Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lymphotropic nanoparticle enhanced MRI for the staging of genitourinary tumors

Abstract

Nanotechnology is poised to have a substantial influence on biomedicine. A unique example of a nanotechnology that has progressed from proof-of-concept to human clinical trials is the use of ultrasmall superparamagnetic iron oxide nanoparticles as a cell-specific contrast agent for MRI. When injected systemically, these particles are taken up by macrophages of the reticuloendothelial system and accumulate in lymph nodes. This passive, cell-specific targeting of the iron oxide nanoparticles to lymph nodes, and the differential cellular content of benign versus malignantly infiltrated nodes make this method suitable for cancer staging. By using lymphotropic nanoparticle enhanced MRI, differences in benign versus malignant infiltration of lymph nodes can be visualized, which adds accuracy to standard MRI beyond criteria based solely upon the size and shape of lymph nodes. This technology has been used to assess lymph node metastases in a large number of human cancer types. In this Review, we focus on lymphotropic nanoparticle enhanced MRI and its application for the staging of genitourinary malignancies.

Key Points

  • Current imaging modalities, including CT, MRI, and PET have limited sensitivity and specificity for imaging lymph node metastases

  • Lymphotropic nanoparticle enhanced MRI (LNMRI) adds cell-specific information to conventional MRI

  • LNMRI might provide improved clinical assessment of lymph nodes in patients with genitourinary malignancies

  • Continued evaluation of LNMRI is necessary to broadly validate this technology in large multicenter trials

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristics of nanoparticles used for lymphotropic nanoparticle-enhanced MRI.
Figure 2: Mechanism of action of lymphotropic superparamagnetic nanoparticles.
Figure 3: Nodal abnormalities detected by MRI in three patients with prostate cancer.
Figure 4: Patterns of enhancement for determining malignant infiltration of lymph nodes using lymphotropic nanoparticle enhanced MRI.

Similar content being viewed by others

References

  1. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, L. et al. Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther. 83, 761–769 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Feldman, A. S., McDougal, W. S. & Harisinghani, M. G. The potential of nanoparticle-enhanced imaging. Urol. Oncol. 26, 65–73 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Gervasi, L. A. et al. Prognostic significance of lymph nodal metastases in prostate cancer. J. Urol. 142, 332–336 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Ries, L. A. G. Cancer survival among adults: US SEER program, 1988–2001, patient and tumor characteristics (US Department of Health and Human Services, National Institutes of Health, National Cancer Institute, Bethesda, MD, 2007).

  6. Bader, P., Burkhard, F. C., Markwalder, R. & Studer, U. E. Is a limited lymph node dissection an adequate staging procedure for prostate cancer? J. Urol. 168, 514–518; discussion 518 (2002).

    Article  PubMed  Google Scholar 

  7. Sanderson, K. M., Skinner, D. & Stein, J. P. The prognostic and staging value of lymph node dissection in the treatment of invasive bladder cancer. Nat. Clin. Pract. Urol. 3, 485–494 (2006).

    Article  PubMed  Google Scholar 

  8. Guermazi, A., Brice, P., Hennequin, C. & Sarfati, E. Lymphography: an old technique retains its usefulness. Radiographics 23, 1541–1558; discussion 1559–1560 (2003).

    Article  PubMed  Google Scholar 

  9. Kramolowsky, E. V., Narayana, A. S., Platz, C. E. & Loening, S. A. The frozen section in lymphadenectomy for carcinoma of the prostate. J. Urol. 131, 899–900 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. Catalona, W. J. & Stein, A. J. Accuracy of frozen section detection of lymph node metastases in prostatic carcinoma. J. Urol. 127, 460–461 (1982).

    Article  CAS  PubMed  Google Scholar 

  11. Campbell, S. C., Klein, E. A., Levin, H. S. & Piedmonte, M. R. Open pelvic lymph node dissection for prostate cancer: a reassessment. Urology 46, 352–355 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Tiguert, R. et al. Lymph node size does not correlate with the presence of prostate cancer metastasis. Urology 53, 367–371 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Yang, W. T., Lam, W. W., Yu, M. Y., Cheung, T. H. & Metreweli, C. Comparison of dynamic helical CT and dynamic MR imaging in the evaluation of pelvic lymph nodes in cervical carcinoma. AJR Am. J. Roentgenol. 175, 759–766 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Jager, G. J., Barentsz, J. O., Oosterhof, G. O., Witjes, J. A. & Ruijs, S. J. Pelvic adenopathy in prostatic and urinary bladder carcinoma: MR imaging with a three-dimensional TI-weighted magnetization-prepared-rapid gradient-echo sequence. AJR Am. J. Roentgenol. 167, 1503–1507 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Grubnic, S., Vinnicombe, S. J., Norman, A. R. & Husband, J. E. MR evaluation of normal retroperitoneal and pelvic lymph nodes. Clin. Radiol. 57, 193–200; discussion 201–204 (2002).

    Article  PubMed  Google Scholar 

  16. Saksena, M. A., Saokar, A. & Harisinghani, M. G. Lymphotropic nanoparticle enhanced MR imaging (LNMRI) technique for lymph node imaging. Eur. J. Radiol. 58, 367–374 (2006).

    Article  PubMed  Google Scholar 

  17. Subak, L. L., Hricak, H., Powell, C. B., Azizi, L. & Stern, J. L. Cervical carcinoma: computed tomography and magnetic resonance imaging for preoperative staging. Obstet. Gynecol. 86, 43–50 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Borley, N. et al. Laparoscopic pelvic lymph node dissection allows significantly more accurate staging in “high-risk” prostate cancer compared to MRI or CT. Scand. J. Urol. Nephrol. 37, 382–386 (2003).

    Article  PubMed  Google Scholar 

  19. Hovels, A. M. et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin. Radiol. 63, 387–395 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. De Santis, M. et al. 2-18fluoro-deoxy-D-glucose positron emission tomography is a reliable predictor for viable tumor in postchemotherapy seminoma: an update of the prospective multicentric SEMPET trial. J. Clin. Oncol. 22, 1034–1039 (2004).

    Article  PubMed  Google Scholar 

  21. De Santis, M. & Pont, J. The role of positron emission tomography in germ cell cancer. World J. Urol. 22, 41–46 (2004).

    Article  PubMed  Google Scholar 

  22. Wilson, C. B. et al. Imaging metastatic testicular germ cell tumours with 18FDG positron emission tomography: prospects for detection and management. Eur. J. Nucl. Med. 22, 508–513 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Albers, P. et al. Positron emission tomography in the clinical staging of patients with stage I and II testicular germ cell tumors. Urology 53, 808–811 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Salminen, E., Hogg, A., Binns, D., Frydenberg, M. & Hicks, R. Investigations with FDG-PET scanning in prostate cancer show limited value for clinical practice. Acta Oncol. 41, 425–429 (2002).

    Article  PubMed  Google Scholar 

  25. Sung, J., Espiritu, J. I., Segall, G. M. & Terris, M. K. Fluorodeoxyglucose positron emission tomography studies in the diagnosis and staging of clinically advanced prostate cancer. BJU Int. 92, 24–27 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Powles, T., Murray, I., Brock, C., Oliver, T. & Avril, N. Molecular positron emission tomography and PET/CT imaging in urological malignancies. Eur. Urol. 51, 1511–1520; discussion 1520–1521 (2007).

    Article  PubMed  Google Scholar 

  27. Schoder, H. & Larson, S. M. Positron emission tomography for prostate, bladder, and renal cancer. Semin. Nucl. Med. 34, 274–292 (2004).

    Article  PubMed  Google Scholar 

  28. Kurhanewicz, J. et al. Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24–0.7 cm3) spatial resolution. Radiology 198, 795–805 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Kotzerke, J. et al. Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur. J. Nucl. Med. 27, 1415–1419 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Bockisch, A., Freudenberg, L. S., Schmidt, D. & Kuwert, T. Hybrid imaging by SPECT/CT and PET/CT: proven outcomes in cancer imaging. Semin. Nucl. Med. 39, 276–289 (2009).

    Article  PubMed  Google Scholar 

  31. Esen, G. Ultrasound of superficial lymph nodes. Eur. J. Radiol. 58, 345–359 (2006).

    Article  PubMed  Google Scholar 

  32. Crawshaw, J. W. et al. Sentinel lymph node biopsy using dynamic lymphoscintigraphy combined with ultrasound-guided fine needle aspiration in penile carcinoma. Br. J. Radiol. 82, 41–48 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Jung, C. W. & Jacobs, P. Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn. Reson. Imaging 13, 661–674 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, Y. X., Hussain, S. M. & Krestin, G. P. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur. Radiol. 11, 2319–2331 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Harisinghani, M. G. et al. MR lymphangiography: imaging strategies to optimize the imaging of lymph nodes with ferumoxtran-10. Radiographics 24, 867–878 (2004).

    Article  PubMed  Google Scholar 

  36. Bernd, H., De Kerviler, E., Gaillard, S. & Bonnemain, B. Safety and tolerability of ultrasmall superparamagnetic iron oxide contrast agent: comprehensive analysis of a clinical development program. Invest. Radiol. 44, 336–342 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Anzai, Y. et al. Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging: phase III safety and efficacy study. Radiology 228, 777–788 (2003).

    Article  PubMed  Google Scholar 

  38. Namasivayam, S., Kalra, M. K., Torres, W. E. & Small, W. C. Adverse reactions to intravenous iodinated contrast media: a primer for radiologists. Emerg. Radiol. 12, 210–215 (2006).

    Article  PubMed  Google Scholar 

  39. Dillman, J. R., Ellis, J. H., Cohan, R. H., Strouse, P. J. & Jan, S. C. Frequency and severity of acute allergic-like reactions to gadolinium-containing i.v. contrast media in children and adults. AJR Am. J. Roentgenol. 189, 1533–1538 (2007).

    Article  PubMed  Google Scholar 

  40. Murphy, K. P., Szopinski, K. T., Cohan, R. H., Mermillod, B. & Ellis, J. H. Occurrence of adverse reactions to gadolinium-based contrast material and management of patients at increased risk: a survey of the American Society of Neuroradiology Fellowship Directors. Acad. Radiol. 6, 656–664 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Morris, M. F. et al. Features of nephrogenic systemic fibrosis on radiology examinations. AJR Am. J. Roentgenol. 193, 61–69 (2009).

    Article  PubMed  Google Scholar 

  42. Thomsen, H. S. How to avoid nephrogenic systemic fibrosis: current guidelines in Europe and the United States. Radiol. Clin. North Am. 47, 871–875 (2009).

    Article  PubMed  Google Scholar 

  43. Guimaraes, A. R. et al. Pilot study evaluating use of lymphotrophic nanoparticle-enhanced magnetic resonance imaging for assessing lymph nodes in renal cell cancer. Urology 71, 708–712 (2008).

    Article  PubMed  Google Scholar 

  44. Guimaraes, R., Clement, O., Bittoun, J., Carnot, F. & Frija, G. MR lymphography with superparamagnetic iron nanoparticles in rats: pathologic basis for contrast enhancement. AJR Am. J. Roentgenol. 162, 201–207 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Weissleder, R. et al. Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology 175, 494–498 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Weissleder, R. et al. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175, 489–493 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Clement, O., Guimaraes, R., de Kerviler, E. & Frija, G. Magnetic resonance lymphography. Enhancement patterns using superparamagnetic nanoparticles. Invest. Radiol. 29 (Suppl. 2), S226–S228 (1994).

    Article  PubMed  Google Scholar 

  48. Harisinghani, M. G. & Weissleder, R. Sensitive, noninvasive detection of lymph node metastases. PLoS Med. 1, e66 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Harisinghani, M. G. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348, 2491–2499 (2003).

    Article  PubMed  Google Scholar 

  50. Pannu, H. K., Wang, K. P., Borman, T. L. & Bluemke, D. A. MR imaging of mediastinal lymph nodes: evaluation using a superparamagnetic contrast agent. J. Magn. Reson. Imaging 12, 899–904 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Bellin, M. F., Lebleu, L. & Meric, J. B. Evaluation of retroperitoneal and pelvic lymph node metastases with MRI and MR lymphangiography. Abdom. Imaging 28, 155–163 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Harisinghani, M. G. et al. MR lymphangiography for detection of minimal nodal disease in patients with prostate cancer. Acad. Radiol. 9 (Suppl. 2), S312–S313 (2002).

    Article  PubMed  Google Scholar 

  53. Cheng, L. et al. Risk of prostate carcinoma death in patients with lymph node metastasis. Cancer 91, 66–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Smith, M. R. et al. Pamidronate to prevent bone loss during androgen-deprivation therapy for prostate cancer. N. Engl. J. Med. 345, 948–955 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Messing, E. M. et al. Immediate hormonal therapy compared with observation after radical prostatectomy and pelvic lymphadenectomy in men with node-positive prostate cancer. N. Engl. J. Med. 341, 1781–1788 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Bolla, M. et al. Improved survival in patients with locally advanced prostate cancer treated with radiotherapy and goserelin. N. Engl. J. Med. 337, 295–300 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Partin, A. W. et al. The use of prostate specific antigen, clinical stage and Gleason score to predict pathological stage in men with localized prostate cancer. J. Urol. 150, 110–114 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. Kattan, M. W. Re: Updated nomogram to predict pathologic stage of prostate cancer given prostate-specific antigen level, clinical stage, and biopsy gleason score (Partin Tables) based on cases from 2000 to 2005. Eur. Urol. 52, 1528 (2007).

    Article  PubMed  Google Scholar 

  59. Narayan, P. et al. Utility of preoperative serum prostate-specific antigen concentration and biopsy Gleason score in predicting risk of pelvic lymph node metastases in prostate cancer. Urology 44, 519–524 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Bishoff, J. T. et al. Pelvic lymphadenectomy can be omitted in selected patients with carcinoma of the prostate: development of a system of patient selection. Urology 45, 270–274 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Heesakkers, R. A. et al. MRI with a lymph-node-specific contrast agent as an alternative to CT scan and lymph-node dissection in patients with prostate cancer: a prospective multicohort study. Lancet Oncol. 9, 850–856 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Heesakkers, R. A. et al. Prostate cancer: detection of lymph node metastases outside the routine surgical area with ferumoxtran-10-enhanced MR imaging. Radiology 251, 408–414 (2009).

    Article  PubMed  Google Scholar 

  63. Ross, R. W. et al. Lymphotropic nanoparticle-enhanced magnetic resonance imaging (LNMRI) identifies occult lymph node metastases in prostate cancer patients prior to salvage radiation therapy. Clin. Imaging 33, 301–305 (2009).

    Article  PubMed  Google Scholar 

  64. Stein, J. P. et al. Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J. Clin. Oncol. 19, 666–675 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Bader, P., Burkhard, F. C., Markwalder, R. & Studer, U. E. Disease progression and survival of patients with positive lymph nodes after radical prostatectomy. Is there a chance of cure? J. Urol. 169, 849–854 (2003).

    Article  PubMed  Google Scholar 

  66. Fleischmann, A., Thalmann, G. N., Markwalder, R. & Studer, U. E. Extracapsular extension of pelvic lymph node metastases from urothelial carcinoma of the bladder is an independent prognostic factor. J. Clin. Oncol. 23, 2358–2365 (2005).

    Article  PubMed  Google Scholar 

  67. Schumacher, M. C., Burkhard, F. C., Thalmann, G. N., Fleischmann, A. & Studer, U. E. Good outcome for patients with few lymph node metastases after radical retropubic prostatectomy. Eur. Urol. 54, 344–352 (2008).

    Article  PubMed  Google Scholar 

  68. Mills, R. D., Fleischmann, A. & Studer, U. E. Radical cystectomy with an extended pelvic lymphadenectomy: rationale and results. Surg. Oncol. Clin. N. Am. 16, 233–245 (2007).

    Article  PubMed  Google Scholar 

  69. Deserno, W. M. et al. Urinary bladder cancer: preoperative nodal staging with ferumoxtran-10-enhanced MR imaging. Radiology 233, 449–456 (2004).

    Article  PubMed  Google Scholar 

  70. Thoeny, H. C. et al. Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients. Eur. Urol. 55, 761–769 (2009).

    Article  PubMed  Google Scholar 

  71. McDougal, W. S. Carcinoma of the penis: improved survival by early regional lymphadenectomy based on the histological grade and depth of invasion of the primary lesion. J. Urol. 154, 1364–1366 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Ornellas, A. A. et al. Surgical treatment of invasive squamous cell carcinoma of the penis: retrospective analysis of 350 cases. J. Urol. 151, 1244–1249 (1994).

    Article  CAS  PubMed  Google Scholar 

  73. Tabatabaei, S., Harisinghani, M. & McDougal, W. S. Regional lymph node staging using lymphotropic nanoparticle enhanced magnetic resonance imaging with ferumoxtran-10 in patients with penile cancer. J. Urol. 174, 923–927; discussion 927 (2005).

    Article  PubMed  Google Scholar 

  74. Jemal, A. et al. Cancer statistics, 2005. CA Cancer J. Clin. 55, 10–30 (2005).

    Article  PubMed  Google Scholar 

  75. Jemal, A. et al. Cancer statistics, 2004. CA Cancer J. Clin. 54, 8–29 (2004).

    Article  PubMed  Google Scholar 

  76. Richie, J. P., Garnick, M. B. & Finberg, H. Computerized tomography: how accurate for abdominal staging of testis tumors? J. Urol. 127, 715–717 (1982).

    Article  CAS  PubMed  Google Scholar 

  77. Harisinghani, M. G. et al. A pilot study of lymphotrophic nanoparticle-enhanced magnetic resonance imaging technique in early stage testicular cancer: a new method for noninvasive lymph node evaluation. Urology 66, 1066–1071 (2005).

    Article  PubMed  Google Scholar 

  78. Pantuck, A. J., Zisman, A. & Belldegrun, A. S. The changing natural history of renal cell carcinoma. J. Urol. 166, 1611–1623 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Pantuck, A. J. et al. Renal cell carcinoma with retroperitoneal lymph nodes. Impact on survival and benefits of immunotherapy. Cancer 97, 2995–3002 (2003).

    Article  PubMed  Google Scholar 

  80. Robson, C. J., Churchill, B. M. & Anderson, W. The results of radical nephrectomy for renal cell carcinoma. J. Urol. 101, 297–301 (1969).

    Article  CAS  PubMed  Google Scholar 

  81. DeKernion, J. B. Lymphadenectomy for renal cell carcinoma. Therapeutic implications. Urol. Clin. North Am. 7, 697–703 (1980).

    CAS  PubMed  Google Scholar 

  82. Freedland, S. J. & Dekernion, J. B. Role of lymphadenectomy for patients undergoing radical nephrectomy for renal cell carcinoma. Rev. Urol. 5, 191–195 (2003).

    PubMed  PubMed Central  Google Scholar 

  83. Giberti, C., Oneto, F., Martorana, G., Rovida, S. & Carmignani, G. Radical nephrectomy for renal cell carcinoma: long-term results and prognostic factors on a series of 328 cases. Eur. Urol. 31, 40–48 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Giuliani, L., Martorana, G., Giberti, C., Pescatore, D. & Magnani, G. Results of radical nephrectomy with extensive lymphadenectomy for renal cell carcinoma. J. Urol. 130, 664–668 (1983).

    Article  CAS  PubMed  Google Scholar 

  85. Ferrigni, R. G. & Novicki, D. E. Chylous ascites complicating genitourinary oncological surgery. J. Urol. 134, 774–776 (1985).

    Article  CAS  PubMed  Google Scholar 

  86. Herrlinger, A., Schrott, K. M., Schott, G. & Sigel, A. What are the benefits of extended dissection of the regional renal lymph nodes in the therapy of renal cell carcinoma. J. Urol. 146, 1224–1227 (1991).

    Article  CAS  PubMed  Google Scholar 

  87. Pantuck, A. J. et al. Renal cell carcinoma with retroperitoneal lymph nodes: role of lymph node dissection. J. Urol. 169, 2076–2083 (2003).

    Article  PubMed  Google Scholar 

  88. Schafhauser, W., Ebert, A., Brod, J., Petsch, S. & Schrott, K. M. Lymph node involvement in renal cell carcinoma and survival chance by systematic lymphadenectomy. Anticancer Res. 19, 1573–1578 (1999).

    CAS  PubMed  Google Scholar 

  89. Harisinghani, M. G. et al. Ferumoxtran-10-enhanced MR lymphangiography: does contrast-enhanced imaging alone suffice for accurate lymph node characterization? AJR Am. J. Roentgenol. 186, 144–148 (2006).

    Article  PubMed  Google Scholar 

  90. Will, O. et al. Diagnostic precision of nanoparticle-enhanced MRI for lymph-node metastases: a meta-analysis. Lancet Oncol. 7, 52–60 (2006).

    Article  PubMed  Google Scholar 

  91. Pandharipande, P. V. et al. Lymphotropic nanoparticle-enhanced MRI for independent prediction of lymph node malignancy: a logistic regression model. AJR Am. J. Roentgenol. 193, W230–W237 (2009).

    Article  PubMed  Google Scholar 

  92. Harisinghani, M., Ross, R. W., Guimaraes, A. R. & Weissleder, R. Utility of a new bolus-injectable nanoparticle for clinical cancer staging. Neoplasia 9, 1160–1165 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Shad Thaxton.

Ethics declarations

Competing interests

C. S. Thaxton declares that he is a co-founder of AuraSense, a start-up biotechnology company focusing on the commercialization of therapeutic and theranostic nanoparticles, and a shareholder in Nanosphere, a nanotechnology biodiagnostic company. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mouli, S., Zhao, L., Omary, R. et al. Lymphotropic nanoparticle enhanced MRI for the staging of genitourinary tumors. Nat Rev Urol 7, 84–93 (2010). https://doi.org/10.1038/nrurol.2009.254

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2009.254

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer