Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

What is the stone-free rate following flexible ureteroscopy for kidney stones?

An Erratum to this article was published on 02 June 2015

This article has been updated

Key Points

  • Use of flexible ureteroscopy (URS) for treating patients with kidney stones has increased compared with shockwave lithotripsy and percutaneous nephrolithotomy

  • Wide variations in use, and timing of postoperative imaging as well as definitions of stone-free rate (SFR) make accurate assessments of stone clearance after flexible URS challenging

  • CT provides the most accurate way to assess the presence of residual fragments; however, even when retrieval of fragments is employed, the complete SFR might only approach 55–60%

  • At the minimum, SFRs should report the zero-fragment rate; residual fragment size >2 mm is associated with significantly increased risk of a stone-related event and greater need for retreatment

  • Treatment of patients with lower-pole stones using a basket displacement technique can result in higher SFRs

  • Patients with larger stones receiving treatment with flexible URS might require staged procedures, especially if the cumulative stone size exceeds 1.5–2 cm

Abstract

Flexible ureteroscopy (URS) is increasingly being used as the first-line treatment for patients with renal stones. Despite this increase in use, substantial variations exist in the reported stone-free rates (SFR) following flexible URS. These variations are a result of inconsistencies in the definition of 'stone-free', which reflect variations in the type of imaging used to assess the presence of stones postoperatively and the timing of the assessment. Other possible factors such as the importance of residual fragments following stone surgery, and the size and position of the stones might also account for variations in stone-free rates. In order to obtain an accurate estimate of the SFR, especially within subgroups defined by stone characteristics and exact technique, we compare reported SFRs from studies that use imaging other than CT for follow-up and those that use only CT. We also review the evidence on the importance of active retrieval of fragments during flexible URS and whether this technique improves the outcomes of patients with kidney stones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Change history

  • 15 February 2016

    In the author line of the originally published article, the full initials of J. Stuart Wolf Jr were not included. Also, in the footnote of Table 2, "*Pre-operative stents present in all patients" should read "*Post-operative stents present in all patients". These errors have been corrected for the HTML and PDF versions of the article.

References

  1. Litwin, M. S. & Saigal, C. (Eds.) Urologic Diseases in America (US Government Printing Office, 2012).

    Google Scholar 

  2. Scales, C. D. Jr, Smith, A. C., Hanley, J. M. & Saigal, C. S. P. Prevalence of kidney stones in the United States. Eur. Urol. 62, 160–165 (2012).

    Google Scholar 

  3. Taylor, E. N., Stampfer, M. J. & Curhan, G. C. Obesity, weight gain, and the risk of kidney stones. JAMA 293, 455–462 (2005).

    Google Scholar 

  4. Abate, N., Chandalia, M., Cabo-Chan, A. V. Jr, Moe, O. W. & Sakhaee, K. The metabolic syndrome and uric acid nephrolithiasis: novel features of renal manifestation of insulin resistance. Kidney Int. 65, 386–392 (2004).

    Google Scholar 

  5. Ghani, K. R. et al. Trends in surgery for upper urinary tract calculi in the USA using the Nationwide Inpatient Sample: 1999–2009. BJU Int. 112, 224–230 (2013).

    Google Scholar 

  6. Lee, M. C. & Bariol, S. V. Evolution of stone management in Australia. BJU Int. 108, S29–S33 (2011).

    Google Scholar 

  7. Ordon, M. et al. The surgical management of kidney stone disease: a population-based time series analysis. J. Urol. 192, 1450–1456 (2014).

    Google Scholar 

  8. Goldsmith, Z. G. & Lipkin, M. E. When (and how) to surgically treat asymptomatic renal stones. Nat. Rev. Urol. 9, 315–320 (2012).

    Google Scholar 

  9. Edvardsson, V. O., Indridason, O. S., Haraldsson, G., Kjartansson, O. & Palsson, R. Temporal trends in the incidence of kidney stone disease. Kidney Int. 83, 146–152 (2013).

    Google Scholar 

  10. Boyce, C. J., Pickhardt, P. J., Lawrence, E. M., Kim, D. H. & Bruce, R. J. Prevalence of urolithiasis in asymptomatic adults: objective determination using low dose noncontrast computerized tomography. J. Urol. 183, 1017–1021 (2010).

    Google Scholar 

  11. Scales, C. D. Jr et al. Practice variation in the surgical management of urinary lithiasis. J. Urol. 186, 146–150 (2011).

    Google Scholar 

  12. Matlaga, B. R. & the American Board of Urology. Contemporary surgical management of upper urinary tract calculi. J. Urol. 181, 2152–2156 (2009).

    Google Scholar 

  13. Lingeman, J. E. et al. Extracorporeal shock wave lithotripsy: the Methodist Hospital of Indiana experience. J. Urol. 135, 1134–1137 (1986).

    Google Scholar 

  14. Streem, S. B., Yost, A. & Mascha, E. Clinical implications of clinically insignificant store fragments after extracorporeal shock wave lithotripsy. J. Urol. 155, 1186–1190 (1996).

    Google Scholar 

  15. Lipkin, M. E. & Preminger, G. M. Imaging techniques for stone disease and methods for reducing radiation exposure. Urol. Clin. North Am. 40, 47–57 (2013).

    Google Scholar 

  16. Acar, C. & Cal, C. Impact of residual fragments following endourological treatments in renal stones. Adv. Urol. 2012, 813523 (2012).

    Google Scholar 

  17. Rebuck, D. A., Macejko, A., Bhalani, V., Ramos, P. & Nadler, R. B. The natural history of renal stone fragments following ureteroscopy. Urology 77, 564–568 (2011).

    Google Scholar 

  18. Raman, J. D. et al. Natural history of residual fragments following percutaneous nephrostolithotomy. J. Urol. 181, 1163–1168 (2009).

    Google Scholar 

  19. Osman, Y. et al. Clinically insignificant residual fragments: an acceptable term in the computed tomography era? Urology 81, 723–726 (2013).

    Google Scholar 

  20. Hyams, E. S., Bruhn, A., Lipkin, M. & Shah, O. Heterogeneity in the reporting of disease characteristics and treatment outcomes in studies evaluating treatments for nephrolithiasis. J. Endourol. 24, 1411–1414 (2010).

    Google Scholar 

  21. Portis, A. J. et al. Retreatment after percutaneous nephrolithotomy in the computed tomographic era: long-term follow-up. Urology 84, 279–284 (2014).

    Google Scholar 

  22. Perlmutter, A. E. et al. Impact of stone location on success rates of endoscopic lithotripsy for nephrolithiasis. Urology 71, 214–217 (2008).

    Google Scholar 

  23. Breda, A., Ogunyemi, O., Leppert, J. T. & Schulam, P. G. Flexible ureteroscopy and laser lithotripsy for multiple unilateral intrarenal stones. Eur. Urol. 55, 1190–1196 (2009).

    Google Scholar 

  24. Cansino Alcaide, J. R. et al. Flexible ureterorenoscopy (URS): technique and results. Arch. Esp. Urol. 63, 862–870 (2010).

    Google Scholar 

  25. Wendt-Nordahl, G., Mut, T., Krombach, P., Michel, M. S. & Knoll, T. Do new generation flexible ureterorenoscopes offer a higher treatment success than their predecessors? Urol. Res. 39, 185–188 (2011).

    Google Scholar 

  26. Herrera-Gonzalez, G., Netsch, C., Oberhagemann, K., Bach, T. & Gross, A. J. Effectiveness of single flexible ureteroscopy for multiple renal calculi. J. Endourol. 25, 431–435 (2011).

    Google Scholar 

  27. Schoenthaler, M. et al. Retrograde intrarenal surgery in treatment of nephrolithiasis: is a 100% stone-free rate achievable? J. Endourol. 26, 489–493 (2012).

    Google Scholar 

  28. Miernik, A. et al. Standardized flexible ureteroscopic technique to improve stone-free rates. Urology 80, 1198–1202 (2012).

    Google Scholar 

  29. Ito, H. et al. The most reliable preoperative assessment of renal stone burden as a predictor of stone-free status after flexible ureteroscopy with holmium laser lithotripsy: a single-centre experience. Urology 80, 524–528 (2012).

    Google Scholar 

  30. Berquet, G., Prunel, P., Verhoest, G., Mathieu, R. & Bensalah, K. The use of a ureteral access sheath does not improve stone-free rate after ureteroscopy for upper urinary tract stones. World J. Urol. 32, 229–232 (2014).

    Google Scholar 

  31. Pearle, M. S. et al. Prospective randomized trial comparing shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less. J. Urol. 179, S69–S73 (2008).

    Google Scholar 

  32. Portis, A. J., Rygwall, R., Holtz, C., Pshon, N. & Laliberte, M. Ureteroscopic laser lithotripsy for upper urinary tract calculi with active fragment extraction and computerized tomography followup. J. Urol. 175, 2129–2133 (2006).

    Google Scholar 

  33. Cocuzza, M. et al. Outcomes of flexible ureteroscopic lithotripsy with holmium laser for upper urinary tract calculi. Int. Braz. J. Urol. 34, 143–149 (2008).

    Google Scholar 

  34. Macejko, A. et al. Computed tomography-determined stone-free rates for ureteroscopy of upper-tract stones. J. Endourol. 23, 379–382 (2009).

    Google Scholar 

  35. Hussain, M., Acher, P., Penev, B. & Cynk, M. Redefining the limits of flexible ureterorenoscopy. J. Endourol. 25, 45–49 (2011).

    Google Scholar 

  36. Resorlu, B., Unsal, A., Gulec, H. & Oztuna, D. A new scoring system for predicting stone-free rate after retrograde intrarenal surgery: the “resorlu-unsal stone score”. Urology 80, 512–518 (2012).

    Google Scholar 

  37. Rippel, C. A. et al. Residual fragments following ureteroscopic lithotripsy: incidence and predictors on postoperative computerized tomography. J. Urol. 188, 2246–2251 (2012).

    Google Scholar 

  38. Ito, H. et al. Development and internal validation of a nomogram for predicting stone-free status after flexible ureteroscopy for renal stones. BJU Int. 115, 446–451 (2014).

    Google Scholar 

  39. Türk C. et al. Guidelines on urolithiasis. Uroweb—European Association of Urology [online].

  40. Grasso, M., Conlin, M. & Bagley, D. Retrograde ureteropyeloscopic treatment of 2 cm or greater upper urinary tract and minor Staghorn calculi. J. Urol. 160, 346–351 (1998).

    Google Scholar 

  41. El-Anany, F. G., Hammouda, H. M., Maghraby, H. A. & Elakkad, M. A. Retrograde ureteropyeloscopic holmium laser lithotripsy for large renal calculi. BJU Int. 88, 850–853 (2001).

    Google Scholar 

  42. Monga, M. et al. Ureteral access for upper urinary tract disease: the access sheath. J. Endourol. 15, 831–834 (2001).

    Google Scholar 

  43. Ricchiuti, D. J. et al. Staged retrograde endoscopic lithotripsy as alternative to PCNL in select patients with large renal calculi. J.Endourol. 21, 1421–1424 (2007).

    Google Scholar 

  44. Breda, A., Ogunyemi, O., Leppert, J. T., Lam, J. S. & Schulam, P. G. Flexible ureteroscopy and laser lithotripsy for single intrarenal stones 2 cm or greater--is this the new frontier? J. Urol. 179, 981–984 (2008).

    Google Scholar 

  45. Riley, J. M., Stearman, L. & Troxel, S. Retrograde ureteroscopy for renal stones larger than 2.5 cm. J. Endourol. 23, 1395–1398 (2009).

    Google Scholar 

  46. Hyams, E. S., Munver, R., Bird, V.G., Uberoi, J. & Shah, O. Flexible ureterorenoscopy and holmium laser lithotripsy for the management of renal stone burdens that measure 2 to 3 cm: a multi-institutional experience. J. Endourol. 24, 1583–1588 (2010).

    Google Scholar 

  47. Bader, M. J. et al. Efficacy of retrograde ureteropyeloscopic holmium laser lithotripsy for intrarenal calculi >2 cm. Urol. Res. 38, 397–402 (2010).

    Google Scholar 

  48. Takazawa, R., Kitayama, S. & Tsujii, T. Successful outcome of flexible ureteroscopy with holmium laser lithotripsy for renal stones 2 cm or greater. Int. J. Urol. 19, 264–267 (2012).

    Google Scholar 

  49. Akman, T. et al. Comparison of percutaneous nephrolithotomy and retrograde flexible nephrolithotripsy for the management of 2–4 cm stones: a matched-pair analysis. BJU Int. 109, 1384–1389 (2012).

    Google Scholar 

  50. Al-Qahtani, S. M., Gil-Deiz-de-Medina, S. & Traxer, O. Predictors of clinical outcomes of flexible ureterorenoscopy with holmium laser for renal stone greater than 2 cm. Adv. Urol. 2012, 543537 (2012).

    Google Scholar 

  51. Cohen, J., Cohen, S. & Grasso, M. Ureteropyeloscopic treatment of large, complex intrarenal and proximal ureteral calculi. BJU Int. 111, E127–E131 (2013).

    Google Scholar 

  52. Miernik, A. et al. Combined semirigid and flexible ureterorenoscopy via a large ureteral access sheath for kidney stones >2 cm: a bicentric prospective assessment. World J. Urol. 32, 697–702 (2014).

    Google Scholar 

  53. Wong, M. Y. Flexible ureteroscopy is the ideal choice to manage a 1.5 cm diameter lower-pole stone. J. Endourol. 22, 1845–1846 (2008).

    Google Scholar 

  54. Elbahnasy, A. M. et al. Lower caliceal stone clearance after shock wave lithotripsy or ureteroscopy: the impact of lower pole radiographic anatomy. J. Urol. 159, 676–682 (1998).

    Google Scholar 

  55. Ghani, K. R., Bultitude, M., Hegarty, N., Thomas, K. & Glass, J. Surgery Illustrated—focus on details flexible ureterorenoscopy (URS) for lower pole calculi. BJU Int. 110, 294–298 (2012).

    Google Scholar 

  56. Bach, T., Geavlete, B., Herrmann, T. R. & Gross, A. J. Working tools in flexible ureterorenoscopy—influence on flow and deflection: what does matter? J. Endourol. 22, 1639–1643 (2008).

    Google Scholar 

  57. Kourambas, J., Delvecchio, F. C., Munver, R. & Preminger, G. M. Nitinol stone retrieval-assisted ureteroscopic management of lower pole renal calculi. Urology 56, 935–939 (2000).

    Google Scholar 

  58. Schuster, T. G., Hollenbeck, B. K., Faerber, G. J. & Wolf, J. S. Jr. Ureteroscopic treatment of lower pole calculi: comparison of lithotripsy in situ and after displacement. J. Urol. 168, 43–45 (2002).

    Google Scholar 

  59. El-Nahas, A. R., Ibrahim, H. M., Youssef, R. F. & Sheir, K. Z. Flexible ureterorenoscopy versus extracorporeal shock wave lithotripsy for treatment of lower pole stones of 10–20 mm. BJU Int. 110, 898–902 (2012).

    Google Scholar 

  60. Singh, B. P. et al. Retrograde intrarenal surgery vs extracorporeal shock wave lithotripsy for intermediate size inferior pole calculi: a prospective assessment of objective and subjective outcomes. Urology 83, 1016–1022 (2014).

    Google Scholar 

  61. Kourambas, J., Byrne, R. R. & Preminger, G. M. Does a ureteral access sheath facilitate ureteroscopy? J. Urol. 165, 789–793 (2001).

    Google Scholar 

  62. Schatloff, O., Lindner, U., Ramon, J. & Winkler, H. Z. Randomized trial of stone fragment active retrieval versus spontaneous passage during holmium laser lithotripsy for ureteral stones. J. Urol. 183, 1031–1035 (2010).

    Google Scholar 

  63. Sanguedolce, F. et al. Use of flexible ureteroscopy in the clinical practice for the treatment of renal stones: results from a large European survey conducted by the EAU Young Academic Urologists-Working Party on Endourology and Urolithiasis. Urolithiasis 42, 329–334 (2014).

    Google Scholar 

  64. Kronenberg, P. & Traxer, O. Update on lasers in urology 2014: current assessment on holmium:yttrium-aluminium-garnet (Ho:YAG) laser lithotripter settings and laser fibres. World J. Urol. http://dx.doi.org/10.1007/s00345-014-1395-1 (2014).

  65. Hecht, S. L. & Wolf, J. S. Jr. Techniques for holmium laser lithotripsy of intrarenal calculi. Urology 81, 442–445 (2013).

    Google Scholar 

  66. Traxer, O. & Thomas, A. Prospective evaluation and classification of ureteral wall injuries resulting from insertion of a ureteral access sheath during retrograde intrarenal surgery. J. Urol. 189, 580–584 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K.R.G. researched data for the article, K.R.G. and J.S.W. made a substantial contribution to discussion of content, K.R.G. wrote the article, K.R.G. and J.S.W. reviewed and edited the manuscript before subsmission.

Corresponding author

Correspondence to Khurshid R. Ghani.

Ethics declarations

Competing interests

K.R.G. declares that he has acted as a consultant for Boston Scientific and Lumenis. J.S.W. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghani, K., Wolf, J. What is the stone-free rate following flexible ureteroscopy for kidney stones?. Nat Rev Urol 12, 281–288 (2015). https://doi.org/10.1038/nrurol.2015.74

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2015.74

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing