Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting glycogen metabolism in bladder cancer

Key Points

  • Aerobic glycolysis (the Warburg effect) has been extensively studied in urological and other cancer models, but changes in other metabolic pathways also warrant investigation

  • Glycogen metabolism is one metabolic pathway that is altered in cancer and is just beginning to be understood

  • Loss of the glycogen debranching enzyme (AGL) leads to increased proliferation of bladder cancer cells in vitro and in vivo, and has prognostic value in patients with bladder cancer

  • Glycogen phosphorylase, involved in glycogen breakdown, is important for cancer cell survival in some tissues

  • Glycogen phosphorylase and metabolic alterations resulting from reduced AGL expression might represent new targets in the treatment of urological cancers

Abstract

Metabolism has been a heavily investigated topic in cancer research for the past decade. Although the role of aerobic glycolysis (the Warburg effect) in cancer has been extensively studied, abnormalities in other metabolic pathways are only just being understood in cancer. One such pathway is glycogen metabolism; its involvement in cancer development, particularly in urothelial malignancies, and possible ways of exploiting aberrations in this process for treatment are currently being studied. New research shows that the glycogen debranching enzyme amylo-α-1,6-glucosidase, 4-α-glucanotransferase (AGL) is a novel tumour suppressor in bladder cancer. Loss of AGL leads to rapid proliferation of bladder cancer cells. Another enzyme involved in glycogen debranching, glycogen phosphorylase, has been shown to be a tumour promoter in cancer, including in prostate cancer. Studies demonstrate that bladder cancer cells in which AGL expression is lost are more metabolically active than cells with intact AGL expression, and these cells are more sensitive to inhibition of both glycolysis and glycine synthesis—two targetable pathways. As a tumour promoter and enzyme, glycogen phosphorylase can be directly targeted, and preclinical inhibitor studies are promising. However, few of these glycogen phosphorylase inhibitors have been tested for cancer treatment in the clinical setting. Several possible limitations to the targeting of AGL and glycogen phosphorylase might also exist.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glycogen metabolism pathways and drug targets.
Figure 2: Glycogenolysis.
Figure 3: Differences between glycogen phosphorylase and AGL loss in cancer.

Similar content being viewed by others

References

  1. Kroemer, G. & Pouyssegur, J. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13, 472–482 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Dang, C. V., Hamaker, M., Sun, P., Le, A. & Gao, P. Therapeutic targeting of cancer cell metabolism. J. Mol. Med. (Berl.) 89, 205–212 (2011).

    Article  CAS  Google Scholar 

  4. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    Article  CAS  PubMed  Google Scholar 

  5. Moreno-Sánchez, R., Rodríguez-Enríquez, S., Marín-Hernández, A. & Saavedra, E. Energy metabolism in tumor cells. FEBS J. 274, 1393–1418 (2007).

    Article  PubMed  CAS  Google Scholar 

  6. Marín-Hernández, A. et al. Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase. FEBS J. 273, 1975–1988 (2006).

    Article  PubMed  CAS  Google Scholar 

  7. Balinsky, D., Platz, C. E. & Lewis, J. W. Enzyme activities in normal, dysplastic, and cancerous human breast tissues. J. Natl Cancer Inst. 72, 217–224 (1984).

    CAS  PubMed  Google Scholar 

  8. Stubbs, M., Bashford, C. L. & Griffiths, J. R. Understanding the tumor metabolic phenotype in the genomic era. Curr. Mol. Med. 3, 49–59 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Fantin, V. R., St-Pierre, J. & Leder, P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9, 425–434 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Peng, Q. et al. Stable RNA interference of hexokinase II gene inhibits human colon cancer LoVo cell growth in vitro and in vivo. Cancer Biol. Ther. 7, 1128–1135 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Ritterson Lew, C. & Tolan, D. R. Targeting of several glycolytic enzymes using RNA interference reveals aldolase affects cancer cell proliferation through a non-glycolytic mechanism. J. Biol. Chem. 287, 42554–42563 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Le, A. et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc. Natl Acad. Sci. USA 107, 2037–2042 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Clem, B. et al. Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol. Cancer Ther. 7, 110–120 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Biswas, S., Lunec, J. & Bartlett, K. Non-glucose metabolism in cancer cells—is it all in the fat? Cancer Metastasis Rev. 31, 689–698 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. DeBerardinis, R. J. et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl Acad. Sci. USA 104, 19345–19350 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mashima, T., Seimiya, H. & Tsuruo, T. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br. J. Cancer 100, 1369–1372 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Linehan, W. M., Srinivasan, R. & Schmidt, L. S. The genetic basis of kidney cancer: a metabolic disease. Nat. Rev. Urol. 7, 277–285 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Linehan, W. M. & Rouault, T. A. Molecular pathways: Fumarate hydratase-deficient kidney cancer—targeting the Warburg effect in cancer. Clin. Cancer Res. 19, 3345–3352 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Adam, J., Yang, M., Soga, T. & Pollard, P. J. Rare insights into cancer biology. Oncogene 33, 2547–2556 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Isaacs, J. S. et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8, 143–153 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Selak, M. A. et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell 7, 77–85 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Pike, L. S., Smift, A. L., Croteau, N. J., Ferrick, D. A. & Wu, M. Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim. Biophys. Acta 1807, 726–734 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Hatzivassiliou, G. et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8, 311–321 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Milgraum, L. Z., Witters, L. A., Pasternack, G. R. & Kuhajda, F. P. Enzymes of the fatty acid synthesis pathway are highly expressed in in situ breast carcinoma. Clin. Cancer Res. 3, 2115–2120 (1997).

    CAS  PubMed  Google Scholar 

  26. Pizer, E. S. et al. Increased fatty acid synthase as a therapeutic target in androgen-independent prostate cancer progression. Prostate 47, 102–110 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Kuhajda, F. P. Fatty acid synthase and cancer: new application of an old pathway. Cancer Res. 66, 5977–5980 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Nomura, D. K. et al. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140, 49–61 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang, C. S. et al. Fatty acid synthase inhibition engages a novel caspase-2 regulatory mechanism to induce ovarian cancer cell death. Oncogene http://dx.doi.org/10.1038/onc.2014.271.

  30. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  31. Guin, S. et al. Role in tumor growth of a glycogen debranching enzyme lost in glycogen storage disease. J. Natl Cancer Inst. 106, dju062 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin. 65, 5–29 (2015).

    Article  PubMed  Google Scholar 

  33. Chang, S., Lee, S., Lee, C., Kim, J. I. & Kim, Y. Expression of the human erythrocyte glucose transporter in transitional cell carcinoma of the bladder. Urology 55, 448–452 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Macheda, M. L., Rogers, S. & Best, J. D. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J. Cell Physiol. 202, 654–662 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Lee, J. H., Kim, Y. W. & Chang, S. G. Glucose transporter-1 expression in urothelial papilloma of the bladder. Urol. Int. 74, 268–271 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Hoskin, P. J., Sibtain, A., Daley, F. M. & Wilson, G. D. GLUT1 and CAIX as intrinsic markers of hypoxia in bladder cancer: relationship with vascularity and proliferation as predictors of outcome of ARCON. Br. J. Cancer 89, 1290–1297 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nagase, Y. et al. Immunohistochemical localization of glucose transporters in human renal cell carcinoma. J. Urol. 153, 798–801 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Ozcan, A., Shen, S. S., Zhai, Q. J. & Truong, L. D. Expression of GLUT1 in primary renal tumors: morphologic and biologic implications. Am. J. Clin. Pathol. 128, 245–254 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Cushman, S. W. & Wardzala, L. J. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J. Biol. Chem. 255, 4758–4762 (1980).

    CAS  PubMed  Google Scholar 

  40. Suzuki, K. & Kono, T. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc. Natl Acad. Sci. USA 77, 2542–2545 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gwak, H., Haegeman, G., Tsang, B. K. & Song, Y. S. Cancer-specific interruption of glucose metabolism by resveratrol is mediated through inhibition of Akt/GLUT1 axis in ovarian cancer cells. Mol. Carcinog. http://dx.doi.org/10.1002/mc.22227.

  42. Sommermann, T. G., O'Neill, K., Plas, D. R. & Cahir-McFarland, E. IKKβ and NF-κB transcription govern lymphoma cell survival through AKT-induced plasma membrane trafficking of GLUT1. Cancer Res. 71, 7291–7300 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Berg, J. M., Tymoczko, J. L. & Stryer, L. Biochemistry 5th edn (W. H. Freeman, 2002).

    Google Scholar 

  44. Garrett, R. H. & Grisham, C. M. Biochemistry 2nd edn (Harcourt Brace and Company, 1999).

    Google Scholar 

  45. Gaboriaud-Kolar, N. & Skaltsounis, A. L. Glycogen phosphorylase inhibitors: a patent review (2008–2012). Expert Opin. Ther. Pat. 23, 1017–1032 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Sakoda, H. et al. Glycogen debranching enzyme association with β-subunit regulates AMP-activated protein kinase activity. Am. J. Physiol. Endocrinol. Metab. 289, E474–E481 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Rousset, M. et al. Growth-related enzymatic control of glycogen metabolism in cultured human tumor cells. Cancer Res. 44, 154–160 (1984).

    CAS  PubMed  Google Scholar 

  48. Rousset, M., Zweibaum, A. & Fogh, J. Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins. Cancer Res. 41, 1165–1170 (1981).

    CAS  PubMed  Google Scholar 

  49. Pelletier, J. et al. Glycogen synthesis is induced in hypoxia by the hypoxia-inducible factor and promotes cancer cell survival. Front. Oncol. 2, 18 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Iida, Y. et al. Hypoxia promotes glycogen synthesis and accumulation in human ovarian clear cell carcinoma. Int. J. Oncol. 40, 2122–2130 (2012).

    CAS  PubMed  Google Scholar 

  51. Pescador, N. et al. Hypoxia promotes glycogen accumulation through hypoxia inducible factor (HIF)-mediated induction of glycogen synthase 1. PLoS ONE 5, e9644 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Favaro, E. et al. Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells. Cell. Metab. 16, 751–764 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Philips, K. B. et al. Increased sensitivity to glucose starvation correlates with downregulation of glycogen phosphorylase isoform PYGB in tumor cell lines resistant to 2-deoxy-D-glucose. Cancer Chemother. Pharmacol. 73, 349–361 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Terashima, M. et al. KIAA1199 interacts with glycogen phosphorylase kinase β-subunit (PHKB) to promote glycogen breakdown and cancer cell survival. Oncotarget 5, 7040–7050 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gazzerro, E., Andreu, A. L. & Bruno, C. Neuromuscular disorders of glycogen metabolism. Curr. Neurol. Neurosci. Rep. 13, 333 (2013).

    Article  PubMed  CAS  Google Scholar 

  56. Cheng, A. et al. A role for AGL ubiquitination in the glycogen storage disorders of Lafora and Cori's disease. Genes Dev. 21, 2399–2409 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jain, M. et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336, 1040–1044 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kishnani, P. S. et al. Glycogen storage disease type III diagnosis and management guidelines. Genet. Med. 12, 446–463 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Gloeckler Ries, L. A., Reichman, M. E., Lewis, D. R., Hankey, B. F. & Edwards, B. K. Cancer survival and incidence from the Surveillance, Epidemiology, and End Results (SEER) program. Oncologist 8, 541–552 (2003).

    Article  PubMed  Google Scholar 

  60. Johansson, S. L. & Cohen, S. M. Epidemiology and etiology of bladder cancer. Semin. Surg. Oncol. 13, 291–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Bernier, A. V. et al. Hyperlipidemia in glycogen storage disease type III: effect of age and metabolic control. J. Inherit. Metab. Dis. 31, 729–732 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Steuerwald, U. Health status in GSD3a-patients with a natural high-protein diet. Presented at the International GSD Conference 2013.

  63. Cosme, A. et al. Type III glycogen storage disease associated with hepatocellular carcinoma [Spanish]. Gastroenterol. Hepatol. 28, 622–625 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Demo, E. et al. Glycogen storage disease type III-hepatocellular carcinoma a long-term complication? J. Hepatol. 46, 492–498 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Haagsma, E. B. et al. Type IIIb glycogen storage disease associated with end-stage cirrhosis and hepatocellular carcinoma. The Liver Transplant Group. Hepatology 25, 537–540 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Labrune, P., Trioche, P., Duvaltier, I., Chevalier, P. & Odièvre, M. Hepatocellular adenomas in glycogen storage disease type I and III: a series of 43 patients and review of the literature. J. Pediatr. Gastroenterol. Nutr. 24, 276–279 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Siciliano, M. et al. Hepatocellular carcinoma complicating liver cirrhosis in type IIIa glycogen storage disease. J. Clin. Gastroenterol. 31, 80–82 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Shimizu, J. et al. A report on an adult case of type III glycogenosis with primary liver cancer and liver cirrhosis [Japanese]. Nihon Shokakibyo Gakkai Zasshi 79, 2328–2332 (1982).

    CAS  PubMed  Google Scholar 

  69. Kishnani, P. S. et al. Chromosomal and genetic alterations in human hepatocellular adenomas associated with type Ia glycogen storage disease. Hum. Mol. Genet. 18, 4781–4790 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Calderaro, J. et al. Molecular characterization of hepatocellular adenomas developed in patients with glycogen storage disease type I. J. Hepatol. 58, 350–357 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Herrema, H., Smit, G. P., Reijngoud, D. J. & Kuipers, F. Does increased fatty acid oxidation enhance development of liver cirrhosis and progression to hepatocellular carcinoma in patients with glycogen storage disease type-III? J. Hepatol. 47, 298–300; author reply 300–301 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Cimino, G. D., Pan, C. X. & Henderson, P. T. Personalized medicine for targeted and platinum-based chemotherapy of lung and bladder cancer. Bioanalysis 5, 369–391 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Tsao, C. K., Gartrell, B. A., Oh, W. K. & Galsky, M. D. Emerging personalized approaches for the management of advanced urothelial carcinoma. Expert Rev. Anticancer Ther. 12, 1537–1543 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schneider, M. et al. Phenotypic drug screening and target validation for improved personalized therapy reveal the complexity of phenotype-genotype correlations in clear cell renal cell carcinoma. Urol. Oncol. 32, 877–884 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Bielecka, Z. F., Czarnecka, A. M. & Szczylik, C. Genomic analysis as the first step toward personalized treatment in renal cell carcinoma. Front. Oncol. 4, 194 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Fraser, M., Berlin, A., Bristow, R. G. & van der Kwast, T. Genomic, pathological, and clinical heterogeneity as drivers of personalized medicine in prostate cancer. Urol. Oncol. 33, 85–94 (2015).

    Article  PubMed  Google Scholar 

  77. Sio, T. T., Ko, J., Gudena, V. K., Verma, N. & Chaudhary, U. B. Chemotherapeutic and targeted biological agents for metastatic bladder cancer: a comprehensive review. Int. J. Urol. 21, 630–637 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Sternberg, C. N. et al. ICUD-EAU International Consultation on Bladder Cancer 2012: Chemotherapy for urothelial carcinoma-neoadjuvant and adjuvant settings. Eur. Urol. 63, 58–66 (2013).

    Article  PubMed  Google Scholar 

  79. Hendricksen, K. et al. Phase 2 study of adjuvant intravesical instillations of apaziquone for high risk nonmuscle invasive bladder cancer. J. Urol. 187, 1195–1199 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Schnier, J. B., Nishi, K., Gumerlock, P. H., Gorin, F. A. & Bradbury, E. M. Glycogen synthesis correlates with androgen-dependent growth arrest in prostate cancer. BMC Urol. 5, 6 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Kominsky, D. J. et al. Abnormalities in glucose uptake and metabolism in imatinib-resistant human BCR-ABL-positive cells. Clin. Cancer Res. 15, 3442–3450 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Chan, S. S. & Lotspeich, W. D. Comparative effects of phlorizin and phloretin on glucose transport in the cat kidney. Am. J. Physiol. 203, 975–979 (1962).

    Article  CAS  PubMed  Google Scholar 

  83. Cao, X. et al. Glucose uptake inhibitor sensitizes cancer cells to daunorubicin and overcomes drug resistance in hypoxia. Cancer Chemother. Pharmacol. 59, 495–505 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Liu, Y. et al. A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol. Cancer Ther. 11, 1672–1682 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Monti, E. & Gariboldi, M. B. HIF-1 as a target for cancer chemotherapy, chemosensitization and chemoprevention. Curr. Mol. Pharmacol. 4, 62–77 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Zhao, Y., Butler, E. B. & Tan, M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 4, e532 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yeung, S. J., Pan, J. & Lee, M. H. Roles of p53, MYC and HIF-1 in regulating glycolysis—the seventh hallmark of cancer. Cell. Mol. Life Sci. 65, 3981–3999 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Pelicano, H., Martin, D. S., Xu, R. H. & Huang, P. Glycolysis inhibition for anticancer treatment. Oncogene 25, 4633–4646 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Balar, A. V. & Milowsky, M. I. Cytotoxic and DNA-targeted therapy in urothelial cancer: have we squeezed the lemon enough? Cancer 121, 179–187 (2015).

    Article  PubMed  Google Scholar 

  90. Maschek, G. et al. 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res. 64, 31–34 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Anderson, D. D. & Stover, P. J. SHMT1 and SHMT2 are functionally redundant in nuclear de novo thymidylate biosynthesis. PLoS ONE 4, e5839 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Lee, W. N. et al. Metabolic sensitivity of pancreatic tumour cell apoptosis to glycogen phosphorylase inhibitor treatment. Br. J. Cancer 91, 2094–2100 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ma, D. et al. Inhibition of glycogen phosphorylation induces changes in cellular proteome and signaling pathways in MIA pancreatic cancer cells. Pancreas 41, 397–408 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schnier, J. B., Nishi, K., Monks, A., Gorin, F. A. & Bradbury, E. M. Inhibition of glycogen phosphorylase (GP) by CP-91,149 induces growth inhibition correlating with brain GP expression. Biochem. Biophys. Res. Commun. 309, 126–134 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Kaiser, A. et al. The cyclin-dependent kinase (CDK) inhibitor flavopiridol inhibits glycogen phosphorylase. Arch. Biochem. Biophys. 386, 179–187 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Oikonomakos, N. G., Skamnaki, V. T., Tsitsanou, K. E., Gavalas, N. G. & Johnson, L. N. A new allosteric site in glycogen phosphorylase b as a target for drug interactions. Structure 8, 575–584 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Liu, G. et al. A Phase II trial of flavopiridol (NSC #649890) in patients with previously untreated metastatic androgen-independent prostate cancer. Clin. Cancer Res. 10, 924–928 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Van Veldhuizen, P. J. et al. A phase II study of flavopiridol in patients with advanced renal cell carcinoma: results of Southwest Oncology Group Trial 0109. Cancer Chemother. Pharmacol. 56, 39–45 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Dickson, M. A. et al. A phase I clinical trial of FOLFIRI in combination with the pan-cyclin-dependent kinase (CDK) inhibitor flavopiridol. Cancer Chemother. Pharmacol. 66, 1113–1121 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kaur, G. et al. Growth inhibition with reversible cell cycle arrest of carcinoma cells by flavone L86–8275. J. Natl Cancer Inst. 84, 1736–1740 (1992).

    Article  CAS  PubMed  Google Scholar 

  101. Pagliarani, S. et al. Glycogen storage disease type III: A novel Agl knockout mouse model. Biochim. Biophys. Acta 1842, 2318–2328 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Liu, K. M., Wu, J. Y. & Chen, Y. T. Mouse model of glycogen storage disease type III. Mol. Genet. Metab. 111, 467–476 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Newgard, C. B., Hwang, P. K. & Fletterick, R. J. The family of glycogen phosphorylases: structure and function. Crit. Rev. Biochem. Mol. Biol. 24, 69–99 (1989).

    Article  CAS  PubMed  Google Scholar 

  104. McBride, A. & Hardie, D. G. AMP-activated protein kinase—a sensor of glycogen as well as AMP and ATP? Acta Physiol. (Oxf.) 196, 99–113 (2009).

    Article  CAS  Google Scholar 

  105. Lee, J., Kim, H. K., Han, Y. M. & Kim, J. Pyruvate kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4 in regulating transcription. Int. J. Biochem. Cell Biol. 40, 1043–1054 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Funasaka, T., Hogan, V. & Raz, A. Phosphoglucose isomerase/autocrine motility factor mediates epithelial and mesenchymal phenotype conversions in breast cancer. Cancer Res. 69, 5349–5356 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported in part by National Institutes of Health grant CA143971 to D.T., the Bladder Cancer Advocacy Network (BCAN) Young Investigator Award and the Cancer League of Colorado, Inc. Research Grant to S.G., and the National Institutes of Health Ruth L. Kirschstein F32 National Research Service Award (NRSA) F32CA189735 to C.R.L.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, substantially contributed to discussion of its content and participated in writing the article. D.T. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Dan Theodorescu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lew, C., Guin, S. & Theodorescu, D. Targeting glycogen metabolism in bladder cancer. Nat Rev Urol 12, 383–391 (2015). https://doi.org/10.1038/nrurol.2015.111

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2015.111

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer