Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The emerging role of diffusion-weighted MRI in prostate cancer management

Abstract

A significant amount of research has focused on the role of diffusion-weighted MRI (DW-MRI) in the management of patients with prostate cancer. Although uncertainties remain, a clearer picture of where this technique fits into clinical practice is now available. A combination of DW-MRI and T2-weighted MRI (T2W-MRI) demonstrates improved accuracy for lesion detection and localization compared with T2W-MRI alone, and has been suggested as a tool to guide tissue biopsy. DW-MRI could also have roles in active surveillance, evaluating treatment efficacy, and predicting disease recurrence. Furthermore, DW-MRI offers the exciting possibility of gathering information about tumor characteristics and aggressiveness in a noninvasive manner. Validation in large prospective multicenter trials is critical if this technique is to be integrated into current management algorithms for prostate cancer.

Key Points

  • Adding diffusion-weighted MRI (DW-MRI) to traditional T2-weighted imaging improves the accuracy of prostate cancer detection and could be a useful tool before rebiopsy to increase yield and accuracy

  • During prostate cancer staging, DW-MRI can enhance the detection of invasion into seminal vesicles and the bladder neck, as well as regional lymph node invasion and distant metastases to bone

  • DW-MRI shows promise as a noninvasive biomarker of tumor characteristics, such as Gleason grade, cellular differentiation, tumor cell density, and tumor aggressiveness

  • DW-MRI has potential roles in the management of patients under active surveillance, and in monitoring treatment efficacy and disease recurrence in the follow-up period after treatment

  • Advancements in the processing and analysis of data obtained from DW-MRI might lead to improved characterization of tumor lesions

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An example of an MRI image set and ADC map for a patient with prostate cancer.
Figure 2: Advanced prostate cancer with bone metastases and bladder invasion.

Similar content being viewed by others

References

  1. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    PubMed  Google Scholar 

  2. Hricak, H., Choyke, P., Eberhardt, S., Leibel, S. & Scardino, P. Imaging prostate cancer: a multidisciplinary perspective. Radiology 243, 28–53 (2007).

    Article  PubMed  Google Scholar 

  3. Patterson, D., Padhani, A. & Collins, D. Technology insight: water diffusion MRI—a potential new biomarker of response to cancer therapy. Nat. Clin. Pract. Oncol. 5, 220–233 (2008).

    Article  PubMed  Google Scholar 

  4. Ogura, A., Hayakawa, K., Miyati, T. & Maeda, F. Imaging parameter effects in apparent diffusion coefficient determination of magnetic resonance imaging. Eur. J. Radiol. 77, 185–189 (2011).

    Article  PubMed  Google Scholar 

  5. Gibbs, P., Pickles, M. & Turnbull, L. Repeatability of echo-planar-based diffusion measurements of the human prostate at 3 T. Magn. Reson. Imaging 25, 1423–1429 (2007).

    Article  PubMed  Google Scholar 

  6. Braithwaite, A., Dale, B., Boll, D. & Merkle, E. Short and midterm reproducibility of apparent diffusion coefficient measurements at 3.0-T diffusion-weighted imaging of the abdomen. Radiology 250, 459–465 (2009).

    Article  PubMed  Google Scholar 

  7. Rosenkrantz, A. B., Oei, M., Babb, J. S., Niver, B. E. & Taouli, B. Diffusion-weighted imaging of the abdomen at 3.0 Tesla: image quality and apparent diffusion coefficient reproducibility compared with 1.5 Tesla. J. Magn. Reson. Imaging 33, 128–135 (2011).

    Article  PubMed  Google Scholar 

  8. Padhani, A. et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11, 102–125 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Katahira, K. et al. Ultra-high-b-value diffusion-weighted MR imaging for the detection of prostate cancer: evaluation in 201 cases with histopathological correlation. Eur. Radiol. 21, 188–196 (2011).

    Article  PubMed  Google Scholar 

  10. Rosenkrantz, A. B. et al. Prostate cancer: comparison of tumor visibility on trace diffusion-weighted images and the apparent diffusion coefficient map. AJR Am. J. Roentgenol. 196, 123–129 (2011).

    Article  PubMed  Google Scholar 

  11. Dehmeshki, J. et al. Analysis of MTR histograms in multiple sclerosis using principal components and multiple discriminant analysis. Magn. Reson. Med. 46, 600–609 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Tozer, D. et al. Apparent diffusion coefficient histograms may predict low-grade glioma subtype. NMR Biomed. 20, 49–57 (2007).

    Article  PubMed  Google Scholar 

  13. Nowosielski, M. et al. ADC histograms predict response to anti-angiogenic therapy in patients with recurrent high-grade glioma. Neuroradiology 53, 291–302 (2011).

    Article  PubMed  Google Scholar 

  14. Kyriazi, S. et al. Metastatic ovarian and primary peritoneal cancer: assessing chemotherapy response with diffusion-weighted MR imaging and value of histogram analysis of apparent diffusion coefficients. Radiology 261, 182–192 (2011).

    Article  PubMed  Google Scholar 

  15. Canuto, H. C. et al. Characterization of image heterogeneity using 2D Minkowski functionals increases the sensitivity of detection of a targeted MRI contrast agent. Magn. Reson. Med. 61, 1218–1224 (2009).

    Article  PubMed  Google Scholar 

  16. Walker-Samuel, S., Orton, M., Boult, J. K. & Robinson, S. P. Improving apparent diffusion coefficient estimates and elucidating tumor heterogeneity using Bayesian adaptive smoothing. Magn. Reson. Med. 65, 438–447 (2011).

    Article  PubMed  Google Scholar 

  17. Koh, D. M., Collins, D. J. & Orton, M. R. Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am. J. Roentgenol. 196, 1351–1361 (2011).

    Article  PubMed  Google Scholar 

  18. Jensen, J. H., Helpern, J. A., Ramani, A., Lu, H. & Kaczynski, K. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn. Reson. Med. 53, 1432–1440 (2005).

    Article  PubMed  Google Scholar 

  19. Kattan, M. W. Judging new markers by their ability to improve predictive accuracy. J. Natl Cancer Inst. 95, 634–635 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Eggener, S. et al. Focal therapy for prostate cancer: possibilities and limitations. Eur. Urol. 58, 57–64 (2010).

    Article  PubMed  Google Scholar 

  21. Rosenkrantz, A. B., Scionti, S. M., Mendrinos, S. & Taneja, S. S. Role of MRI in minimally invasive focal ablative therapy for prostate cancer. AJR Am. J. Roentgenol. 197, 90–96 (2011).

    Article  Google Scholar 

  22. Haider, M. et al. Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am. J. Roentgenol. 189, 323–328 (2007).

    Article  PubMed  Google Scholar 

  23. Lim, H., Kim, J., Kim, K. & Cho, K. Prostate cancer: apparent diffusion coefficient map with T2-weighted images for detection—a multireader study. Radiology 250, 145–151 (2009).

    Article  PubMed  Google Scholar 

  24. Kim, C. K., Park, B. K., Lee, H. M. & Kwon, G. Y. Value of diffusion-weighted imaging for the prediction of prostate cancer location at 3T using a phased-array coil: preliminary results. Invest. Radiol. 42, 842–847 (2007).

    Article  PubMed  Google Scholar 

  25. Vargas, H. A. et al. Diffusion-weighted endorectal MR imaging at 3 T for prostate cancer: tumor detection and assessment of aggressiveness. Radiology 259, 775–784 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Morgan, V., Kyriazi, S., Ashley, S. & DeSouza, N. Evaluation of the potential of diffusion-weighted imaging in prostate cancer detection. Acta Radiol. 48, 695–703 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Yoshimitsu, K. et al. Usefulness of apparent diffusion coefficient map in diagnosing prostate carcinoma: correlation with stepwise histopathology. J. Magn. Reson. Imaging 27, 132–139 (2008).

    Article  PubMed  Google Scholar 

  28. Tanimoto, A., Nakashima, J., Kohno, H., Shinmoto, H. & Kuribayashi, S. Prostate cancer screening: The clinical value of diffusion-weighted imaging and dynamic MR imaging in combination with T2-weighted imaging. J. Magn. Reson. Imaging 25, 146–152 (2007).

    Article  PubMed  Google Scholar 

  29. Kitajima, K. et al. Prostate cancer detection with 3 T MRI: comparison of diffusion-weighted imaging and dynamic contrast-enhanced MRI in combination with T2-weighted imaging. J. Magn. Reson. Imaging 31, 625–631 (2010).

    Article  PubMed  Google Scholar 

  30. Delongchamps, N. B. et al. Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: combination of T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging. BJU Int. 107, 1411–1418 (2011).

    Article  PubMed  Google Scholar 

  31. Mazaheri, Y. et al. Prostate cancer: identification with combined diffusion-weighted MR imaging and 3D 1H MR spectroscopic imaging--correlation with pathologic findings. Radiology 246, 480–488 (2008).

    Article  PubMed  Google Scholar 

  32. Jeong, I. G. et al. Diffusion-weighted magnetic resonance imaging in patients with unilateral prostate cancer on extended prostate biopsy: predictive accuracy of laterality and implications for hemi-ablative therapy. J. Urol. 184, 1963–1969 (2010).

    Article  PubMed  Google Scholar 

  33. Oto, A. et al. Prostate cancer: differentiation of central gland cancer from benign prostatic hyperplasia by using diffusion-weighted and dynamic contrast-enhanced MR imaging. Radiology 257, 715–723 (2010).

    Article  PubMed  Google Scholar 

  34. Ahmed, H. U. et al. Is it time to consider a role for MRI before prostate biopsy? Nat. Rev. Clin. Oncol. 6, 197–206 (2009).

    Article  PubMed  Google Scholar 

  35. Portalez, D. et al. Prospective comparison of T2w-MRI and dynamic-contrast-enhanced MRI, 3D-MR spectroscopic imaging or diffusion-weighted MRI in repeat TRUS-guided biopsies. Eur. Radiol. 20, 2781–2790 (2010).

    Article  PubMed  Google Scholar 

  36. Vilanova, J. C. et al. Usefulness of prebiopsy multifunctional and morphologic MRI combined with free-to-total prostate-specific antigen ratio in the detection of prostate cancer. AJR Am. J. Roentgenol. 196, W715–W722 (2011).

    Article  PubMed  Google Scholar 

  37. Hambrock, T. et al. Magnetic resonance imaging guided prostate biopsy in men with repeat negative biopsies and increased prostate specific antigen. J. Urol. 183, 520–527 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Pinto, P. A. et al. Magnetic resonance imaging/ultrasound fusion guided prostate biopsy improves cancer detection following transrectal ultrasound biopsy and correlates with multiparametric magnetic resonance imaging. J. Urol. 186, 1281–1285 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hadaschik, B. A. et al. A novel stereotactic prostate biopsy system integrating pre-interventional magnetic resonance imaging and live ultrasound fusion. J. Urol. 186, 2214–2220 (2011).

    Article  PubMed  Google Scholar 

  40. Hambrock, T. et al. Prospective assessment of prostate cancer aggressiveness using 3-T diffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort. Eur. Urol. 61, 177–184 (2012).

    Article  PubMed  Google Scholar 

  41. Augustin, H., Fritz, G., Ehammer, T., Auprich, M. & Pummer, K. Accuracy of 3-Tesla magnetic resonance imaging for the staging of prostate cancer in comparison to the Partin tables. Acta Radiol. 50, 562–569 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Hricak, H. et al. The role of preoperative endorectal magnetic resonance imaging in the decision regarding whether to preserve or resect neurovascular bundles during radical retropubic prostatectomy. Cancer 100, 2655–2663 (2004).

    Article  PubMed  Google Scholar 

  43. Ren, J. et al. Seminal vesicle invasion in prostate cancer: prediction with combined T2-weighted and diffusion-weighted MR imaging. Eur. Radiol. 19, 2481–2486 (2009).

    Article  PubMed  Google Scholar 

  44. Kim, C., Choi, D., Park, B., Kwon, G. & Lim, H. Diffusion-weighted MR imaging for the evaluation of seminal vesicle invasion in prostate cancer: initial results. J. Magn. Reson. Imaging 28, 963–969 (2008).

    Article  PubMed  Google Scholar 

  45. Ren, J. et al. Combined T2-weighted and diffusion-weighted MRI for diagnosis of urinary bladder invasion in patients with prostate carcinoma. J. Magn. Reson. Imaging 30, 351–356 (2009).

    Article  PubMed  Google Scholar 

  46. Luboldt, W. et al. Prostate carcinoma: diffusion-weighted imaging as potential alternative to conventional MR and 11C-choline PET/CT for detection of bone metastases. Radiology 249, 1017–1025 (2008).

    Article  PubMed  Google Scholar 

  47. Eiber, M. et al. Whole-body MRI including diffusion-weighted imaging (DWI) for patients with recurring prostate cancer: technical feasibility and assessment of lesion conspicuity in DWI. J. Magn. Reson. Imaging 33, 1160–1170 (2011).

    Article  PubMed  Google Scholar 

  48. Eiber, M. et al. Preliminary results for characterization of pelvic lymph nodes in patients with prostate cancer by diffusion-weighted MR-imaging. Invest. Radiol. 45, 15–23 (2010).

    Article  PubMed  Google Scholar 

  49. Gutzeit, A. et al. Comparison of diffusion-weighted whole body MRI and skeletal scintigraphy for the detection of bone metastases in patients with prostate or breast carcinoma. Skeletal Radiol. 39, 333–343 (2010).

    Article  PubMed  Google Scholar 

  50. Itou, Y., Nakanishi, K., Narumi, Y., Nishizawa, Y. & Tsukuma, H. Clinical utility of apparent diffusion coefficient (ADC) values in patients with prostate cancer: can ADC values contribute to assess the aggressiveness of prostate cancer? J. Magn. Reson. Imaging 33, 167–172 (2011).

    Article  PubMed  Google Scholar 

  51. Verma, S. et al. Assessment of aggressiveness of prostate cancer: correlation of apparent diffusion coefficient with histologic grade after radical prostatectomy. AJR Am. J. Roentgenol. 196, 374–381 (2011).

    Article  PubMed  Google Scholar 

  52. Woodfield, C. et al. Diffusion-weighted MRI of peripheral zone prostate cancer: comparison of tumor apparent diffusion coefficient with Gleason score and percentage of tumor on core biopsy. AJR Am. J. Roentgenol. 194, W316–W322 (2010).

    Article  PubMed  Google Scholar 

  53. Turkbey, B. et al. Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images? Radiology 258, 488–495 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Langer, D. et al. Intermixed normal tissue within prostate cancer: effect on MR imaging measurements of apparent diffusion coefficient and T2--sparse versus dense cancers. Radiology 249, 900–908 (2008).

    Article  PubMed  Google Scholar 

  55. Langer, D. L. et al. Prostate tissue composition and MR measurements: investigating the relationships between ADC, T2, K(trans), v(e), and corresponding histologic features. Radiology 255, 485–494 (2010).

    Article  PubMed  Google Scholar 

  56. D'Amico, A. V. et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280, 969–974 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. deSouza, N. et al. Diffusion-weighted magnetic resonance imaging: a potential non-invasive marker of tumor aggressiveness in localized prostate cancer. Clin. Radiol. 63, 774–782 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Hambrock, T. et al. Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology 259, 453–461 (2011).

    PubMed  Google Scholar 

  59. van As, N. J. et al. A study of diffusion-weighted magnetic resonance imaging in men with untreated localised prostate cancer on active surveillance. Eur. Urol. 56, 981–988 (2009).

    Article  PubMed  Google Scholar 

  60. Morgan, V. A. et al. Diffusion-weighted magnetic resonance imaging for monitoring prostate cancer progression in patients managed by active surveillance. Br. J. Radiol. 84, 31–37 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Giles, S. L. et al. Apparent diffusion coefficient as a predictive biomarker of prostate cancer progression: value of fast and slow diffusion components. AJR Am. J. Roentgenol. 196, 586–591 (2011).

    Article  PubMed  Google Scholar 

  62. Padhani, A. R. & Koh, D. M. Diffusion MR imaging for monitoring of treatment response. Magn. Res. Imaging Clin. N. Am. 19, 181–209 (2011).

    Article  Google Scholar 

  63. Song, I., Kim, C., Park, B. & Park, W. Assessment of response to radiotherapy for prostate cancer: value of diffusion-weighted MRI at 3 T. AJR Am. J. Roentgenol. 194, W477–W482 (2010).

    Article  PubMed  Google Scholar 

  64. Wang, H. & Fei, B. Diffusion-weighted MRI for monitoring tumor response to photodynamic therapy. J. Magn. Reson. Imaging 32, 409–417 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Reischauer, C. et al. Bone metastases from prostate cancer: assessing treatment response by using diffusion-weighted imaging and functional diffusion maps--initial observations. Radiology 257, 523–531 (2010).

    Article  PubMed  Google Scholar 

  66. Kim, C., Park, B. & Lee, H. Prediction of locally recurrent prostate cancer after radiation therapy: incremental value of 3T diffusion-weighted MRI. J. Magn. Reson. Imaging 29, 391–397 (2009).

    Article  PubMed  Google Scholar 

  67. Akin, O. et al. Incremental value of diffusion weighted and dynamic contrast enhanced MRI in the detection of locally recurrent prostate cancer after radiation treatment: preliminary results. Eur. Radiol. 21, 1970–1978 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tamada, T. et al. Locally recurrent prostate cancer after high-dose-rate brachytherapy: the value of diffusion-weighted imaging, dynamic contrast-enhanced MRI, and T2-weighted imaging in localizing tumors. AJR Am. J. Roentgenol. 197, 408–414 (2011).

    Article  PubMed  Google Scholar 

  69. Nishida, K. et al. Incremental value of T2-weighted and diffusion-weighted MRI for prediction of biochemical recurrence after radical prostatectomy in clinically localized prostate cancer. Acta Radiol. 52, 120–126 (2011).

    Article  PubMed  Google Scholar 

  70. Park, S. Y., Kim, C. K., Park, B. K., Lee, H. M. & Lee, K. S. Prediction of biochemical recurrence following radical prostatectomy in men with prostate cancer by diffusion-weighted magnetic resonance imaging: initial results. Eur. Radiol. 21, 1111–1118 (2011).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the NIHR: Cambridge Biomedical Research Centre, the University of Cambridge, Hutchison Whampoa Limited, the Cambridge Experimental Cancer Medicine Centre, ACT, Cancer Research UK, and the Royal College of Surgeons of England for funding support.

Author information

Authors and Affiliations

Authors

Contributions

E. M. Lawrence and E. Sala researched the data and contributed towards writing the article, along with V. Gnanaprogasam. All authors contributed substantially to discussions of article content, as well as reviewing the editing the article prior to submission.

Corresponding author

Correspondence to Edward M. Lawrence.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawrence, E., Gnanapragasam, V., Priest, A. et al. The emerging role of diffusion-weighted MRI in prostate cancer management. Nat Rev Urol 9, 94–101 (2012). https://doi.org/10.1038/nrurol.2011.222

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2011.222

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research