Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human models of migraine — short-term pain for long-term gain

Key Points

  • A key feature of migraine is that various factors can trigger an attack, thereby providing a unique opportunity to investigate disease mechanisms by experimentally inducing migraine attacks

  • Experimental studies in humans have provided evidence that a number of signalling compounds, including nitric oxide and the neuropeptides CGRP and PACAP, are involved in migraine pathophysiology

  • Migraine can be elicited by activation of cGMP and cAMP signalling pathways

  • Provocation studies have predicted the efficacy of CGRP-based small molecules and antibody-based antimigraine treatment

  • Migraine provocation by PACAP suggests that the PACAP receptor is a novel target for migraine treatment

  • Experimental studies in humans, combined with advanced neuroimaging, will help to improve our understanding of basic migraine neurobiology and guide the search for new mechanism-based antimigraine drugs

Abstract

Migraine is a complex disorder characterized by recurrent episodes of headache, and is one of the most prevalent and disabling neurological disorders. A key feature of migraine is that various factors can trigger an attack, and this phenomenon provides a unique opportunity to investigate disease mechanisms by experimentally inducing migraine attacks. In this Review, we summarize the existing experimental models of migraine in humans, including those that exploit nitric oxide, histamine, neuropeptide and prostaglandin signalling. We describe the development and use of these models in the discovery of molecular pathways that are responsible for initiation of migraine attacks. Combining experimental human models with advanced imaging techniques might help to identify biomarkers of migraine, and in the ongoing search for new and better migraine treatments, human models will have a key role in the discovery of future targets for more-specific and more-effective mechanism-based antimigraine drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The set-up of an experimental human migraine study.
Figure 2: Immediate and delayed attacks after migraine induction.
Figure 3: The trigeminovascular system.

Similar content being viewed by others

References

  1. Rasmussen, B. K., Jensen, R., Schroll, M. & Olesen, J. Epidemiology of headache in a general population — a prevalence study. J. Clin. Epidemiol. 44, 1147–1157 (1991).

    CAS  PubMed  Google Scholar 

  2. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1545–1602 (2016). A comprehensive global survey that highlights the immense impact of migraine.

  3. Olesen, J., Gustavsson, A., Svensson, M., Wittchen, H. U. & Jonsson, B. The economic cost of brain disorders in Europe. Eur. J. Neurol. 19, 155–162 (2012).

    CAS  PubMed  Google Scholar 

  4. Murray, C. J. et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2197–2223 (2012).

    PubMed  Google Scholar 

  5. Schytz, H. W., Hargreaves, R. & Ashina, M. Challenges in developing drugs for primary headaches. Prog. Neurobiol. 152, 70–88 (2017).

    CAS  PubMed  Google Scholar 

  6. Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia 33, 629–808 (2013). The newest headache classification — a sine qua non.

  7. Maniyar, F. H., Sprenger, T., Monteith, T., Schankin, C. & Goadsby, P. J. Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain 137, 232–241 (2014). This study used migraine provocation to show hypothaamic activation very early in the migraine attack.

    PubMed  Google Scholar 

  8. Olesen, J., Burstein, R., Ashina, M. & Tfelt-Hansen, P. Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol. 8, 679–690 (2009).

    PubMed  Google Scholar 

  9. Ashina, M., Hansen, J. M. & Olesen, J. Pearls and pitfalls in human pharmacological models of migraine: 30 years' experience. Cephalalgia 33, 540–553 (2013).

    PubMed  Google Scholar 

  10. Pickering, G. W. & Hess, W. Headache produced by histamine and its mechanism. Br. Med. J. 2, 1097–1098 (1932).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pietrobon, D. & Moskowitz, M. A. Pathophysiology of migraine. Annu. Rev. Physiol. 75, 365–391 (2013).

    CAS  PubMed  Google Scholar 

  12. Mayberg, M., Langer, R. S., Zervas, N. T. & Moskowitz, M. A. Perivascular meningeal projections from cat trigeminal ganglia: possible pathway for vascular headaches in man. Science 213, 228–230 (1981). This important contribution draws up the neuroanatomical background for the trigeminovascular system.

    CAS  PubMed  Google Scholar 

  13. Hansen, E. K. & Olesen, J. Towards a pragmatic human migraine model for drug testing: 2. Isosorbide-5-mononitrate in healthy individuals. Cephalalgia 37, 11–19 (2017).

    PubMed  Google Scholar 

  14. Lindholt, M. et al. Lack of effect of norepinephrine on cranial haemodynamics and headache in healthy volunteers. Cephalalgia 29, 384–387 (2009).

    CAS  PubMed  Google Scholar 

  15. Rahmann, A. et al. Vasoactive intestinal peptide causes marked cephalic vasodilation, but does not induce migraine. Cephalalgia 28, 226–236 (2008).

    CAS  PubMed  Google Scholar 

  16. Petersen, K. A., Birk, S., Kitamura, K. & Olesen, J. Effect of adrenomedullin on the cerebral circulation: relevance to primary headache disorders. Cephalalgia 29, 23–30 (2009).

    CAS  PubMed  Google Scholar 

  17. Russell, M. B. et al. Presentation of a new instrument: the diagnostic headache diary. Cephalalgia 12, 369–374 (1992).

    CAS  PubMed  Google Scholar 

  18. Schytz, H. W. Investigation of carbachol and PACAP38 in a human model of migraine. Dan. Med. Bull. 57, B4223 (2010).

    PubMed  Google Scholar 

  19. Ignarro, L. J., Harbison, R. G., Wood, K. S. & Kadowitz, P. J. Activation of purified soluble guanylate cyclase by endothelium-derived relaxing factor from intrapulmonary artery and vein: stimulation by acetylcholine, bradykinin and arachidonic acid. J. Pharmacol. Exp. Ther. 237, 893–900 (1986).

    CAS  PubMed  Google Scholar 

  20. Furchgott, R. F., Cherry, P. D., Zawadzki, J. V. & Jothianandan, D. Endothelial cells as mediators of vasodilation of arteries. J. Cardiovasc. Pharmacol. 6 (Suppl. 2), S336–S343 (1984).

    PubMed  Google Scholar 

  21. Murrell, W. Nitro-glycerine as a remedy for angina pectoris. Lancet 113, 80–81 (1879).

    Google Scholar 

  22. McGuinness, B. W. & Harris, E. L. “Monday head”: an interesting occupational disorder. Br. Med. J. 2, 745–747 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hering, C. Glonoine, a new medicine for headache etc. Am. J. Homeopathy 4, 3 (1849).

    Google Scholar 

  24. Iversen, H. K. & Olesen, J. Nitroglycerin-induced headache is not dependent on histamine release: support for a direct nociceptive action of nitric oxide. Cephalalgia 14, 437–442 (1994).

    CAS  PubMed  Google Scholar 

  25. Garthwaite, J., Charles, S. L. & Chess-Williams, R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336, 385–388 (1988).

    CAS  PubMed  Google Scholar 

  26. Sicuteri, F., Del Bene, E., Poggioni, M. & Bonazzi, A. Unmasking latent dysnociception in healthy subjects. Headache 27, 180–185 (1987).

    CAS  PubMed  Google Scholar 

  27. Iversen, H. K., Olesen, J. & Tfelt-Hansen, P. Intravenous nitroglycerin as an experimental model of vascular headache. Basic characteristics. Pain 38, 17–24 (1989).

    CAS  PubMed  Google Scholar 

  28. Olesen, J., Iversen, H. K. & Thomsen, L. L. Nitric oxide supersensitivity: a possible molecular mechanism of migraine pain. Neuroreport 4, 1027–1030 (1993).

    CAS  PubMed  Google Scholar 

  29. Thomsen, L. L., Kruuse, C., Iversen, H. K. & Olesen, J. A nitric oxide donor (nitroglycerin) triggers genuine migraine attacks. Eur. J. Neurol. 1, 73–80 (1994).

    CAS  PubMed  Google Scholar 

  30. Sances, G. et al. Reliability of the nitroglycerin provocative test in the diagnosis of neurovascular headaches. Cephalalgia 24, 110–119 (2004).

    CAS  PubMed  Google Scholar 

  31. Kruuse, C., Thomsen, L. L., Jacobsen, T. B. & Olesen, J. The phosphodiesterase 5 inhibitor sildenafil has no effect on cerebral blood flow or blood velocity, but nevertheless induces headache in healthy subjects. J. Cereb. Blood Flow Metab. 22, 1124–1131 (2002).

    CAS  PubMed  Google Scholar 

  32. Kruuse, C., Thomsen, L. L., Birk, S. & Olesen, J. Migraine can be induced by sildenafil without changes in middle cerebral artery diameter. Brain 126, 241–247 (2003).

    PubMed  Google Scholar 

  33. Kruuse, C. et al. Plasma levels of cAMP, cGMP and CGRP in sildenafil-induced headache. Cephalalgia 24, 547–553 (2004).

    CAS  PubMed  Google Scholar 

  34. Kruuse, C., Lassen, L. H., Iversen, H. K., Oestergaard, S. & Olesen, J. Dipyridamole may induce migraine in patients with migraine without aura. Cephalalgia 26, 925–933 (2006).

    CAS  PubMed  Google Scholar 

  35. Broessner, G. et al. Hypoxia triggers high-altitude headache with migraine features: a prospective trial. Cephalalgia 36, 765–771 (2016).

    PubMed  Google Scholar 

  36. Schoonman, G. G. et al. Normobaric hypoxia and nitroglycerin as trigger factors for migraine. Cephalalgia 26, 816–819 (2006).

    CAS  PubMed  Google Scholar 

  37. Van Mil, A. H. et al. Nitric oxide mediates hypoxia-induced cerebral vasodilation in humans. J. Appl. Physiol. (1985) 92, 962–966 (2002).

    CAS  Google Scholar 

  38. Arngrim, N. et al. Migraine induced by hypoxia: an MRI spectroscopy and angiography study. Brain 139, 723–737 (2016).

    PubMed  Google Scholar 

  39. Lassen, L. H., Ashina, M., Christiansen, I., Ulrich, V. & Olesen, J. Nitric oxide synthase inhibition in migraine. Lancet 349, 401–402 (1997).

    CAS  PubMed  Google Scholar 

  40. Van der Schueren, B. J. et al. Does the unfavorable pharmacokinetic and pharmacodynamic profile of the iNOS inhibitor GW273629 lead to inefficacy in acute migraine? J. Clin. Pharmacol. 49, 281–290 (2009).

    CAS  PubMed  Google Scholar 

  41. Hoivik, H. O. et al. Lack of efficacy of the selective iNOS inhibitor GW274150 in prophylaxis of migraine headache. Cephalalgia 30, 1458–1467 (2010).

    PubMed  Google Scholar 

  42. Dieterle, A., Fischer, M. J., Link, A. S., Neuhuber, W. L. & Messlinger, K. Increase in CGRP- and nNOS-immunoreactive neurons in the rat trigeminal ganglion after infusion of an NO donor. Cephalalgia 31, 31–42 (2011).

    PubMed  Google Scholar 

  43. Annedi, S. C. et al. 3,5-Disubstituted indole derivatives as selective human neuronal nitric oxide synthase (nNOS) inhibitors. Bioorg. Med. Chem. Lett. 22, 1980–1984 (2012).

    CAS  PubMed  Google Scholar 

  44. Clark, D., Hough, H. & Wolff, H. G. Experimental studies on headache: observations on headache produced by histamine. Arch. NeurPsych. 35, 1054–1069 (1936).

    CAS  Google Scholar 

  45. Sicuteri, F., Ricci, M., Monfardini, R. & Ficini, M. Experimental headache with endogeneous histamine; first results obtained by 48/80, a histamine-liberator drug, in the cephalic and peripheral circulatory systems of man. Acta Allergol. 11, 188–192 (1957).

    CAS  PubMed  Google Scholar 

  46. Northfield, D. W. Some observations on headache. Brain Dev. 61, 33 (1938).

    Google Scholar 

  47. Krabbe, A. A. & Olesen, J. Headache provocation by continuous intravenous infusion of histamine. Clinical results and receptor mechanisms. Pain 8, 253–259 (1980).

    CAS  PubMed  Google Scholar 

  48. Lassen, L. H., Thomsen, L. L. & Olesen, J. Histamine induces migraine via the H1-receptor. Support for the NO hypothesis of migraine. Neuroreport 6, 1475–1479 (1995).

    CAS  PubMed  Google Scholar 

  49. Lassen, L. H., Christiansen, I., Iversen, H. K., Jansen-Olesen, I. & Olesen, J. The effect of nitric oxide synthase inhibition on histamine induced headache and arterial dilatation in migraineurs. Cephalalgia 23, 877–886 (2003).

    CAS  PubMed  Google Scholar 

  50. Gulbenkian, S., Uddman, R. & Edvinsson, L. Neuronal messengers in the human cerebral circulation. Peptides 22, 995–1007 (2001).

    CAS  PubMed  Google Scholar 

  51. Edvinsson, L. & Uddman, R. Neurobiology in primary headaches. Brain Res. Brain Res. Rev. 48, 438–456 (2005).

    PubMed  Google Scholar 

  52. Tajti, J. et al. Migraine and neuropeptides. Neuropeptides 52, 19–30 (2015).

    CAS  PubMed  Google Scholar 

  53. Walker, C. S., Conner, A. C., Poyner, D. R. & Hay, D. L. Regulation of signal transduction by calcitonin gene-related peptide receptors. Trends Pharmacol. Sci. 31, 476–483 (2010).

    CAS  PubMed  Google Scholar 

  54. Kaiser, E. A. & Russo, A. F. CGRP and migraine: could PACAP play a role too? Neuropeptides 47, 451–461 (2013).

    CAS  PubMed  Google Scholar 

  55. Amara, S. G., Jonas, V., Rosenfeld, M. G., Ong, E. S. & Evans, R. M. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298, 240–244 (1982).

    CAS  PubMed  Google Scholar 

  56. Rosenfeld, M. G. et al. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 304, 129–135 (1983).

    CAS  PubMed  Google Scholar 

  57. Jansen, I. et al. Localization and effects of neuropeptide Y, vasoactive intestinal polypeptide, substance P, and calcitonin gene-related peptide in human temporal arteries. Ann. Neurol. 20, 496–501 (1986). The first detailed description of neuropeptides in the human cerebral arteries.

    CAS  PubMed  Google Scholar 

  58. Brain, S. D., Williams, T. J., Tippins, J. R., Morris, H. R. & MacIntyre, I. Calcitonin gene-related peptide is a potent vasodilator. Nature 313, 54–56 (1985).

    CAS  PubMed  Google Scholar 

  59. Jansen-Olesen, I., Mortensen, A. & Edvinsson, L. Calcitonin gene-related peptide is released from capsaicin-sensitive nerve fibres and induces vasodilatation of human cerebral arteries concomitant with activation of adenylyl cyclase. Cephalalgia 16, 310–316 (1996).

    CAS  PubMed  Google Scholar 

  60. Levy, D., Burstein, R. & Strassman, A. M. Calcitonin gene-related peptide does not excite or sensitize meningeal nociceptors: implications for the pathophysiology of migraine. Ann. Neurol. 58, 698–705 (2005).

    CAS  PubMed  Google Scholar 

  61. Sun, R. Q., Lawand, N. B. & Willis, W. D. The role of calcitonin gene-related peptide (CGRP) in the generation and maintenance of mechanical allodynia and hyperalgesia in rats after intradermal injection of capsaicin. Pain 104, 201–208 (2003).

    CAS  PubMed  Google Scholar 

  62. Schou, W. S., Ashina, S., Amin, F. M., Goadsby, P. J. & Ashina, M. Calcitonin gene-related peptide and pain: a systematic review. J. Headache Pain 18, 34 (2017).

    PubMed  PubMed Central  Google Scholar 

  63. Goadsby, P. J., Edvinsson, L. & Ekman, R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann. Neurol. 28, 183–187 (1990).

    CAS  PubMed  Google Scholar 

  64. Cady, R. K., Vause, C. V., Ho, T. W., Bigal, M. E. & Durham, P. L. Elevated saliva calcitonin gene-related peptide levels during acute migraine predict therapeutic response to rizatriptan. Headache 49, 1258–1266 (2009).

    PubMed  Google Scholar 

  65. Rodriguez-Osorio, X. et al. Endothelial progenitor cells: a new key for endothelial dysfunction in migraine. Neurology 79, 474–479 (2012).

    PubMed  Google Scholar 

  66. Gallai, V. et al. Vasoactive peptide levels in the plasma of young migraine patients with and without aura assessed both interictally and ictally. Cephalalgia 15, 384–390 (1995).

    CAS  PubMed  Google Scholar 

  67. Tvedskov, J. F. et al. No increase of calcitonin gene-related peptide in jugular blood during migraine. Ann. Neurol. 58, 561–568 (2005).

    CAS  PubMed  Google Scholar 

  68. van Dongen, R. M. et al. Migraine biomarkers in cerebrospinal fluid: a systematic review and meta-analysis. Cephalalgia 37, 49–63 (2017).

    PubMed  Google Scholar 

  69. Ashina, M., Bendtsen, L., Jensen, R., Schifter, S. & Olesen, J. Evidence for increased plasma levels of calcitonin gene-related peptide in migraine outside of attacks. Pain 86, 133–138 (2000).

    CAS  PubMed  Google Scholar 

  70. Ramon, C., Cernuda-Morollon, E. & Pascual, J. Calcitonin gene-related peptide in peripheral blood as a biomarker for migraine. Curr. Opin. Neurol. 30, 281–286 (2017).

    CAS  PubMed  Google Scholar 

  71. Cernuda-Morollon, E. et al. Interictal increase of CGRP levels in peripheral blood as a biomarker for chronic migraine. Neurology 81, 1191–1196 (2013).

    CAS  PubMed  Google Scholar 

  72. Cernuda-Morollon, E. et al. CGRP and VIP levels as predictors of efficacy of onabotulinumtoxin type A in chronic migraine. Headache 54, 987–995 (2014).

    PubMed  Google Scholar 

  73. Juhasz, G. et al. NO-induced migraine attack: strong increase in plasma calcitonin gene-related peptide (CGRP) concentration and negative correlation with platelet serotonin release. Pain 106, 461–470 (2003).

    CAS  PubMed  Google Scholar 

  74. Petersen, K. A., Lassen, L. H., Birk, S., Lesko, L. & Olesen, J. BIBN4096BS antagonizes human α-calcitonin gene related peptide-induced headache and extracerebral artery dilatation. Clin. Pharmacol. Ther. 77, 202–213 (2005).

    CAS  PubMed  Google Scholar 

  75. Lassen, L. H. et al. CGRP may play a causative role in migraine. Cephalalgia 22, 54–61 (2002). The first human experimental evidence that CGRP can trigger migraine.

    CAS  PubMed  Google Scholar 

  76. Asghar, M. S. et al. Evidence for a vascular factor in migraine. Ann. Neurol. 69, 635–645 (2011).

    PubMed  Google Scholar 

  77. Hansen, J. M., Hauge, A. W., Olesen, J. & Ashina, M. Calcitonin gene-related peptide triggers migraine-like attacks in patients with migraine with aura. Cephalalgia 30, 1179–1186 (2010).

    PubMed  Google Scholar 

  78. Sherwood, N. M., Krueckl, S. L. & McRory, J. E. The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr. Rev. 21, 619–670 (2000).

    CAS  PubMed  Google Scholar 

  79. Vaudry, D. et al. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol. Rev. 61, 283–357 (2009).

    CAS  PubMed  Google Scholar 

  80. Jansen-Olesen, I., Gulbenkian, S., Engel, U., Cunha e Sa, M. & Edvinsson, L. Peptidergic and non-peptidergic innervation and vasomotor responses of human lenticulostriate and posterior cerebral arteries. Peptides 25, 2105–2114 (2004).

    CAS  PubMed  Google Scholar 

  81. Baeres, F. M. & Moller, M. Origin of PACAP-immunoreactive nerve fibers innervating the subarachnoidal blood vessels of the rat brain. J. Cereb. Blood Flow Metab. 24, 628–635 (2004).

    PubMed  Google Scholar 

  82. Hosoya, M. et al. Molecular cloning and functional expression of rat cDNAs encoding the receptor for pituitary adenylate cyclase activating polypeptide (PACAP). Biochem. Biophys. Res. Commun. 194, 133–143 (1993).

    CAS  PubMed  Google Scholar 

  83. Lutz, E. M. et al. The VIP2 receptor: molecular characterisation of a cDNA encoding a novel receptor for vasoactive intestinal peptide. FEBS Lett. 334, 3–8 (1993).

    CAS  PubMed  Google Scholar 

  84. Harmar, A. J. et al. International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol. Rev. 50, 265–270 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Erdling, A., Sheykhzade, M., Maddahi, A., Bari, F. & Edvinsson, L. VIP/PACAP receptors in cerebral arteries of rat: characterization, localization and relation to intracellular calcium. Neuropeptides 47, 85–92 (2013).

    CAS  PubMed  Google Scholar 

  86. Knutsson, M. & Edvinsson, L. Distribution of mRNA for VIP and PACAP receptors in human cerebral arteries and cranial ganglia. Neuroreport 13, 507–509 (2002).

    CAS  PubMed  Google Scholar 

  87. Dickson, L., Aramori, I., McCulloch, J., Sharkey, J. & Finlayson, K. A systematic comparison of intracellular cyclic AMP and calcium signalling highlights complexities in human VPAC/PAC receptor pharmacology. Neuropharmacology 51, 1086–1098 (2006).

    CAS  PubMed  Google Scholar 

  88. Cernuda-Morollon, E. et al. Increased VIP levels in peripheral blood outside migraine attacks as a potential biomarker of cranial parasympathetic activation in chronic migraine. Cephalalgia 35, 310–316 (2015).

    PubMed  Google Scholar 

  89. Edvinsson, L. & Goadsby, P. J. Neuropeptides in the cerebral circulation: relevance to headache. Cephalalgia 15, 272–276 (1995).

    CAS  PubMed  Google Scholar 

  90. Riesco, N. et al. Relationship between serum levels of VIP, but not of CGRP, and cranial autonomic parasympathetic symptoms: a study in chronic migraine patients. Cephalalgia 37, 823–827 (2017).

    CAS  PubMed  Google Scholar 

  91. Cernuda-Morollon, E. et al. No change in interictal PACAP levels in peripheral blood in women with chronic migraine. Headache 56, 1448–1454 (2016).

    PubMed  Google Scholar 

  92. Han, X. et al. Interictal plasma pituitary adenylate cyclase-activating polypeptide levels are decreased in migraineurs but remain unchanged in patients with tension-type headache. Clin. Chim. Acta 450, 151–154 (2015).

    CAS  PubMed  Google Scholar 

  93. Tuka, B. et al. Alterations in PACAP-38-like immunoreactivity in the plasma during ictal and interictal periods of migraine patients. Cephalalgia 33, 1085–1095 (2013).

    PubMed  Google Scholar 

  94. Guo, S. et al. Part II: biochemical changes after pituitary adenylate cyclase-activating polypeptide-38 infusion in migraine patients. Cephalalgia 37, 136–147 (2017).

    PubMed  Google Scholar 

  95. Hansen, J. M. et al. Vasoactive intestinal polypeptide evokes only a minimal headache in healthy volunteers. Cephalalgia 26, 992–1003 (2006).

    CAS  PubMed  Google Scholar 

  96. Schytz, H. W. et al. PACAP38 induces migraine-like attacks in patients with migraine without aura. Brain 132, 16–25 (2009).

    PubMed  Google Scholar 

  97. Amin, F. M. et al. Headache and prolonged dilatation of the middle meningeal artery by PACAP38 in healthy volunteers. Cephalalgia 32, 140–149 (2012).

    PubMed  Google Scholar 

  98. Amin, F. M. et al. Investigation of the pathophysiological mechanisms of migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38. Brain 137, 779–794 (2014). A study demonstrating that PACAP-induced migraine is associated with sustained dilation of extracranial arteries.

    PubMed  Google Scholar 

  99. Tuka, B. et al. Peripheral and central alterations of pituitary adenylate cyclase activating polypeptide-like immunoreactivity in the rat in response to activation of the trigeminovascular system. Peptides 33, 307–316 (2012).

    CAS  PubMed  Google Scholar 

  100. Baun, M., Pedersen, M. H., Olesen, J. & Jansen-Olesen, I. Dural mast cell degranulation is a putative mechanism for headache induced by PACAP-38. Cephalalgia 32, 337–345 (2012).

    PubMed  Google Scholar 

  101. Theoharides, T. C., Donelan, J., Kandere-Grzybowska, K. & Konstantinidou, A. The role of mast cells in migraine pathophysiology. Brain Res. Brain Res. Rev. 49, 65–76 (2005).

    CAS  PubMed  Google Scholar 

  102. Schror, K. The pharmacology of cilostazol. Diabetes Obes. Metab. 4 (Suppl. 2), S14–S19 (2002).

    CAS  PubMed  Google Scholar 

  103. Birk, S. et al. The phosphodiesterase 3 inhibitor cilostazol dilates large cerebral arteries in humans without affecting regional cerebral blood flow. J. Cereb. Blood Flow Metab. 24, 1352–1358 (2004).

    CAS  PubMed  Google Scholar 

  104. Birk, S., Kruuse, C., Petersen, K. A., Tfelt-Hansen, P. & Olesen, J. The headache-inducing effect of cilostazol in human volunteers. Cephalalgia 26, 1304–1309 (2006).

    CAS  PubMed  Google Scholar 

  105. Guo, S., Olesen, J. & Ashina, M. Phosphodiesterase 3 inhibitor cilostazol induces migraine-like attacks via cyclic AMP increase. Brain 137, 2951–2959 (2014). This provocation experiment provides evidence that intracellular cyclic AMP accumulation has a crucial role in migraine induction.

    PubMed  Google Scholar 

  106. Hata, A. N. & Breyer, R. M. Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacol. Ther. 103, 147–166 (2004).

    CAS  PubMed  Google Scholar 

  107. Ricciotti, E. & FitzGerald, G. A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 31, 986–1000 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sarchielli, P., Alberti, A., Codini, M., Floridi, A. & Gallai, V. Nitric oxide metabolites, prostaglandins and trigeminal vasoactive peptides in internal jugular vein blood during spontaneous migraine attacks. Cephalalgia 20, 907–918 (2000).

    CAS  PubMed  Google Scholar 

  109. Wienecke, T., Olesen, J., Oturai, P. S. & Ashina, M. Prostaglandin E2(PGE2) induces headache in healthy subjects. Cephalalgia 29, 509–519 (2009).

    CAS  PubMed  Google Scholar 

  110. Wienecke, T., Olesen, J. & Ashina, M. Discrepancy between strong cephalic arterial dilatation and mild headache caused by prostaglandin D (PGD). Cephalalgia 31, 65–76 (2011).

    PubMed  Google Scholar 

  111. Wienecke, T., Olesen, J., Oturai, P. S. & Ashina, M. Prostacyclin (epoprostenol) induces headache in healthy subjects. Pain 139, 106–116 (2008).

    CAS  PubMed  Google Scholar 

  112. Wienecke, T., Olesen, J. & Ashina, M. Prostaglandin I2 (epoprostenol) triggers migraine-like attacks in migraineurs. Cephalalgia 30, 179–190 (2010).

    CAS  PubMed  Google Scholar 

  113. Antonova, M., Wienecke, T., Olesen, J. & Ashina, M. Prostaglandin E2 induces immediate migraine-like attack in migraine patients without aura. Cephalalgia 32, 822–833 (2012). Demonstration that PGE2 causes migraine-like attacks immediately after administration, whereas most other triggering substances cause a delayed migraine-like response.

    PubMed  Google Scholar 

  114. Antonova, M., Wienecke, T., Olesen, J. & Ashina, M. Pro-inflammatory and vasoconstricting prostanoid PGF2α causes no headache in man. Cephalalgia 31, 1532–1541 (2011).

    PubMed  Google Scholar 

  115. Antonova, M. et al. The pharmacological effect of BGC20-1531, a novel prostanoid EP4 receptor antagonist, in the prostaglandin E2 human model of headache. J. Headache Pain 12, 551–559 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Ray, B. & Wolff, H. Experimental studies on headache. Pain sensitive structures of the head and their significance in headache. Arch. Surg. 41, 813–856 (1940).

    Google Scholar 

  117. Wolff, H. Headache and Other Head Pain (Oxford Univ. Press, 1963).

    Google Scholar 

  118. Amin, F. M. et al. Magnetic resonance angiography of intracranial and extracranial arteries in patients with spontaneous migraine without aura: a cross-sectional study. Lancet Neurol. 12, 454–461 (2013). A comprehensive study of spontaneous migraine attacks, showing that migraine pain occurred without concomitant extracranial arterial dilation with only minor intracranial dilation.

    PubMed  Google Scholar 

  119. Thomsen, L. L., Iversen, H. K., Brinck, T. A. & Olesen, J. Arterial supersensitivity to nitric oxide (nitroglycerin) in migraine sufferers. Cephalalgia 13, 395–399 (1993).

    CAS  PubMed  Google Scholar 

  120. Tegeler, C. H. et al. Middle cerebral artery velocity correlates with nitroglycerin-induced headache onset. J. Neuroimaging 6, 81–86 (1996).

    CAS  PubMed  Google Scholar 

  121. Iversen, H. K., Holm, S., Friberg, L. & Tfelt-Hansen, P. Intracranial hemodynamics during intravenous infusion of glyceryl trinitrate. J. Headache Pain 9, 177–180 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hansen, J. M. et al. Magnetic resonance angiography shows dilatation of the middle cerebral artery after infusion of glyceryl trinitrate in healthy volunteers. Cephalalgia 27, 118–127 (2007).

    CAS  PubMed  Google Scholar 

  123. Schoonman, G. G. et al. Migraine headache is not associated with cerebral or meningeal vasodilatation a 3T magnetic resonance angiography study. Brain 131, 2192–2200 (2008). A study showing that GTN-triggered migraine attacks occur without cerebral or extracerebral arterial dilation.

    CAS  PubMed  Google Scholar 

  124. Fiermonte, G. et al. Cerebrovascular CO2 reactivity in migraine with aura and without aura. A transcranial Doppler study. Acta Neurol. Scand. 92, 166–169 (1995).

    CAS  PubMed  Google Scholar 

  125. Thomsen, L. L., Iversen, H. K. & Olesen, J. Increased cerebrovascular pCO2 reactivity in migraine with aura — a transcranial Doppler study during hyperventilation. Cephalalgia 15, 211–215 (1995).

    CAS  PubMed  Google Scholar 

  126. Asghar, M. S. et al. Dilation by CGRP of middle meningeal artery and reversal by sumatriptan in normal volunteers. Neurology 75, 1520–1526 (2010).

    CAS  PubMed  Google Scholar 

  127. Ashina, M., Tfelt-Hansen, P., Dalgaard, P. & Olesen, J. Lack of correlation between vasodilatation and pharmacologically induced immediate headache in healthy subjects. Cephalalgia 31, 683–690 (2011).

    PubMed  Google Scholar 

  128. Afridi, S. K., Kaube, H. & Goadsby, P. J. Glyceryl trinitrate triggers premonitory symptoms in migraineurs. Pain 110, 675–680 (2004). The first study to show that GTN can trigger premonitory symptoms — a feat that the same researchers would use years later to show hypothalamic activation during premonitory symptoms.

    CAS  PubMed  Google Scholar 

  129. Giffin, N. J. et al. Premonitory symptoms in migraine: an electronic diary study. Neurology 60, 935–940 (2003).

    CAS  PubMed  Google Scholar 

  130. Afridi, S. K. et al. A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate. Brain 128, 932–939 (2005). Using GTN-triggered attacks, this PET study showed that pontine activation was ipsilateral in patients with unilateral headache and bilateral in patients with bilateral headache, suggesting lateralization of brain dysfunction in migraine.

    CAS  PubMed  Google Scholar 

  131. Bahra, A., Matharu, M. S., Buchel, C., Frackowiak, R. S. & Goadsby, P. J. Brainstem activation specific to migraine headache. Lancet 357, 1016–1017 (2001).

    CAS  PubMed  Google Scholar 

  132. Afridi, S. K. et al. A positron emission tomographic study in spontaneous migraine. Arch. Neurol. 62, 1270–1275 (2005).

    PubMed  Google Scholar 

  133. Weiller, C. et al. Brain stem activation in spontaneous human migraine attacks. Nat. Med. 1, 658–660 (1995).

    CAS  PubMed  Google Scholar 

  134. Olesen, J., Thomsen, L. L., Lassen, L. H. & Olesen, I. J. The nitric oxide hypothesis of migraine and other vascular headaches. Cephalalgia 15, 94–100 (1995).

    CAS  PubMed  Google Scholar 

  135. Asghar, M. S., Hansen, A. E., Larsson, H. B., Olesen, J. & Ashina, M. Effect of CGRP and sumatriptan on the BOLD response in visual cortex. J. Headache Pain 13, 159–166 (2012).

    PubMed  PubMed Central  Google Scholar 

  136. Asghar, M. S., Becerra, L., Larsson, H. B., Borsook, D. & Ashina, M. Calcitonin gene-related peptide modulates heat nociception in the human brain — an fMRI study in healthy volunteers. PLoS ONE 11, e0150334 (2016).

    PubMed  PubMed Central  Google Scholar 

  137. Amin, F. M. et al. Change in brain network connectivity during PACAP38-induced migraine attacks: a resting-state functional MRI study. Neurology 86, 180–187 (2016).

    PubMed  Google Scholar 

  138. Russell, M. B. & Olesen, J. Increased familial risk and evidence of genetic factor in migraine. BMJ 311, 541–544 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Guo, S. et al. Part I: Pituitary adenylate cyclase-activating polypeptide-38 induced migraine-like attacks in patients with and without familial aggregation of migraine. Cephalalgia 37, 125–135 (2017).

    PubMed  Google Scholar 

  140. Guo, S. et al. Calcitonin gene-related peptide induced migraine attacks in patients with and without familial aggregation of migraine. Cephalalgia 37, 114–124 (2017).

    PubMed  Google Scholar 

  141. Hansen, J. et al. Familial hemiplegic migraine type 2 does not share hypersensitivity to nitric oxide with common types of migraine. Cephalalgia 28, 367–375 (2008).

    CAS  PubMed  Google Scholar 

  142. Hansen, J., Thomsen, L., Olesen, J. & Ashina, M. Familial hemiplegic migraine type 1 shows no hypersensitivity to nitric oxide. Cephalalgia 28, 496–505 (2008).

    CAS  PubMed  Google Scholar 

  143. Hansen, J., Thomsen, L. L., Olesen, J. & Ashina, M. Calcitonin gene-related peptide does not cause the familial hemiplegic migraine phenotype. Neurology 71, 841–847 (2008).

    CAS  PubMed  Google Scholar 

  144. Hansen, J. M., Thomsen, L. L., Olesen, J. & Ashina, M. Calcitonin gene-related peptide does not cause migraine attacks in patients with familial hemiplegic migraine. Headache 51, 544–553 (2011).

    PubMed  Google Scholar 

  145. Hansen, J. M., Thomsen, L. L., Olesen, J. & Ashina, M. Coexisting typical migraine in familial hemiplegic migraine. Neurology 74, 594–600 (2010).

    PubMed  Google Scholar 

  146. Gormley, P. et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat. Genet. 48, 856–866 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Tvedskov, J. F. et al. The effect of propranolol on glyceryltrinitrate-induced headache and arterial response. Cephalalgia 24, 1076–1087 (2004).

    CAS  PubMed  Google Scholar 

  148. Tfelt-Hansen, P., Daugaard, D., Lassen, L. H., Iversen, H. K. & Olesen, J. Prednisolone reduces nitric oxide-induced migraine. Eur. J. Neurol. 16, 1106–1111 (2009).

    CAS  PubMed  Google Scholar 

  149. Tvedskov, J. F. et al. The prophylactic effect of valproate on glyceryltrinitrate induced migraine. Cephalalgia 24, 576–585 (2004).

    CAS  PubMed  Google Scholar 

  150. Van der Schueren, B. J. et al. The potent calcitonin gene-related peptide receptor antagonist, telcagepant, does not affect nitroglycerin-induced vasodilation in healthy men. Br. J. Clin. Pharmacol. 71, 708–717 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Tvedskov, J. F., Tfelt-Hansen, P., Petersen, K. A., Jensen, L. T. & Olesen, J. CGRP receptor antagonist olcegepant (BIBN4096BS) does not prevent glyceryl trinitrate-induced migraine. Cephalalgia 30, 1346–1353 (2010).

    CAS  PubMed  Google Scholar 

  152. Lassen, L. H., Thomsen, L. L., Kruuse, C., Iversen, H. K. & Olesen, J. Histamine-1 receptor blockade does not prevent nitroglycerin induced migraine. Support for the NO-hypothesis of migraine. Eur. J. Clin. Pharmacol. 49, 335–339 (1996).

    CAS  PubMed  Google Scholar 

  153. Olesen, J. et al. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N. Engl. J. Med. 350, 1104–1110 (2004).

    CAS  PubMed  Google Scholar 

  154. Diener, H. C., Charles, A., Goadsby, P. J. & Holle, D. New therapeutic approaches for the prevention and treatment of migraine. Lancet Neurol. 14, 1010–1022 (2015).

    CAS  PubMed  Google Scholar 

  155. Zwetsloot, C. P., Caekebeke, J. F., Jansen, J. C., Odink, J. & Ferrari, M. D. Blood flow velocities in the vertebrobasilar system during migraine attacks — a transcranial Doppler study. Cephalalgia 12, 29–32 (1992).

    CAS  PubMed  Google Scholar 

  156. Bigal, M. E. et al. Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of high-frequency episodic migraine: a multicentre, randomised, double-blind, placebo-controlled, phase 2b study. Lancet Neurol. 14, 1081–1090 (2015).

    CAS  PubMed  Google Scholar 

  157. Dodick, D. W. et al. Safety and efficacy of ALD403, an antibody to calcitonin gene-related peptide, for the prevention of frequent episodic migraine: a randomised, double-blind, placebo-controlled, exploratory phase 2 trial. Lancet Neurol. 13, 1100–1107 (2014).

    CAS  PubMed  Google Scholar 

  158. Dodick, D. W. et al. Safety and efficacy of LY2951742, a monoclonal antibody to calcitonin gene-related peptide, for the prevention of migraine: a phase 2, randomised, double-blind, placebo-controlled study. Lancet Neurol. 13, 885–892 (2014). References 156–158 are large phase II trials, which all found that CGRP antibodies were effective in migraine prevention.

    CAS  PubMed  Google Scholar 

  159. Tozzi, A. et al. Critical role of calcitonin gene-related peptide receptors in cortical spreading depression. Proc. Natl Acad. Sci. USA 109, 18985–18990 (2012).

    CAS  PubMed  Google Scholar 

  160. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02542605(2017).

  161. Hansen, E. K., Guo, S., Ashina, M. & Olesen, J. Toward a pragmatic migraine model for drug testing: I. Cilostazol in healthy volunteers. Cephalalgia 36, 172–178 (2016).

    PubMed  Google Scholar 

  162. Daugaard, D., Thomsen, L. L., Iversen, H. K. & Olesen, J. Delayed migraine-like headache in healthy volunteers after a combination of acetazolamide and glyceryl trinitrate. Cephalalgia 29, 1294–1300 (2009).

    CAS  PubMed  Google Scholar 

  163. Tvedskov, J. F., Iversen, H. K., Olesen, J. & Tfelt-Hansen, P. Nitroglycerin provocation in normal subjects is not a useful human migraine model? Cephalalgia 30, 928–932 (2010).

    CAS  PubMed  Google Scholar 

  164. Schmetterer, L. et al. Cerebral and ocular hemodynamic effects of sumatriptan in the nitroglycerin headache model. Clin. Pharmacol. Ther. 60, 199–205 (1996).

    CAS  PubMed  Google Scholar 

  165. Iversen, H. K. & Olesen, J. Headache induced by a nitric oxide donor (nitroglycerin) responds to sumatriptan. A human model for development of migraine drugs. Cephalalgia 16, 412–418 (1996).

    CAS  PubMed  Google Scholar 

  166. Friedman, D. I. & De ver Dye, T. Migraine and the environment. Headache 49, 941–952 (2009).

    PubMed  Google Scholar 

  167. Hauge, A., Kirchmann, M. & Olesen, J. Trigger factors in migraine with aura. Cephalalgia 30, 346–353 (2010).

    CAS  PubMed  Google Scholar 

  168. Stankewitz, A., Aderjan, D., Eippert, F. & May, A. Trigeminal nociceptive transmission in migraineurs predicts migraine attacks. J. Neurosci. 31, 1937–1943 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Schulte, L. H. & May, A. The migraine generator revisited: continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain 139, 1987–1993 (2016).

    PubMed  Google Scholar 

  170. Olesen, J., Tfelt-Hansen, P. & Ashina, M. Finding new drug targets for the treatment of migraine attacks. Cephalalgia 29, 909–920 (2009).

    CAS  PubMed  Google Scholar 

  171. Christiansen, I., Thomsen, L. L., Daugaard, D., Ulrich, V. & Olesen, J. Glyceryl trinitrate induces attacks of migraine without aura in sufferers of migraine with aura. Cephalalgia 19, 660–667 (1999).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, discussed the content, wrote the text, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Messoud Ashina.

Ethics declarations

Competing interests

M. Ashina is a consultant, speaker or scientific advisor for Allergan, Amgen, Alder, ATI, Eli Lilly, Novartis and Teva. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashina, M., Hansen, J., á Dunga, B. et al. Human models of migraine — short-term pain for long-term gain. Nat Rev Neurol 13, 713–724 (2017). https://doi.org/10.1038/nrneurol.2017.137

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2017.137

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing