Cell Biol. 11, 1315–1324 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alvino, G.M. et al. Replication in hydroxyurea: it′s a matter of time. Mol. Cell. Biol. 27, 6396–6406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Szyjka, S.J., Viggiani, C.J. & Aparicio, O.M. Mrc1 is required for normal progression of replication forks throughout chromatin in S. cerevisiae. Mol. Cell 19, 691–697 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Vujcic, M., Miller, C.A. & Kowalski, D. Activation of silent replication origins at autonomously replicating sequence elements near the HML locus in budding yeast. Mol. Cell. Biol. 19, 6098–6109 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shirahige, K. et al. Regulation of DNA-replication origins during cell-cycle progression. Nature 395, 618–621 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Bando, M. et al. Csm3, Tof1, and Mrc1 form a heterotrimeric mediator complex that associates with DNA replication forks. J. Biol. Chem. 284, 34355–34365 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mordes, D.A., Nam, E.A. & Cortez, D. Dpb11 activates the Mec1-Ddc2 complex. Proc. Natl. Acad. Sci. USA 105, 18730–18734 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Navadgi-Patil, V.M. & Burgers, P.M. Yeast DNA replication protein Dpb11 activates the Mec1/ATR checkpoint kinase. J. Biol. Chem. 283, 35853–35859 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Masumoto, H., Sugino, A. & Araki, H. Dpb11 controls the association between DNA polymerases alpha and epsilon and the autonomously replicating sequence region of budding yeast. Mol. Cell. Biol. 20, 2809–2817 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gavin, A.C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Singh, N. et al. Coordination of the random asynchronous replication of autosomal loci. Nat. Genet. 33, 339–341 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Bylund, G.O. & Burgers, P.M.J. Replication protein A-directed unloading of PCNA by the Ctf18 cohesion establishment complex. Mol. Cell. Biol. 25, 5445–5455 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Paulovich, A.G., Margulies, R.U., Garvik, B.M. & Hartwell, L.H. RAD9, RAD17, and RAD24 are required for S phase regulation in Saccharomyces cerevisiae in response to DNA damage. Genetics 145, 45–62 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Nicol, J.W., Helt, G.A., Blanchard, S.G. Jr., Raja, A. & Loraine, A.E. The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics 25, 2730–2731 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Blankenberg, D. et al. Galaxy: a web-based genome analysis tool for experimentalists. in. Curr. Protoc. Mol. Biol. 89, 19.10.1–9.10.21 (2010).

    Google Scholar 

  59. Pasero, P., Bensimon, A. & Schwob, E. Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev. 16, 2479–2484 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank O. Aparicio (University of Southern California), S. Elledge (Howard Hughes Medical Institute), M.P. Longhese (Università di Milano-Bicocca), J. Boeke (The Johns Hopkins University School of Medicine), J. Campbell (California Institute of Technology), M. McAlear (Wesleyan University), D. Cortez (Vanderbilt University School of Medicine) and A. Verreault (Institute for Research in Immunology and Cancer) for plasmids, strains and antibodies; C. Alabert, A. Chabes, M. Weinreich, J. Cau, H. Tourrière and members of the Pasero laboratory for discussions and critical reading of the manuscript; E. Schwob and the DNA combing facility of Montpellier for providing silanized coverslips; and the Montpellier RIO Imaging microscopy facility. L.C. was supported by a European Molecular Biology Organization (EMBO) long-term fellowship. Work in the Pasero laboratory is supported by FRM Fondation pour la Recherche Médicale (FRM) (Equipe FRM), Agence Nationale de la Recherche (ANR), Institut National du Cancer (INCa) and the EMBO Young Investigator Programme.

Author information

Authors and Affiliations

Authors

Contributions

L.C., A.L. and P.P. designed experiments, and L.C. and A.L. performed experiments. A.T. did the bioinformatic analysis. V.P. and J.D.V. performed the microarray hybridizations. A.L. and P.P. wrote the manuscript.

Corresponding authors

Correspondence to Philippe Pasero or Armelle Lengronne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1-5, Supplementary Table 2 and Supplementary Methods (PDF 605 kb)

Supplementary Table 1

Position of active replication origins in the 20 S. cerevisiae strains analyzed in this study (XLS 150 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crabbé, L., Thomas, A., Pantesco, V. et al. Analysis of replication profiles reveals key role of RFC-Ctf18 in yeast replication stress response. Nat Struct Mol Biol 17, 1391–1397 (2010). https://doi.org/10.1038/nsmb.1932

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1932

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing