Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Prostate cancer—from steroid transformations to clinical translation

Abstract

The survival benefit conferred by two hormonal agents in phase III trials has clinically validated the long suspected and now widely recognized phenomenon of castration-resistant prostate cancer (CRPC) hormone dependence. Abiraterone inhibits steroid 17α-hydroxylase/17,20-lyase (CYP17A1) and blocks androgen synthesis, whereas enzalutamide directly binds and antagonizes the androgen receptor. Both agents are highly effective against CRPC and significantly prolong survival following docetaxel treatment. However, this clinical validation of the androgen pathway has led to questions regarding the fundamental mechanisms of CRPC, as well as resistance to abiraterone and enzalutamide. Our understanding of the predominant steroid transformation pathways that lead to dihydrotestosterone synthesis in CRPC is evolving. The role of steroidogenesis in the development of resistance to abiraterone and enzalutamide remains uncertain. The specific roles of candidate enzyme targets in the development of resistance to these agents must be defined if we are to identify novel targets for improved pharmacologic therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DHT synthesis requires reactions catalyzed by CYP17A1, 3βHSD, 5α-reductase, and 17βHSD isoenzymes.

Similar content being viewed by others

References

  1. Huggins, C. & Hodges, C. V. Studies on prostate cancer I: the effect of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res. 1, 293–297 (1941).

    CAS  Google Scholar 

  2. Bruchovsky, N. & Wilson, J. D. The conversion of testosterone to 5-alpha-androstan-17-beta-ol-3-one by rat prostate in vivo and in vitro. J. Biol. Chem. 243, 2012–2021 (1968).

    CAS  PubMed  Google Scholar 

  3. Anderson, K. M. & Liao, S. Selective retention of dihydrotestosterone by prostatic nuclei. Nature 219, 277–279 (1968).

    Article  CAS  PubMed  Google Scholar 

  4. Sharifi, N., Gulley, J. L. & Dahut, W. L. Androgen deprivation therapy for prostate cancer. JAMA 294, 238–244 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Scher, H. I. & Sawyers, C. L. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J. Clin. Oncol. 23, 8253–8261 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Geller, J. et al. DHT concentrations in human prostate cancer tissue. J. Clin. Endocrinol. Metab. 46, 440–444 (1978).

    Article  CAS  PubMed  Google Scholar 

  7. Titus, M. A., Schell, M. J., Lih, F. B., Tomer, K. B. & Mohler, J. L. Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin. Cancer Res. 11, 4653–4657 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Montgomery, R. B. et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 68, 4447–4454 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen, C. D. et al. Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 10, 33–39 (2004).

    Article  PubMed  Google Scholar 

  10. Edwards, J., Krishna, N. S., Grigor, K. M. & Bartlett, J. M. Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer. Br. J. Cancer 89, 552–556 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bubendorf, L. et al. Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer Res. 59, 803–806 (1999).

    CAS  PubMed  Google Scholar 

  12. Leversha, M. A. et al. Fluorescence in situ hybridization analysis of circulating tumor cells in metastatic prostate cancer. Clin. Cancer Res. 15, 2091–2097 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ryan, C. J. & Tindall, D. J. Androgen receptor rediscovered: the new biology and targeting the androgen receptor therapeutically. J. Clin. Oncol. 29, 3651–3658 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. de Bono, J. S. et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tran, C. et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324, 787–790 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Scher, H. I. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. http://dx.doi.org/10.1056/NEJMoa1207506.

  17. Potter, G. A., Barrie, S. E., Jarman, M. & Rowlands, M. G. Novel steroidal inhibitors of human cytochrome P45017 alpha (17 alpha-hydroxylase-C17, 20-lyase): potential agents for the treatment of prostatic cancer. J. Med. Chem. 38, 2463–2471 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Labrie, F. Blockade of testicular and adrenal androgens in prostate cancer treatment. Nat. Rev. Urol. 8, 73–85 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Auchus, R. J. Overview of dehydroepiandrosterone biosynthesis. Semin. Reprod. Med. 22, 281–288 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Simard, J. et al. Molecular biology of the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family. Endocr. Rev. 26, 525–582 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Lorence, M. C., Murry, B. A., Trant, J. M. & Mason, J. I. Human 3 beta-hydroxysteroid dehydrogenase/delta 5----4isomerase from placenta: expression in nonsteroidogenic cells of a protein that catalyzes the dehydrogenation/isomerization of C21 and C19 steroids. Endocrinology 126, 2493–2498 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Knudsen, K. E. & Penning, T. M. Partners in crime: deregulation of AR activity and androgen synthesis in prostate cancer. Trends Endocrinol. Metab. 21, 315–324 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tomkins, G. M. The enzymatic reduction of delta 4-3-ketosteroids. J. Biol. Chem. 225, 13–24 (1957).

    CAS  PubMed  Google Scholar 

  24. Russell, D. W. & Wilson, J. D. Steroid 5 alpha-reductase: two genes/two enzymes. Annu. Rev. Biochem. 63, 25–61 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Luu-The, V., Belanger, A. & Labrie, F. Androgen biosynthetic pathways in the human prostate. Best Pract. Res. Clin. Endocrinol. Metab. 22, 207–221 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Chang, K. H. et al. Dihydrotestosterone synthesis bypasses testosterone to drive castration-resistant prostate cancer. Proc. Natl Acad. Sci. USA 108, 13728–13733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Campbell, T., Tindall, D. J. & Figg, W. D. Dihydrotestosterone synthesis from adrenal precursors does not involve testosterone in castration-resistant prostate cancer. Cancer Biol. Ther. 13, 237–238 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fenner, A. Prostate cancer: DHT bypasses testosterone to drive progression to castration resistance. Nat. Rev. Urol. 8, 470 (2011).

    Article  PubMed  Google Scholar 

  29. Locke, J. A. et al. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res. 68, 6407–6415 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Efstathiou, E. et al. Effects of abiraterone acetate on androgen signaling in castrate-resistant prostate cancer in bone. J. Clin. Oncol. 30, 637–643 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Cai, C. et al. Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Res. 71, 6503–6513 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wilson, J. D. et al. 5alpha-androstane-3alpha, 17beta-diol is formed in tammar wallaby pouch young testes by a pathway involving 5alpha-pregnane-3alpha, 17alpha-diol-20-one as a key intermediate. Endocrinology 144, 575–580 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Miller, W. L. & Auchus, R. J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 32, 81–151 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Auchus, R. J. The backdoor pathway to dihydrotestosterone. Trends Endocrinol. Metab. 15, 432–438 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Sharifi, N., McPhaul, M. J. & Auchus, R. J. “Getting from here to there”—mechanisms and limitations to the activation of the androgen receptor in castration-resistant prostate cancer. J. Investig. Med. 58, 938–944 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mohler, J. L. et al. Activation of the androgen receptor by intratumoral bioconversion of androstanediol to dihydrotestosterone in prostate cancer. Cancer Res. 71, 1486–1496 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Biswas, M. G. & Russell, D. W. Expression cloning and characterization of oxidative 17beta- and 3alpha-hydroxysteroid dehydrogenases from rat and human prostate. J. Biol. Chem. 272, 15959–15966 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Bauman, D. R., Steckelbroeck, S., Williams, M. V., Peehl, D. M. & Penning, T. M. Identification of the major oxidative 3alpha-hydroxysteroid dehydrogenase in human prostate that converts 5alpha-androstane-3alpha, 17beta-diol to 5alpha-dihydrotestosterone: a potential therapeutic target for androgen-dependent disease. Mol. Endocrinol. 20, 444–458 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Belanger, A., Pelletier, G., Labrie, F., Barbier, O. & Chouinard, S. Inactivation of androgens by UDP-glucuronosyltransferase enzymes in humans. Trends Endocrinol. Metab. 14, 473–479 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Attard, G. et al. Clinical and biochemical consequences of CYP17A1 inhibition with abiraterone given with and without exogenous glucocorticoids in castrate men with advanced prostate cancer. J. Clin. Endocrinol. Metab. 97, 507–516 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Mostaghel, E. A. et al. Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin. Cancer Res. 17, 5913–5925 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Evaul, K., Li, R., Papari-Zareei, M., Auchus, R. J. & Sharifi, N. 3β-hydroxysteroid dehydrogenase is a possible pharmacological target in the treatment of castration-resistant prostate cancer. Endocrinology 151, 3514–3520 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Li, R. et al. Abiraterone inhibits 3β-hydroxysteroid dehydrogenase: a rationale for increasing drug exposure in castration-resistant prostate cancer. Clin. Cancer Res. 18, 3571–3579 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Richards, J. et al. Interactions of abiraterone, eplerenone, and prednisolone with wild-type and mutant androgen receptor: a rationale for increasing abiraterone exposure or combining with MDV3100. Cancer Res. 72, 2176–2182 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mahon, K. L., Henshall, S. M., Sutherland, R. L. & Horvath, L. G. Pathways of chemotherapy resistance in castration-resistant prostate cancer. Endocr. Relat. Cancer 18, R103–123 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed towards researching, discussing, writing, and editing the manuscript.

Corresponding author

Correspondence to Nima Sharifi.

Ethics declarations

Competing interests

N. Sharifi has been compensated as a consultant for Janssen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, KH., Sharifi, N. Prostate cancer—from steroid transformations to clinical translation. Nat Rev Urol 9, 721–724 (2012). https://doi.org/10.1038/nrurol.2012.175

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2012.175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing