Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pushing the boundaries of ureteroscopy: current status and future perspectives

Key Points

  • Ureteroscopy is a routine procedure used in the treatment of conditions such as urolithiasis and in the diagnosis of upper urinary tract pathology in many centres worldwide

  • Ureteroscopy with flexible endoscopes, in particular, is important in the resolution of various pathological events, such as pyelocalyceal lithiasis, migrated stone fragments, pyelocalyceal diverticulum, and renal infundibular stenosis

  • New semirigid and flexible endoscopes designed for ureteroscopy, with either fibre-optic or digital optical imaging systems, are continuously being improved and developed

  • The holmium laser is the most-efficient and most-versatile energy source used in ureteroscopy procedures, enabling tissue incision, tumour ablation or intracorporeal lithotripsy

  • In addition, novel accessory devices are being incorporated into routine clinical ureteroscopy procedures to minimize retropulsion and ascendant migration of stone fragments

Abstract

Substantial advances in ureteroscopy have resulted in the incorporation of this procedure into routine urological practice in many centres worldwide. Subsequently, an abundance of clinical data and technological progression have enabled the development of novel solutions that have increased the efficacy of ureteroscopy, and reduced associated morbidity and costs. In addition the indications for this retrograde approach have been expanded, and pyelocalyceal diverticulum, infundibular stenosis, urolithiasis in pregnant women or in patients with urinary diversions, as well as upper urinary tract tumours can now be managed using this methodology. New endoscopes are continuously developed, with different manufacturers choosing various technical solutions to further increase the efficacy and safety—and sometimes decrease costs—of ureteroscopy, including miniaturization, inclusion of digital optical systems and dual working channels, and the introduction of disposable apparatus. The holmium laser, currently the most-versatile energy source available, enables tissue incision, tumour ablation, and intracorporeal lithotripsy. Modern ancillary instruments are diverse, flexible, and durable, and novel devices used in daily clinical practice can minimize ascendant migration of stone fragments and, therefore, decrease the failure rate of the retrograde ureteroscopic approach. However, the peak of ureteroscopy evolution seems to remain distant, with further improvement of endoscopes and ancillary instruments, and robot-assisted ureteroscopy representing only some of the areas in which future developments are possible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of the current imaging capabilities of flexible ureteroscopes.
Figure 2: Olympus URF-V (top) and KARL STORZ Endoskope Flex-Xc (bottom) ureteroscopes.
Figure 3: The Richard Wolf Cobra, the first dual channel flexible ureteroscope.
Figure 4: Photograph of the Ntrap® antiretropulsion stone entrapment and extraction device (Cook Medical, USA).

Similar content being viewed by others

References

  1. Holden, T., Pedro, R. N., Hendlin, K., Durfee, W. & Monga, M. Evidence-based instrumentation for flexible ureteroscopy: a review. J. Endourol. 22, 1423–1426 (2008).

    Article  Google Scholar 

  2. Payne, D. A. & Keeley, F. X. Rigid and flexible ureteroscopes: technical features in Smith's Textbook of Endourology 3rd edn (eds Smith, A. D. Smith, A. D., Badlani, G. H., Preminger, G. M. & Kavoussi, L. R.) 365–388 (Blackwell Publishing, 2012).

    Chapter  Google Scholar 

  3. Bagley, D. H., Huffman, J. L. & Lyon, E. S. Flexible ureteropyeloscopy: diagnosis and treatment in the upper urinary tract. J. Urol. 138, 280–285 (1987).

    Article  CAS  Google Scholar 

  4. Multescu, R., Geavlete, B. & Geavlete, P. A new era: performance and limitations of the latest models of flexible ureteroscopes. Urology 82, 1236–1239 (2013).

    Article  Google Scholar 

  5. Meyer, F. et al. Narrow band imaging: description of the technique and initial experience with upper urinary tract carcinomas [French]. Prog. Urol. 21, 527–533 (2011).

    Article  CAS  Google Scholar 

  6. Lusch, A. et al. In vitro and in vivo comparison of optics and performance of a distal sensor ureteroscope versus a standard fiberoptic ureteroscope. J. Endourol. 27, 896–902 (2013).

    Article  Google Scholar 

  7. Haberman, K., Ortiz-Alvarado, O., Chotikawanich, E. & Monga, M. A dual-channel flexible ureteroscope: evaluation of deflection, flow, illumination, and optics. J. Endourol. 25, 1411–1414 (2011).

    Article  Google Scholar 

  8. Karaolides, T. et al. Improving the durability of digital flexible ureteroscopes. Urology 81, 717–722 (2013).

    Article  Google Scholar 

  9. Multescu, R., Geavlete, B., Georgescu, D. & Geavlete, P. Improved durability of Flex-Xc digital flexible ureteroscope: how long can you expect it to last? Urology http://dx.doi.org/10.1016/j.urology.2014.01.021.

  10. User, H. M. et al. Performance and durability of leading flexible ureteroscopes. J. Endourol. 18, 735–738 (2004).

    Article  Google Scholar 

  11. Bansal, H. et al. Polyscope: a new era in flexible ureterorenoscopy. J. Endourol. 25, 317–321 (2011).

    Article  Google Scholar 

  12. Gu, S. P. et al. Clinical effectiveness of the PolyScope endoscope system combined with holmium laser lithotripsy in the treatment of upper urinary calculi with a diameter of less than 2 cm. Exp. Ther. Med. 6, 591–595 (2013).

    Article  Google Scholar 

  13. Johnson, M. T., Khemees, T. A. & Knudsen, B. E. Resilience of disposable endoscope optical fiber properties after repeat sterilization. J. Endourol. 27, 71–74 (2013).

    Article  Google Scholar 

  14. Boylu, U., Oommen, M., Thomas, R. & Lee, B. R. In vitro comparison of a disposable flexible ureteroscope and conventional flexible ureteroscopes. J. Urol. 182, 2347–2351 (2009).

    Article  Google Scholar 

  15. Wollin, T. A. & Denstedt, J. D. The holmium laser in urology. J. Clin. Laser Med. Surg. 16, 13–20 (1998).

    Article  CAS  Google Scholar 

  16. Honeck, P., Wendt-Nordahl, G., Häcker, A., Alken, P. & Knoll, T. Risk of collateral damage to endourologic tools by holmium:YAG laser energy. J. Endourol. 20, 495–497 (2006).

    Article  Google Scholar 

  17. Marks, A. J. & Teichman, J. M. Lasers in clinical urology: state of the art and new horizons. World J. Urol. 25, 227–233 (2007).

    Article  Google Scholar 

  18. Kitano, H. et al. Comparison of pneumatic lithotripter and holmium YAG laser in transureteral lithotripsy (TUL). Nihon Hinyokika Gakkai Zasshi 104, 513–520 (2013).

    PubMed  Google Scholar 

  19. Binbay, M. et al. Evaluation of pneumatic versus holmium:YAG laser lithotripsy for impacted ureteral stones. Int. Urol. Nephrol. 43, 989–995 (2011).

    Article  Google Scholar 

  20. Türk, C. et al. European Association of Urology guidelines on urolithiasis. Urolithiasis—update March 2013 [online], (2013).

    Google Scholar 

  21. Cordes, J., Nguyen, F., Lange, B., Brinkmann, R. & Jocham, D. Damage of stone baskets by endourologic lithotripters: a laboratory study of 5 lithotripters and 4 basket types. Adv. Urol. http://dx.doi.org/10.1155/2013/632790 (2013).

  22. Gur, U., Lifshitz, D. A., Lask, D. & Livne, P. M. Ureteral ultrasonic lithotripsy revisited: a neglected tool? J. Endourol. 18, 137–140 (2004).

    Article  Google Scholar 

  23. Multescu, R., Geavlete, B., Georgescu, D. & Geavlete, P. Conventional fiberoptic flexible ureteroscope versus fourth generation digital flexible ureteroscope: a critical comparison. J. Endourol. 24, 17–21 (2010).

    Article  Google Scholar 

  24. Bach, T., Geavlete, B., Herrmann, T. R. & Gross, A. J. Working tools in flexible ureterorenoscopy—influence on flow and deflection: what does matter? J. Endourol. 22, 1639–1643 (2008).

    Article  CAS  Google Scholar 

  25. Abdelshehid, C. et al. Comparison of flexible ureteroscopes: deflection, irrigant flow and optical characteristics. J. Urol. 173, 2017–2021 (2005).

    Article  Google Scholar 

  26. Bedke, J. et al. 1.2 French stone retrieval baskets further enhance irrigation flow in flexible ureterorenoscopy. Urolithiasis 41, 153–157 (2013).

    Article  Google Scholar 

  27. Gupta, R., Paner, G. P. & Amin, M. B. Neoplasms of the upper urinary tract: a review with focus on urothelial carcinoma of the pelvicalyceal system and aspects related to its diagnosis and reporting. Adv. Anat. Pathol. 15, 127–139 (2008).

    Article  Google Scholar 

  28. Wason, S. E., Seigne, J. D., Schned, A. R. & Pais, V. M. Jr. Ureteroscopic biopsy of upper tract urothelial carcinoma using a novel ureteroscopic biopsy forceps. Can. J. Urol. 19, 6560–6565 (2012).

    PubMed  Google Scholar 

  29. Cook Medical. BIGopsy® Backloading Biopsy Forceps: Instructions for Use [online], (2013).

  30. Marguet, C. G. et al. In vitro comparison of stone retropulsion and fragmentation of the frequency doubled, double pulse Nd:YAG laser and the Holmium:YAG laser. J. Urol. 173, 1797–1800 (2005).

    Article  Google Scholar 

  31. Kang, H. W. et al. Dependence of calculus retropulsion on pulse duration during Ho:YAG laser lithotripsy. Lasers Surg. Med. 38, 762–772 (2006).

    Article  Google Scholar 

  32. Multescu, R., Geavlete, B., Georgescu, D., Geavlete, P. & Chiutu, L. Holmium laser intrarenal lithotripsy in pyelocaliceal lithiasis treatment: to dust or to extractable fragments? Chirurgia (Bucur.) 109, 95–98 (2014).

    CAS  Google Scholar 

  33. Elashry, O. M. & Tawfik, A. M. Preventing stone retropulsion during intracorporeal lithotripsy. Nat. Rev. Urol. 9, 691–698 (2012).

    Article  Google Scholar 

  34. Eisner, B. H. & Dretler, S. P. Use of the Stone Cone for prevention of calculus retropulsion during holmium:YAG laser lithotripsy: case series and review of the literature. Urol. Int. 82, 356–360 (2009).

    Article  Google Scholar 

  35. Wu, J. A. et al. The accordion antiretropulsive device improves stone-free rates during ureteroscopic laser lithotripsy. J. Endourol. 27, 438–441 (2013).

    Article  Google Scholar 

  36. Ding, H., Wang, Z., Du, W. & Zhang, H. NTrap in prevention of stone migration during ureteroscopic lithotripsy for proximal ureteral stones: a meta-analysis. J. Endourol. 26, 130–134 (2012).

    Article  Google Scholar 

  37. Farahat, Y. A., Elbahnasy, A. E. & Elashry, O. M. A randomized prospective controlled study for assessment of different ureteral occlusion devices in prevention of stone migration during pneumatic lithotripsy. Urology 77, 30–35 (2011).

    Article  Google Scholar 

  38. Ahmed, M. et al. Systematic evaluation of ureteral occlusion devices: insertion, deployment, stone migration, and extraction. Urology 73, 976–980 (2009).

    Article  Google Scholar 

  39. Ruoppolo, M., Milesi, R., Gozo, M. & Fragapane, G. RIRS through semi-rigid ureteroscope and holmium laser in the treatment of ureteral stones retropulsion [Italian]. Urologia 77 (Suppl. 17), 57–63 (2010).

    Article  Google Scholar 

  40. Sen, H. et al. Comparing of different methods for prevention stone migration during ureteroscopic lithotripsy. Urol. Int. 92, 334–338 (2014).

    Article  Google Scholar 

  41. Bastawisy, M. et al. A comparison of Stone Cone versus lidocaine jelly in the prevention of ureteral stone migration during ureteroscopic lithotripsy. Ther. Adv. Urol. 3, 203–210 (2011).

    Article  CAS  Google Scholar 

  42. Molina, W. R., Pompeo, A., Sehrt, D., Pohlmann, G. & Kim, F. J. Use of a polymeric gel to prevent retropulsion during intracorporeal lithotripsy [Spanish]. Actas Urol. Esp. 37, 188–192 (2013).

    Article  CAS  Google Scholar 

  43. Ursiny, M. & Eisner, B. H. Cost-effectiveness of anti-retropulsion devices for ureteroscopic lithotripsy. J. Urol. 189, 1762–1766 (2013).

    Article  Google Scholar 

  44. Ozturk, M. D. et al. The comparison of laparoscopy, shock wave lithotripsy and retrograde intrarenal surgery for large proximal ureteral stones. Can. Urol. Assoc. J. 7, E673–E676 (2013).

    Article  Google Scholar 

  45. Kumar, A. et al. A prospective randomized comparison between shockwave lithotripsy and semirigid ureteroscopy for upper ureteral stones <2 cm: a single center experience. J. Endourol. http://dx.doi.org/10.1089/end.2012.0493.

  46. Gecit, I. et al. Should ureteroscopy be considered as the first choice for proximal ureter stones of children? Eur. Rev. Med. Pharmacol. Sci. 17, 1839–1844 (2013).

    CAS  PubMed  Google Scholar 

  47. Preminger, G. M. Management of lower pole renal calculi: shock wave lithotripsy versus percutaneous nephrolithotomy versus flexible ureteroscopy. Urol. Res. 34, 108–111 (2006).

    Article  Google Scholar 

  48. Pearle, M. S. et al. Prospective, randomized trial comparing shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less. J. Urol. 173, 2005–2009 (2005).

    Article  Google Scholar 

  49. Hussain, M., Acher, P., Penev, B. & Cynk, M. Redefining the limits of flexible ureterorenoscopy. J. Endourol. 25, 45–49 (2011).

    Article  Google Scholar 

  50. Wendt-Nordahl, G., Mut, T., Krombach, P., Michel, M. S. & Knoll, T. Do new generation flexible ureterorenoscopes offer a higher treatment success than their predecessors? Urol. Res. 39, 185–188 (2011).

    Article  Google Scholar 

  51. Ito, H. et al. Evaluation of preoperative measurement of stone surface area as a predictor of stone-free status after combined ureteroscopy with holmium laser lithotripsy: a single-center experience. J. Endourol. 27, 715–721 (2013).

    Article  Google Scholar 

  52. Breda, A., Ogunyemi, O., Leppert, J. T., Lam, J. S. & Schulam, P. G. Flexible ureteroscopy and laser lithotripsy for single intrarenal stones 2 cm or greater—is this the new frontier? J. Urol. 179, 981–984 (2008).

    Article  Google Scholar 

  53. Miernik, A. et al. Combined semirigid and flexible ureterorenoscopy via a large ureteral access sheath for kidney stones >2 cm: a bicentric prospective assessment. World J. Urol. http://dx.doi.org/10.1007/s00345-013-1126-z.

  54. Akman, T. et al. Comparison of percutaneous nephrolithotomy and retrograde flexible nephrolithotripsy for the management of 2–4 cm stones: a matched-pair analysis. BJU Int. 109, 1384–1389 (2012).

    Article  Google Scholar 

  55. Takazawa, R., Kitayama, S. & Tsujii, T. Successful outcome of flexible ureteroscopy with holmium laser lithotripsy for renal stones 2 cm or greater. Int. J. Urol. 19, 264–267 (2012).

    Article  Google Scholar 

  56. Cohen, J., Cohen, S. & Grasso, M. Ureteropyeloscopic treatment of large, complex intrarenal and proximal ureteral calculi. BJU Int. 111, E127–E131 (2013).

    Article  Google Scholar 

  57. Nagele, U., Knoll, T., Schilling, D., Michel, M. S. & Stenzl, A. Lower pole calyceal stones [German]. Urologe A 47, 875–884 (2008).

    Article  CAS  Google Scholar 

  58. Ferroud, V. et al. Flexible ureteroscopy and mini percutaneous nephrolithotomy in the treatment of renal lithiasis less or equal to 2 cm. Prog. Urol. 21, 79–84 (2011).

    Article  CAS  Google Scholar 

  59. Desai, M. & Mishra, S. 'Microperc' micro percutaneous nephrolithotomy: evidence to practice. Curr. Opin. Urol. 22, 134–138 (2012).

    Article  Google Scholar 

  60. Desai, J. et al. A novel technique of ultra-mini-percutaneous nephrolithotomy: introduction and an initial experience for treatment of upper urinary calculi less than 2 cm. Biomed. Res. Int. http://dx.doi.org/10.1155/2013/490793.

  61. Koo, V., Young, M., Thompson, T. & Duggan, B. Cost-effectiveness and efficiency of shockwave lithotripsy vs flexible ureteroscopic holmium:yttrium-aluminium-garnet laser lithotripsy in the treatment of lower pole renal calculi. BJU Int. 108, 1913–1916 (2011).

    Article  Google Scholar 

  62. Hyams, E. S. & Shah, O. Percutaneous nephrostolithotomy versus flexible ureteroscopy/holmium laser lithotripsy: cost and outcome analysis. J. Urol. 182, 1012–1017 (2009).

    Article  Google Scholar 

  63. Pompeo, A., Molina, W. R., Juliano, C., Sehrt, D. & Kim, F. J. Outcomes of intracorporeallithotripsy of upper tract stones is not affected by BMI and skin-to-stone distance (SSD) in obese and morbid patients. Int. Braz. J. Urol. 39, 702–709 (2013).

    Article  Google Scholar 

  64. Koopman, S. G. & Fuchs, G. Management of stones associated with intrarenal stenosis: infundibular stenosis and caliceal diverticulum. J. Endourol. 27, 1546–1550 (2013).

    Article  Google Scholar 

  65. Aboumarzouk, O. M., Somani, B. K. & Monga, M. Flexible ureteroscopy and holmium:YAG laser lithotripsy for stone disease in patients with bleeding diathesis: a systematic review of the literature. Int. Braz. J. Urol. 38, 298–305 (2012).

    Article  Google Scholar 

  66. Geavlete, P. et al. Ureteroscopy—an essential modern approach in upper urinary tract diagnosis and treatment. J. Med. Life 3, 193–199 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ishii, H., Aboumarzouk, O. M. & Somani, B. K. Current status of ureteroscopy for stone disease in pregnancy. Urolithiasis 42, 1–7 (2014).

    Article  Google Scholar 

  68. Desai, M. M. et al. Flexible robotic retrograde renoscopy: description of novel robotic device and preliminary laboratory experience. Urology 72, 42–46 (2008).

    Article  Google Scholar 

  69. Desai, M. M. et al. Robotic flexible ureteroscopy for renal calculi: initial clinical experience. J. Urol. 186, 563–568 (2011).

    Article  Google Scholar 

  70. Saglam, R., Tokatlý, Z., Kabakçi, A. Z. & Koruk, E. Turkish robot “Avicenna” for flexible ureterorenoscopic surgery [abstract 116]. Eur. Urol. Suppl. 10, 602–603 (2011).

    Article  Google Scholar 

  71. Russell, S. T. et al. Three-dimensional CT virtual endoscopy in the detection of simulated tumors in a novel phantom bladder and ureter model. J. Endourol. 19, 188–192 (2005).

    Article  Google Scholar 

  72. Bata, P. et al. Essential role of using virtual pyeloscopy in the diagnosis of small satellite renal pelvic tumour in solitary kidney patient. Can. Urol. Assoc. J. 6, E195–E198 (2012).

    Article  Google Scholar 

  73. White, M. A., Dehaan, A. P., Stephens, D. D., Maes, A. A. & Maatman, T. J. Validation of a high fidelity adult ureteroscopy and renoscopy simulator. J. Urol. 183, 673–677 (2010).

    Article  Google Scholar 

  74. Tan, Y. K. et al. In vitro comparison of prototype magnetic tool with conventional nitinol basket for ureteroscopic retrieval of stone fragments rendered paramagnetic with iron oxide microparticles. J. Urol. 188, 648–652 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

B.G. contributed to researching the data for the article and reviewed/edited the manuscript before submission. P.G. and R.M. contributed to all stages of the preparation of the manuscript for submission.

Corresponding author

Correspondence to Petrisor Geavlete.

Ethics declarations

Competing interests

B.G. declares that he is a member of the speakers' bureau and has received honouraria from Olympus. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geavlete, P., Multescu, R. & Geavlete, B. Pushing the boundaries of ureteroscopy: current status and future perspectives. Nat Rev Urol 11, 373–382 (2014). https://doi.org/10.1038/nrurol.2014.118

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2014.118

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing