Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural rearrangements of the ribosome at the tRNA proofreading step

Abstract

Discrimination of tRNA on the ribosome occurs in two consecutive steps: initial selection and proofreading. Here we propose a proofreading mechanism based on comparison of crystal structures of the 70S ribosome with an empty A site or with the A site occupied by uncharged cognate or near-cognate tRNA. We observe that ribosomal proteins S13, S19, L16, L25, L27 and L31 are actively involved in the proofreading of tRNA. We suggest that proofreading begins with the monitoring of the entire anticodon loop of tRNA by nucleotides from 16S rRNA (helices 18 and 44) of the small subunit and 23S rRNA (helix 69) of the large subunit with involvement of magnesium ions. Subsequently, the elbow region is scanned by rRNA (helices 38 and 89) and proteins from the large subunit determining whether to accommodate the acceptor end of tRNA in the peptidyl transferase center or not.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The A site of the 70S ribosome.
Figure 2: Conformational changes in the decoding center in respond to cognate or near-cognate tRNA.
Figure 3: Protein environment around the A-site tRNA.
Figure 4: The ribosomal environment of the elbow region of cognate A-site tRNA.
Figure 5: Rearrangements in the PTC induced by cognate or near-cognate tRNA.
Figure 6: Proposed scheme of the tRNA proofreading mechanism.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Thompson, R.C. & Karim, A.M. The accuracy of protein biosynthesis is limited by its speed: high fidelity selection by ribosomes of aminoacyl-tRNA ternary complexes containing GTP γS. Proc. Natl. Acad. Sci. USA 79, 4922–4926 (1982).

    Article  CAS  Google Scholar 

  2. Ehrenberg, M., Kurland, C.G. & Ruusala, T. Counting cycles of EF-Tu to measure proofreading in translation. Biochimie 68, 261–273 (1986).

    Article  CAS  Google Scholar 

  3. Hopfield, J.J. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. USA 71, 4135–4139 (1974).

    Article  CAS  Google Scholar 

  4. Ninio, J. Kinetic amplification of enzyme discrimination. Biochimie 57, 587–595 (1975).

    Article  CAS  Google Scholar 

  5. Koshland, D.E. Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. USA 44, 98–104 (1958).

    Article  CAS  Google Scholar 

  6. Pape, T., Wintermeyer, W. & Rodnina, M. Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome. EMBO J. 18, 3800–3807 (1999).

    Article  CAS  Google Scholar 

  7. Rodnina, M.V., Gromadski, K.B., Kothe, U. & Wieden, H.J. Recognition and selection of tRNA in translation. FEBS Lett. 579, 938–942 (2005).

    Article  CAS  Google Scholar 

  8. Daviter, T., Gromadski, K.B. & Rodnina, M.V. The ribosome's response to codon-anticodon mismatches. Biochimie 88, 1001–1011 (2006).

    Article  CAS  Google Scholar 

  9. Zaher, H.S. & Green, R. Fidelity at the molecular level: lessons from protein synthesis. Cell 136, 746–762 (2009).

    Article  CAS  Google Scholar 

  10. Kramer, E.B. & Farabaugh, P.J. The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA 13, 87–96 (2007).

    Article  CAS  Google Scholar 

  11. Rodnina, M.V. & Wintermeyer, W. Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. Annu. Rev. Biochem. 70, 415–435 (2001).

    Article  CAS  Google Scholar 

  12. Powers, T. & Noller, H.F. Selective perturbation of G530 of 16 S rRNA by translational miscoding agents and a streptomycin-dependence mutation in protein S12. J. Mol. Biol. 235, 156–172 (1994).

    Article  CAS  Google Scholar 

  13. Moazed, D. & Noller, H.F. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327, 389–394 (1987).

    Article  CAS  Google Scholar 

  14. Moazed, D. & Noller, H.F. Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in 16 S rRNA. J. Mol. Biol. 211, 135–145 (1990).

    Article  CAS  Google Scholar 

  15. Yoshizawa, S., Fourmy, D. & Puglisi, J.D. Recognition of the codon-anticodon helix by ribosomal RNA. Science 285, 1722–1725 (1999).

    Article  CAS  Google Scholar 

  16. Fourmy, D., Yoshizawa, S. & Puglisi, J.D. Paromomycin binding induces a local conformational change in the A-site of 16 S rRNA. J. Mol. Biol. 277, 333–345 (1998).

    Article  CAS  Google Scholar 

  17. Ogle, J.M. et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897–902 (2001).

    Article  CAS  Google Scholar 

  18. Wimberly, B.T. et al. Structure of the 30S ribosomal subunit. Nature 407, 327–339 (2000).

    Article  CAS  Google Scholar 

  19. Schmeing, T.M. et al. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326, 688–694 (2009).

    Article  CAS  Google Scholar 

  20. Ogle, J.M., Murphy, F.V., Tarry, M.J. & Ramakrishnan, V. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111, 721–732 (2002).

    Article  CAS  Google Scholar 

  21. Yusupov, M.M. et al. Crystal structure of the ribosome at 5.5 Å resolution. Science 292, 883–896 (2001).

    Article  CAS  Google Scholar 

  22. Voorhees, R.M., Weixlbaumer, A., Loakes, D., Kelley, A.C. & Ramakrishnan, V. Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Nat. Struct. Mol. Biol. 16, 528–533 (2009).

    Article  CAS  Google Scholar 

  23. Plant, E.P. et al. Differentiating between near- and non-cognate codons in Saccharomyces cerevisiae . PLoS ONE 2, e517 (2007).

    Article  Google Scholar 

  24. Jenner, L.B., Demeshkina, N., Yusupova, G. & Yusupov, M. Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nat. Struct. Mol. Biol. 17, 555–560 (2010).

    Article  CAS  Google Scholar 

  25. Klein, D.J., Moore, P.B. & Steitz, T.A. The contribution of metal ions to the structural stability of the large ribosomal subunit. RNA 10, 1366–1379 (2004).

    Article  CAS  Google Scholar 

  26. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).

    Article  CAS  Google Scholar 

  27. Korostelev, A. et al. Crystal structure of a translation termination complex formed with release factor RF2. Proc. Natl. Acad. Sci. USA 105, 19684–19689 (2008).

    Article  CAS  Google Scholar 

  28. Brodersen, D.E., Clemons, W.M. Jr., Carter, A.P., Wimberly, B.T. & Ramakrishnan, V. Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16 S RNA. J. Mol. Biol. 316, 725–768 (2002).

    Article  CAS  Google Scholar 

  29. Schmeing, T.M., Huang, K.S., Strobel, S.A. & Steitz, T.A. An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature 438, 520–524 (2005).

    Article  CAS  Google Scholar 

  30. Erlacher, M.D. & Polacek, N. Ribosomal catalysis: the evolution of mechanistic concepts for peptide bond formation and peptidyl-tRNA hydrolysis. RNA Biol. 5, 5–12 (2008).

    Article  CAS  Google Scholar 

  31. Varshney, U., Lee, C.P., Seong, B.L. & RajBhandary, U.L. Mutants of initiator tRNA that function both as initiators and elongators. J. Biol. Chem. 266, 18018–18024 (1991).

    CAS  PubMed  Google Scholar 

  32. Lee, C.P., Seong, B.L. & RajBhandary, U.L. Structural and sequence elements important for recognition of Escherichia coli formylmethionine tRNA by methionyl-tRNA transformylase are clustered in the acceptor stem. J. Biol. Chem. 266, 18012–18017 (1991).

    CAS  PubMed  Google Scholar 

  33. Wrede, P., Woo, N.H. & Rich, A. Initiator tRNAs have a unique anticodon loop conformation. Proc. Natl. Acad. Sci. USA 76, 3289–3293 (1979).

    Article  CAS  Google Scholar 

  34. Marck, C. & Grosjean, H. tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features. RNA 8, 1189–1232 (2002).

    Article  CAS  Google Scholar 

  35. Rozenski, J., Crain, P.F. & McCloskey, J.A. The RNA modification database: 1999 update. Nucleic Acids Res. 27, 196–197 (1999).

    Article  CAS  Google Scholar 

  36. Jukes, T.H. Possibilities for the evolution of the genetic code from a preceding form. Nature 246, 22–26 (1973).

    Article  CAS  Google Scholar 

  37. Berk, V., Zhang, W., Pai, R.D. & Cate, J.H. Structural basis for mRNA and tRNA positioning on the ribosome. Proc. Natl. Acad. Sci. USA 103, 15830–15834 (2006).

    Article  CAS  Google Scholar 

  38. Blaha, G., Stanley, R.E. & Steitz, T.A. Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome. Science 325, 966–970 (2009).

    Article  CAS  Google Scholar 

  39. Thompson, R.C., Dix, D.B., Gerson, R.B. & Karim, A.M. Effect of Mg2+ concentration, polyamines, streptomycin, and mutations in ribosomal proteins on the accuracy of the two-step selection of aminoacyl-tRNAs in protein biosynthesis. J. Biol. Chem. 256, 6676–6681 (1981).

    CAS  PubMed  Google Scholar 

  40. Gromadski, K.B., Daviter, T. & Rodnina, M.V. A uniform response to mismatches in codon-anticodon complexes ensures ribosomal fidelity. Mol. Cell 21, 369–377 (2006).

    Article  CAS  Google Scholar 

  41. Konevega, A.L. et al. Purine bases at position 37 of tRNA stabilize codon-anticodon interaction in the ribosomal A site by stacking and Mg2+-dependent interactions. RNA 10, 90–101 (2004).

    Article  CAS  Google Scholar 

  42. Cochella, L. & Green, R. An active role for tRNA in decoding beyond codon:anticodon pairing. Science 308, 1178–1180 (2005).

    Article  CAS  Google Scholar 

  43. Smith, D. & Yarus, M. Transfer RNA structure and coding specificity. I. Evidence that a D-arm mutation reduces tRNA dissociation from the ribosome. J. Mol. Biol. 206, 489–501 (1989).

    Article  CAS  Google Scholar 

  44. Vacher, J. & Buckingham, R.H. Effect of photochemical crosslink S4U(8)-C(13) on suppressor activity of su+ tRNATrp from Escherichia coli . J. Mol. Biol. 129, 287–294 (1979).

    Article  CAS  Google Scholar 

  45. Agirrezabala, X. et al. Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome. Mol. Cell 32, 190–197 (2008).

    Article  CAS  Google Scholar 

  46. Cukras, A.R. & Green, R. Multiple effects of S13 in modulating the strength of intersubunit interactions in the ribosome during translation. J. Mol. Biol. 349, 47–59 (2005).

    Article  CAS  Google Scholar 

  47. Frank, J. & Agrawal, R.K. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406, 318–322 (2000).

    Article  CAS  Google Scholar 

  48. Zhang, W., Dunkle, J.A. & Cate, J.H. Structures of the ribosome in intermediate states of ratcheting. Science 325, 1014–1017 (2009).

    Article  CAS  Google Scholar 

  49. Spahn, C.M. et al. Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J. 23, 1008–1019 (2004).

    Article  CAS  Google Scholar 

  50. Gromadski, K.B. & Rodnina, M.V. Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. Mol. Cell 13, 191–200 (2004).

    Article  CAS  Google Scholar 

  51. Blanchard, S.C., Gonzalez, R.L., Kim, H.D., Chu, S. & Puglisi, J.D. tRNA selection and kinetic proofreading in translation. Nat. Struct. Mol. Biol. 11, 1008–1014 (2004).

    Article  CAS  Google Scholar 

  52. Lang, K., Erlacher, M., Wilson, D.N., Micura, R. & Polacek, N. The role of 23S ribosomal RNA residue A2451 in peptide bond synthesis revealed by atomic mutagenesis. Chem. Biol. 15, 485–492 (2008).

    Article  CAS  Google Scholar 

  53. Gogia, Z.V., Yusupov, M.M. & Spirina, T.N. Structure of Thermus thermophilus ribosomes. Method of isolation and purification of ribosomes. Mol. Biol. (Mosk.) 20, 519–526 (1986).

    Google Scholar 

Download references

Acknowledgements

We thank C. Schulze-Briese and the staff at the Swiss Light Source for help during synchrotron X-ray data collection, M. Rodnina and R. Green for the critical reading of the manuscript and advice, S. Duclaud for assistance in ribosome preparation, S. Melnikov for helpful discussions and the staff of the Structural Biology Department core facility at the Institut de Génétique et de Biologie Moléculaire et Cellulaire. This work was supported by the Agence Nationale de la Recherche BLAN07-3_190451 (M.Y.), ANR-07-PCVI-0015-01 (G.Y.) and by the European Commission SPINE2.

Author information

Authors and Affiliations

Authors

Contributions

L.J. and N.D. contributed equally to the study; L.J. purified the ribosomes, collected, processed and refined X-ray data and performed model building; N.D. collected X-ray data, performed model building and wrote the manuscript; G.Y. designed the study, and crystallized and performed model building; M.Y. designed the study; L.J., G.Y. and M.Y. corrected the manuscript; all authors discussed the results.

Corresponding authors

Correspondence to Gulnara Yusupova or Marat Yusupov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Table 1 and Supplementary Methods (PDF 1930 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenner, L., Demeshkina, N., Yusupova, G. et al. Structural rearrangements of the ribosome at the tRNA proofreading step. Nat Struct Mol Biol 17, 1072–1078 (2010). https://doi.org/10.1038/nsmb.1880

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1880

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing