Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Maladaptive plasticity in tinnitus — triggers, mechanisms and treatment

Key Points

  • Tinnitus is prevalent in up to 15% of the world population

  • Tinnitus is linked to hearing loss: loss of input from the cochlea to central auditory pathways triggers plastic neural changes that result in increased spontaneous activity and synchrony in affected regions

  • Neurons in nonauditory regions are also affected by tinnitus

  • Although tinnitus is often linked to noise exposure, tinnitus does not always occur after noise damage in humans or animal models

  • An understanding of the neural mechanisms of tinnitus is essential for developing effective treatments

Abstract

Tinnitus is a phantom auditory sensation that reduces quality of life for millions of people worldwide, and for which there is no medical cure. Most cases of tinnitus are associated with hearing loss caused by ageing or noise exposure. Exposure to loud recreational sound is common among the young, and this group are at increasing risk of developing tinnitus. Head or neck injuries can also trigger the development of tinnitus, as altered somatosensory input can affect auditory pathways and lead to tinnitus or modulate its intensity. Emotional and attentional state could be involved in the development and maintenance of tinnitus via top-down mechanisms. Thus, military personnel in combat are particularly at risk owing to combined risk factors (hearing loss, somatosensory system disturbances and emotional stress). Animal model studies have identified tinnitus-associated neural changes that commence at the cochlear nucleus and extend to the auditory cortex and other brain regions. Maladaptive neural plasticity seems to underlie these changes: it results in increased spontaneous firing rates and synchrony among neurons in central auditory structures, possibly generating the phantom percept. This Review highlights the links between animal and human studies, and discusses several therapeutic approaches that have been developed to target the neuroplastic changes underlying tinnitus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assessment of tinnitus in animals with GPIAS.
Figure 2: Simplified representation of auditory and nonauditory pathways in tinnitus.
Figure 3: Mechanisms of tinnitus initiation in the dorsal cochlear nucleus.
Figure 4: Mechanisms that contribute to increased StDP, SFR and synchrony in the DCN.

Similar content being viewed by others

References

  1. Axelsson, A. & Ringdahl, A. Tinnitus — a study of its prevalence and characteristics. Br. J. Audiol. 23, 53–62 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Gallus, S. et al. Prevalence and determinants of tinnitus in the Italian adult population. Neuroepidemiology 45, 12–19 (2015).

    Article  PubMed  Google Scholar 

  3. Park, B. et al. Analysis of the prevalence of and risk factors for tinnitus in a young population. Otol. Neurotol. 35, 1218–1222 (2014).

    Article  PubMed  Google Scholar 

  4. Roberts, L. E. et al. Ringing ears: the neuroscience of tinnitus. J. Neurosci. 30, 14972–14979 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Reed, G. F. An audiometric study of two hundred cases of subjective tinnitus. AMA Arch. Otolaryngol. 71, 84–94 (1960).

    Article  CAS  PubMed  Google Scholar 

  6. Vernon, J. Attemps to relieve tinnitus. J. Am. Audiol. Soc. 2, 124–131 (1977).

    CAS  PubMed  Google Scholar 

  7. Hallberg, L. R. & Erlandsson, S. I. Tinnitus characteristics in tinnitus complainers and noncomplainers. Br. J. Audiol. 27, 19–27 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Landgrebe, M. et al. The Tinnitus Research Initiative (TRI) database: a new approach for delineation of tinnitus subtypes and generation of predictors for treatment outcome. BMC Med. Inform. Decis. Mak. 10, 42 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. De Ridder, D., Elgoyhen, A. B., Romo, R. & Langguth, B. Phantom percepts: tinnitus and pain as persisting aversive memory networks. Proc. Natl Acad. Sci. USA 108, 8075–8080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lockwood, A. H., Salvi, R. J. & Burkard, R. F. Tinnitus. N. Engl. J. Med. 347, 904–910 (2002).

    Article  PubMed  Google Scholar 

  11. Mardini, M. K. Ear-clicking 'tinnitus' responding to carbamazepine. N. Engl. J. Med. 317, 1542 (1987).

    CAS  PubMed  Google Scholar 

  12. House, J. W. & Brackmann, D. E. Tinnitus: surgical treatment. Ciba Found. Symp. 85, 204–216 (1981).

    CAS  PubMed  Google Scholar 

  13. Baguley, D. M., Axon, P., Winter, I. M. & Moffat, D. A. The effect of vestibular nerve section upon tinnitus. Clin. Otolaryngol. 27, 219–226 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Soleymani, T. et al. Surgical approaches to tinnitus treatment: a review and novel approaches. Surg. Neurol. Int. 2, 154 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Blasco, M. A. & Redleaf, M. I. Cochlear implantation in unilateral sudden deafness improves tinnitus and speech comprehension: meta-analysis and systematic review. Otol. Neurotol. 35, 1426–1432 (2014).

    Article  PubMed  Google Scholar 

  16. Barnea, G., Attias, J., Gold, S. & Shahar, A. Tinnitus with normal hearing sensitivity: extended high-frequency audiometry and auditory-nerve brain-stem-evoked responses. Audiology 29, 36–45 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Schaette, R. & McAlpine, D. Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J. Neurosci. 31, 13452–13457 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Roberts, L. E., Moffat, G., Baumann, M., Ward, L. M. & Bosnyak, D. J. Residual inhibition functions overlap tinnitus spectra and the region of auditory threshold shift. J. Assoc. Res. Otolaryngol. 9, 417–435 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kujawa, S. G. & Liberman, M. C. Adding insult to injury: cochlear nerve degeneration after 'temporary' noise-induced hearing loss. J. Neurosci. 29, 14077–14085 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Furman, A. C., Kujawa, S. G. & Liberman, M. C. Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J. Neurophysiol. 110, 577–586 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sergeyenko, Y., Lall, K., Liberman, M. C. & Kujawa, S. G. Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J. Neurosci. 33, 13686–13694 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kujawa, S. G. & Liberman, M. C. Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss. Hear. Res. 330(Pt. B), 191–199 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lin, H. W., Furman, A. C., Kujawa, S. G. & Liberman, M. C. Primary neural degeneration in the guinea pig cochlea after reversible noise-induced threshold shift. J. Assoc. Res. Otolaryngol. 12, 605–616 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gu, J. W., Herrmann, B. S., Levine, R. A. & Melcher, J. R. Brainstem auditory evoked potentials suggest a role for the ventral cochlear nucleus in tinnitus. J. Assoc. Res. Otolaryngol. 13, 819–833 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Norena, A., Micheyl, C., Chery-Croze, S. & Collet, L. Psychoacoustic characterization of the tinnitus spectrum: implications for the underlying mechanisms of tinnitus. Audiol. Neurootol. 7, 358–369 (2002).

    Article  PubMed  Google Scholar 

  26. Sereda, M. et al. Re-examining the relationship between audiometric profile and tinnitus pitch. Int. J. Audiol. 50, 303–312 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhou, X., Henin, S., Long, G. R. & Parra, L. C. Impaired cochlear function correlates with the presence of tinnitus and its estimated spectral profile. Hear. Res. 277, 107–116 (2011).

    Article  PubMed  Google Scholar 

  28. Terry, A. M., Jones, D. M., Davis, P. R., & Slater, R. Parametric studies of tinnitus masking and residual inhibition. Br. J. Audiol. 17, 245–256 (1983).

    Article  CAS  PubMed  Google Scholar 

  29. Roberts, L. E. Residual inhibition. Prog. Brain Res. 166, 487–495 (2007).

    Article  PubMed  Google Scholar 

  30. Stolzberg, D., Salvi, R. J. & Allman, B. L. Salicylate toxicity model of tinnitus. Front. Syst. Neurosci. 6, 28 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Heffner, H. E. & Heffner, R. S. in Tinnitus (eds Eggermont, J. J. et al.) Ch. 2 487–495 (Springer, 2012).

    Google Scholar 

  32. Turner, J., Larsen, D., Hughes, L., Moechars, D. & Shore, S. Time course of tinnitus development following noise exposure in mice. J. Neurosci. Res. 90, 1480–1488 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Turner, J. G. et al. Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behav. Neurosci. 120, 188–195 (2006).

    Article  PubMed  Google Scholar 

  34. Dehmel, S., Eisinger, D. & Shore, S. E. Gap prepulse inhibition and auditory brainstem-evoked potentials as objective measures for tinnitus in guinea pigs. Front. Syst. Neurosci. 6, 42 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Berger, J. I., Coomber, B., Shackleton, T. M., Palmer, A. R. & Wallace, M. N. A novel behavioural approach to detecting tinnitus in the guinea pig. J. Neurosci. Methods 213, 188–195 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hayes, S. H., Radziwon, K. E., Stolzberg, D. J. & Salvi, R. J. Behavioral models of tinnitus and hyperacusis in animals. Front. Neurol. 5, 179 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. von der Behrens, W. Animal models of subjective tinnitus. Neural Plast. 2014, 741452 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Galazyuk, A. & Hebert, S. Gap-prepulse inhibition of the acoustic startle reflex (GPIAS) for tinnitus assessment: current status and future directions. Front. Neurol. 6, 88 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dehmel, S., Pradhan, S., Koehler, S., Bledsoe, S. & Shore, S. Noise overexposure alters long-term somatosensory-auditory processing in the dorsal cochlear nucleus — possible basis for tinnitus-related hyperactivity? J. Neurosci. 32, 1660–1671 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Koehler, S. D. & Shore, S. E. Stimulus timing-dependent plasticity in dorsal cochlear nucleus is altered in tinnitus. J. Neurosci. 33, 19647–19656 (2015).

    Article  CAS  Google Scholar 

  41. Wu, C., Martel, D. & Shore, S. Increased synchrony and bursting of dorsal cochlear nucleus fusiform cells correlates with tinnitus. J. Neurosci. http://dx.doi.org/10.1523/JNEUROSCI.3960-15.2016

  42. Kalappa, B. I. et al. Potent KCNQ2/3-specific channel activator suppresses in vivo epileptic activity and prevents the development of tinnitus. J. Neurosci. 35, 8829–8842 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, S., Kalappa, B. I. & Tzounopoulos, T. Noise-induced plasticity of KCNQ2/3 and HCN channels underlies vulnerability and resilience to tinnitus. eLIFE 4, e07242 (2015).

    Article  PubMed Central  Google Scholar 

  44. Middleton, J. W. et al. Mice with behavioral evidence of tinnitus exhibit dorsal cochlear nucleus hyperactivity because of decreased GABAergic inhibition. Proc. Natl Acad. Sci. USA 108, 7601–7606 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brozoski, T. J., Bauer, C. A. & Caspary, D. M. Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus. J. Neurosci. 22, 2383–2390 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kaltenbach, J. A., Zacharek, M. A., Zhang, J. & Frederick, S. Activity in the dorsal cochlear nucleus of hamsters previously tested for tinnitus following intense tone exposure. Neurosci. Lett. 355, 121–125 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Xiong, H. et al. Hidden hearing loss in tinnitus patients with normal audiograms: implications for the origin of tinnitus. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 27, 362–365 (in Chinese) (2013).

    PubMed  Google Scholar 

  48. Vogler, D. P., Robertson, D. & Mulders, W. H. Hyperactivity following unilateral hearing loss in characterized cells in the inferior colliculus. Neuroscience 265C, 28–36 (2014).

    Article  CAS  Google Scholar 

  49. Sumner, C. J., Tucci, D. L. & Shore, S. E. Responses of ventral cochlear nucleus neurons to contralateral sound after conductive hearing loss. J. Neurophysiol. 94, 4234–4243 (2005).

    Article  PubMed  Google Scholar 

  50. Bledsoe, S. C. Jr et al. Ventral cochlear nucleus responses to contralateral sound are mediated by commissural and olivocochlear pathways. J. Neurophysiol. 102, 886–900 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kaltenbach, J. A. Summary of evidence pointing to a role of the dorsal cochlear nucleus in the etiology of tinnitus. Acta Otolaryngol. Suppl. 556, 20–26 (2006).

    Article  Google Scholar 

  52. Wu, C., Stefanescu, R. A., Martel, D. T. & Shore, S. E. Tinnitus: maladaptive auditory-somatosensory plasticity. Hear. Res. http://dx.doi.org/10.1016/j.heares.2015.06.005 (2015).

  53. Robertson, D., Bester, C., Vogler, D. & Mulders, W. H. Spontaneous hyperactivity in the auditory midbrain: relationship to afferent input. Hear. Res. 295, 124–129 (2013).

    Article  PubMed  Google Scholar 

  54. Mulders, W. H., Barry, K. M. & Robertson, D. Effects of furosemide on cochlear neural activity central hyperactivity and behavioural tinnitus after cochlear trauma in guinea pig. PLoS ONE 9, e97948 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ropp, T. J., Tiedemann, K. L., Young, E. D. & May, B. J. Effects of unilateral acoustic trauma on tinnitus-related spontaneous activity in the inferior colliculus. J. Assoc. Res. Otolaryngol. 15, 1007–1022 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Coomber, B. et al. Neural changes accompanying tinnitus following unilateral acoustic trauma in the guinea pig. Eur. J. Neurosci. 40, 2427–2441 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Brozoski, T. J., Wisner, K. W., Sybert, L. T. & Bauer, C. A. Bilateral dorsal cochlear nucleus lesions prevent acoustic-trauma induced tinnitus in an animal model. J. Assoc. Res. Otolaryngol. 13, 55–66 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Manzoor, N. F. et al. Noise-induced hyperactivity in the inferior colliculus: its relationship with hyperactivity in the dorsal cochlear nucleus. J. Neurophysiol. 108, 976–988 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brozoski, T. J. & Bauer, C. A. The effect of dorsal cochlear nucleus ablation on tinnitus in rats. Hear Res. 206, 227–236 (2005).

    Article  PubMed  Google Scholar 

  60. Mulders, W. H., Ding, D., Salvi, R. & Robertson, D. Relationship between auditory thresholds central spontaneous activity, and hair cell loss after acoustic trauma. J. Comp. Neurol. 519, 2637–2647 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zacharek, M. A., Kaltenbach, J. A., Mathog, T. A. & Zhang, J. Effects of cochlear ablation on noise induced hyperactivity in the hamster dorsal cochlear nucleus: implications for the origin of noise induced tinnitus. Hear. Res. 172, 137–143 (2002).

    Article  PubMed  Google Scholar 

  62. Zhang, J. S., Kaltenbach, J. A., Godfrey, D. A. & Wang, J. Origin of hyperactivity in the hamster dorsal cochlear nucleus following intense sound exposure. J. Neurosci. Res. 84, 819–831 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Manzoor, N. F., Gao, Y., Licari, F. & Kaltenbach, J. A. Comparison and contrast of noise-induced hyperactivity in the dorsal cochlear nucleus and inferior colliculus. Hear. Res. 295, 114–123 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Anderson, L. A., Malmierca, M. S. & Wallace, M. N. & Palmer, A. R. Evidence for a direct, short latency projection from the dorsal cochlear nucleus to the auditory thalamus in the guinea pig. Eur. J. Neurosci. 24, 491–498 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Malmierca, M. S., Merchan, M. A., Henkel, C. K. & Oliver, D. L. Direct projections from cochlear nuclear complex to auditory thalamus in the rat. J. Neurosci. 22, 10891–10897 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schofield, B. R., Mellott, J. G. & Motts, S. D. Subcollicular projections to the auditory thalamus and collateral projections to the inferior colliculus. Front. Neuroanat. 8, 70 (2014).

    PubMed  PubMed Central  Google Scholar 

  67. Kalappa, B. I., Brozoski, T. J., Turner, J. G. & Caspary, D. M. Single unit hyperactivity and bursting in the auditory thalamus of awake rats directly correlates with behavioural evidence of tinnitus. J. Physiol. 592, 5065–5078 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Eggermont, J. J. & Roberts, L. E. The neuroscience of tinnitus. Trends Neurosci. 27, 676–682 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Engineer, N. D. et al. Reversing pathological neural activity using targeted plasticity. Nature 470, 101–104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Basura, G., Koehler, S. & Shore, S. E. Bimodal stimulus timing-dependent plasticity in primary auditory cortex is altered after noise exposure with and without tinnitus. J. Neurophysiol. 114, 3064–3075 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ilin, V., Malyshev, A., Wolf, F. & Volgushev, M. Fast computations in cortical ensembles require rapid initiation of action potentials. J. Neurosci. 33, 2281–2292 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kaltenbach, J. A. Tinnitus: models and mechanisms. Hear. Res. 276, 52–60 (2011).

    Article  PubMed  Google Scholar 

  73. Bauer, C. A., Turner, J. G., Caspary, D. M., Myers, K. S. & Brozoski, T. J. Tinnitus and inferior colliculus activity in chinchillas related to three distinct patterns of cochlear trauma. J. Neurosci. Res. 86, 2564–2578 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Robertson, D. & Irvine, D. R. Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J. Comp. Neurol. 282, 456–471 (1989).

    Article  CAS  PubMed  Google Scholar 

  75. Norena, A. J., Tomita, M. & Eggermont, J. J. Neural changes in cat auditory cortex after a transient pure-tone trauma. J. Neurophysiol. 90, 2387–2401 (2003).

    Article  PubMed  Google Scholar 

  76. Basura, G. J., Koehler, S. D. & Shore, S. E. Bimodal stimulus timing dependent plasticity in primary auditory cortex is altered after noise exposure with and without tinnitus. J. Neurophysiol. 114, 3064–3075 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, H. et al. Plasticity at glycinergic synapses in dorsal cochlear nucleus of rats with behavioral evidence of tinnitus. Neuroscience 164, 747–759 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Zeng, C., Nannapaneni, N., Zhou, J., Hughes, L. F. & Shore, S. Cochlear damage changes the distribution of vesicular glutamate transporters associated with auditory and nonauditory inputs to the cochlear nucleus. J. Neurosci. 29, 4210–4217 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Barker, M. et al. Acoustic overexposure increases the expression of VGLUT-2 mediated projections from the lateral vestibular nucleus to the dorsal cochlear nucleus. PLoS ONE 7, e35955 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zeng, C., Yang, Z., Shreve, L., Bledsoe, S. & Shore, S. Somatosensory projections to cochlear nucleus are upregulated after unilateral deafness. J. Neurosci. 32, 15791–15801 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schofield, B. R., Motts, S. D., Mellott, J. G. & Foster, N. L. Projections from the dorsal and ventral cochlear nuclei to the medial geniculate body. Front. Neuroanat. 8, 10 (2014).

    PubMed  PubMed Central  Google Scholar 

  82. Sametsky, E. A., Turner, J. G., Larsen, D., Ling, L. & Caspary, D. M. Enhanced GABAA-mediated tonic inhibition in auditory thalamus of rats with behavioral evidence of tinnitus. J. Neurosci. 35, 9369–9380 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Llinas, R. R., Ribary, U., Jeanmonod, D., Kronberg, E. & Mitra, P. P. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc. Natl Acad. Sci. USA 96, 15222–15227 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tzounopoulos, T., Kim, Y., Oertel, D. & Trussell, L. O. Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nat. Neurosci. 7, 719–725 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Koehler, S. D. & Shore, S. E. Stimulus-timing dependent multisensory plasticity in the guinea pig dorsal cochlear nucleus. PLoS ONE 8, e59828 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Roberts, P. D. & Leen, T. K. Anti-hebbian spike-timing-dependent plasticity and adaptive sensory processing. Front. Comput. Neurosci. 4, 156 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Stefanescu, R. A. & Shore, S. E. NMDA receptors mediate stimulus timing dependent plasticity and neural synchrony in dorsal cochlear nucleus. Front. Syst. Neurosci. 9, 75 (2015).

    Google Scholar 

  88. Wu, C., Martel, D. & Shore, S. Transcutaneous induction of stimulus timing dependent plasticity in dorsal cochlear nucleus. Front. Syst. Neurosci. 9, 116 (2015).

    PubMed  PubMed Central  Google Scholar 

  89. Kaltenbach, J. A. & Zhang, J. Intense sound-induced plasticity in the dorsal cochlear nucleus of rats: evidence for cholinergic receptor upregulation. Hear. Res. 226, 232–243 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Jin, Y. M., Godfrey, D. A., Wang, J. & Kaltenbach, J. A. Effects of intense tone exposure on choline acetyltransferase activity in the hamster cochlear nucleus. Hear. Res. 216–217, 168–175 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. D'Amour, J., A. & Froemke, R. C. Inhibitory and excitatory spike-timing-dependent plasticity in the auditory cortex. Neuron 86, 514–528 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tass, P. A. & Popovych, O. V. Unlearning tinnitus-related cerebral synchrony with acoustic coordinated reset stimulation: theoretical concept and modelling. Biol. Cybern. 106, 27–36 (2012).

    Article  PubMed  Google Scholar 

  93. Talathi, S. S., Hwang, D. U. & Ditto, W. L. Spike timing dependent plasticity promotes synchrony of inhibitory networks in the presence of heterogeneity. J. Comput. Neurosci. 25, 262–281 (2008).

    Article  PubMed  Google Scholar 

  94. Tziridis, K. et al. Noise trauma induced neural plasticity throughout the auditory system of mongolian gerbils: differences between tinnitus developing and non-developing animals. Front. Neurol. 6, 22 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Singer, W. et al. Noise-induced inner hair cell ribbon loss disturbs central arc mobilization: a novel molecular paradigm for understanding tinnitus. Mol. Neurobiol. 47, 261–279 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Li, S., Choi, V. & Tzounopoulos, T. Pathogenic plasticity of KV7.2/3 channel activity is essential for the induction of tinnitus. Proc. Natl Acad. Sci. USA 110, 9980–9985 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dehmel, S., Cui, Y. L. & Shore, S. E. Cross-modal interactions of auditory and somatic inputs in the brainstem and midbrain and their imbalance in tinnitus and deafness. Am. J. Audiol. 17, S193–209 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Wu, C., Stefanescu, R. A., Martel, D. T. & Shore, S. E. Listening to another sense: somatosensory integration in the auditory system. Cell Tissue Res. 361, 233–250 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Haenggeli, C. A., Pongstaporn, T., Doucet, J. R. & Ryugo, D. K. Projections from the spinal trigeminal nucleus to the cochlear nucleus in the rat. J. Comp. Neurol. 484, 191–205 (2005).

    Article  PubMed  Google Scholar 

  100. Wright, D. D. & Ryugo, D. K. Mossy fiber projections from the cuneate nucleus to the cochlear nucleus in the rat. J. Comp. Neurol. 365, 159–172 (1996).

    Article  CAS  PubMed  Google Scholar 

  101. Zhan, X., Pongstaporn, T. & Ryugo, D. K. Projections of the second cervical dorsal root ganglion to the cochlear nucleus in rats. J. Comp. Neurol. 496, 335–348 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zeng, C., Shroff, H. & Shore, S. E. Cuneate and spinal trigeminal nucleus projections to the cochlear nucleus are differentially associated with vesicular glutamate transporter-2. Neuroscience 176, 142–151 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Shore, S. E., Koehler, S., Oldakowski, M., Hughes, L. F. & Syed, S. Dorsal cochlear nucleus responses to somatosensory stimulation are enhanced after noise-induced hearing loss. Eur. J. Neurosci. 27, 155–168 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhou, J., Nannapaneni, N. & Shore, S. Vessicular glutamate transporters 1 and 2 are differentially associated with auditory nerve and spinal trigeminal inputs to the cochlear nucleus. J. Comp. Neurol. 500, 777–787 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Heeringa, A., Stefanescu, R. A., Raphael, Y. & Shore, S. Altered vesicular glutamate transporter distributions in the mouse cochlear nucleus following cochlear insult. Neuroscience 315, 114–124 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Basura, G. J., Koehler, S. D. & Shore, S. E. Multi-sensory integration in brainstem and auditory cortex. Brain Res. 1485, 95–107 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sanchez, T. G. & Rocha, C. B. Diagnosis and management of somatosensory tinnitus: review article. Clinics (Sao Paulo) 66, 1089–1094 (2011).

    Article  Google Scholar 

  108. Levine, R. A., Abel, M. & Cheng, H. CNS somatosensory–auditory interactions elicit or modulate tinnitus. Exp. Brain Res. 153, 643–648 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Zhou, J. & Shore, S. Projections from the trigeminal nuclear complex to the cochlear nuclei: a retrograde and anterograde tracing study in the guinea pig. J. Neurosci. Res. 78, 901–907 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Zhou, J. & Shore, S. Convergence of spinal trigeminal and cochlear nucleus projections in the inferior colliculus of the guinea pig. J. Comp. Neurol. 495, 100–112 (2006).

    Article  PubMed  Google Scholar 

  111. Wallhausser-Franke, E. et al. Expression of c-fos in auditory and non-auditory brain regions of the gerbil after manipulations that induce tinnitus. Exp. Brain Res. 153, 649–654 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Adjamian, P., Hall, D. A., Palmer, A. R., Allan, T. W. & Langers, D. R. Neuroanatomical abnormalities in chronic tinnitus in the human brain. Neurosci. Biobehav. Rev. 45C, 119–133 (2014).

    Article  Google Scholar 

  113. Lockwood, A. H. et al. The functional neuroanatomy of tinnitus: evidence for limbic system links and neural plasticity. Neurology 50, 114–120 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Pinchoff, R. J., Burkard, R. F., Salvi, R. J., Coad, M. L. & Lockwood, A. H. Modulation of tinnitus by voluntary jaw movements. Am. J. Otol. 19, 785–789 (1998).

    CAS  PubMed  Google Scholar 

  115. Vanneste, S. & De Ridder, D. The auditory and non-auditory brain areas involved in tinnitus. An emergent property of multiple parallel overlapping subnetworks. Front. Syst. Neurosci. 6, 31 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Melcher, J. R. & Knudson, I. M. & Levine, R. A. Subcallosal brain structure: correlation with hearing threshold at supra-clinical frequencies (>8 kHz), but not with tinnitus. Hear. Res. 295, 79–86 (2013).

    Article  PubMed  Google Scholar 

  117. Landgrebe, M. et al. Structural brain changes in tinnitus: grey matter decrease in auditory and non-auditory brain areas. NeuroImage 46, 213–218 (2009).

    Article  PubMed  Google Scholar 

  118. Muhlau, M. et al. Structural brain changes in tinnitus. Cereb. Cortex 16, 1283–1288 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Gu, J. W., Halpin, C. F., Nam, E. C., Levine, R. A. & Melcher, J. R. Tinnitus, diminished sound-level tolerance, and elevated auditory activity in humans with clinically normal hearing sensitivity. J. Neurophysiol. 104, 3361–3370 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Maudoux, A. et al. Auditory resting-state network connectivity in tinnitus: a functional MRI study. PLoS ONE 7, e36222 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Schlee, W. et al. Mapping cortical hubs in tinnitus. BMC Biol. 7, 80 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  122. De Ridder, D. et al. An integrative model of auditory phantom perception: tinnitus as a unified percept of interacting separable subnetworks. Neurosci. Biobehav. Rev. 44C, 16–32 (2014).

    Article  Google Scholar 

  123. de Lafuente, V. & Romo, R. Neuronal correlates of subjective sensory experience. Nat. Neurosci. 8, 1698–1703 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Golm, D., Schmidt-Samoa, C., Dechent, P. & Kroner-Herwig, B. Neural correlates of tinnitus related distress: an fMRI-study. Hear. Res. 295, 87–99 (2013).

    Article  PubMed  Google Scholar 

  125. Vanneste, S. et al. The neural correlates of tinnitus-related distress. NeuroImage 52, 470–480 (2010).

    Article  PubMed  Google Scholar 

  126. Schecklmann, M. et al. Auditory cortex is implicated in tinnitus distress: a voxel-based morphometry study. Brain Struct. Funct. 218, 1061–1070 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Vanneste, S., Plazier, M., van der Loo, E., Van de Heyning, P. & De Ridder, D. The difference between uni- and bilateral auditory phantom percept. Clin. Neurophysiol. 122, 578–587 (2011).

    Article  PubMed  Google Scholar 

  128. Carpenter-Thompson, J. R., Akrofi, K., Schmidt, S. A., Dolcos, F. & Husain, F. T. Alterations of the emotional processing system may underlie preserved rapid reaction time in tinnitus. Brain Res. 1567, 28–41 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Vanneste, S., Heyning, P. V. & Ridder, D. D. Contralateral parahippocampal gamma-band activity determines noise-like tinnitus laterality: a region of interest analysis. Neuroscience 199, 481–490 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Schecklmann, M. et al. Neural correlates of tinnitus duration and distress: a positron emission tomography study. Hum. Brain Mapp. 34, 233–240 (2013).

    Article  PubMed  Google Scholar 

  131. Maudoux, A. et al. Connectivity graph analysis of the auditory resting state network in tinnitus. Brain Res. 1485, 10–21 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Roberts, L. E., Husain, F. T. & Eggermont, J. J. Role of attention in the generation and modulation of tinnitus. Neurosci. Biobehav Rev. 37, 1754–1773 (2013).

    Article  PubMed  Google Scholar 

  133. Menon, V. & Uddin, Saliency, L. Q. Sailency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 214, 655–667 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Martinez-Devesa, P., Perera, R., Theodoulou, M. & Waddell, A. Cognitive behavioural therapy for tinnitus. Cochrane Database Syst. Rev. CD005233 (2010).

  135. Cima, R. F. et al. Specialised treatment based on cognitive behaviour therapy versus usual care for tinnitus: a randomised controlled trial. Lancet 379, 1951–1959 (2012).

    Article  PubMed  Google Scholar 

  136. Davis, P. B., Paki, B. & Hanley, P. J. Neuromonics tinnitus treatment: third clinical trial. Ear. Hear. 28, 242–259 (2007).

    Article  PubMed  Google Scholar 

  137. Vanneste, S. et al. Does enriched acoustic environment in humans abolish chronic tinnitus clinically and electrophysiologically? A double blind placebo controlled study. Hear. Res. 296, 141–148 (2013).

    Article  PubMed  Google Scholar 

  138. Okamoto, H., Stracke, H., Stoll, W. & Pantev, C. Listening to tailor-made notched music reduces tinnitus loudness and tinnitus-related auditory cortex activity. Proc. Natl Acad. Sci. USA 107, 1207–1210 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Tass, P. A., Adamchic, I., Freund, H. J., von Stackelberg, T. & Hauptmann, C. Counteracting tinnitus by acoustic coordinated reset neuromodulation. Restor. Neurol. Neurosci. 30, 137–159 (2012).

    Article  PubMed  Google Scholar 

  140. Hoare, D. J., Searchfield, G. D., El Refaie, A. & Henry, J. A. Sound therapy for tinnitus management: practicable options. J. Am. Acad. Audiol. 25, 62–75 (2014).

    Article  PubMed  Google Scholar 

  141. De Ridder, D., Vanneste, S., Engineer, N. D. & Kilgard, M. P. Safety and efficacy of vagus nerve stimulation paired with tones for the treatment of tinnitus: a case series. Neuromodulation 17, 170–179 (2014).

    Article  PubMed  Google Scholar 

  142. Hoare, D. J., Edmondson-Jones, M., Sereda, M., Akeroyd, M. A. & Hall, D. Amplification with hearing aids for patients with tinnitus and co-existing hearing loss. Cochrane Database Syst. Rev. 1, CD010151 (2014).

    Google Scholar 

  143. Schaette, R., Konig, O., Hornig, D., Gross, M. & Kempter, R. Acoustic stimulation treatments against tinnitus could be most effective when tinnitus pitch is within the stimulated frequency range. Hear. Res. 269, 95–101 (2010).

    Article  PubMed  Google Scholar 

  144. McNeill, C., Tavora-Vieira, D., Alnafjan, F. & Searchfield, G. D. & Welch, D. Tinnitus pitch, masking, and the effectiveness of hearing aids for tinnitus therapy. Int. J. Audiol. 51, 914–919 (2012).

    Article  PubMed  Google Scholar 

  145. Langguth, B. & Elgoyhen, A. B. Current pharmacological treatments for tinnitus. Expert Opin. Pharmacother. 13, 2495–2509 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Zoger, S., Svedlund, J. & Holgers, K. M. The effects of sertraline on severe tinnitus suffering — a randomized, double-blind, placebo-controlled study. J. Clin. Psychopharmacol. 26, 32–39 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Baldo, P., Doree, C., Molin, P., McFerran, D. & Cecco, S. Antidepressants for patients with tinnitus. Cochrane Database Syst. Rev. 9, CD003853 (2012).

    Google Scholar 

  148. Hoekstra, C. E., Rynja, S. P., van Zanten, G. A. & Rovers, M. M. Anticonvulsants for tinnitus. Cochrane Database Syst. Rev. 6, CD007960 (2011).

    Google Scholar 

  149. Han, S. S. et al. Clonazepam quiets tinnitus: a randomised crossover study with Ginkgo biloba. J. Neurol. Neurosurg. Psychiatry 83, 821–827 (2012).

    Article  PubMed  Google Scholar 

  150. Tunkel, D. E. et al. Clinical practice guideline: tinnitus. Otolaryngol. Head Neck Surg. 151, S1–S40 (2014).

    Article  PubMed  Google Scholar 

  151. Zenner, H. P. et al. On the interdisciplinary S3 guidelines for the treatment of chronic idiopathic tinnitus. HNO 63, 419–427 (in German) (2015).

    Article  PubMed  Google Scholar 

  152. van de Heyning, P. et al. Efficacy and safety of AM-101 in the treatment of acute inner ear tinnitus — a double-blind, randomized, placebo-controlled phase II study. Otol. Neurotol. 35, 589–597 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Soleimani, R., Jalali, M. M. & Hasandokht, T. Therapeutic impact of repetitive transcranial magnetic stimulation (rTMS) on tinnitus: a systematic review and meta-analysis. Eur. Arch. Otorhinolaryngol. http://dx.doi.org/10.1007/s00405-015-3642-5 (2015).

  154. Lehner, A. et al. Multisite rTMS for the treatment of chronic tinnitus: stimulation of the cortical tinnitus network — a pilot study. Brain Topogr. 26, 501–510 (2013).

    Article  PubMed  Google Scholar 

  155. Hebert, S., Fournier, P. & Norena, A. The auditory sensitivity is increased in tinnitus ears. J. Neurosci. 33, 2356–2364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Diesch, E., Andermann, M., Flor, H. & Rupp, A. Interaction among the components of multiple auditory steady-state responses: enhancement in tinnitus patients, inhibition in controls. Neuroscience 167, 540–553 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Wienbruch, C., Paul, I., Weisz, N., Elbert, T. & Roberts, L. E. Frequency organization of the 40-Hz auditory steady-state response in normal hearing and in tinnitus. NeuroImage 33, 180–194 (2006).

    Article  PubMed  Google Scholar 

  158. Langers, D. R., de Kleine, E. & van Dijk, P. Tinnitus does not require macroscopic tonotopic map reorganization. Front. Syst. Neurosci. 6, 2 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Roberts, L. E., Bosnyak, D. J., Bruce, I. C., Gander, P. E. & Paul, B. T. Evidence for differential modulation of primary and nonprimary auditory cortex by forward masking in tinnitus. Hear. Res. 327, 9–27 (2015).

    Article  PubMed  Google Scholar 

  160. Paul, B. T., Bruce, I. C., Bosnyak, D. J., Thompson, D. C. & Roberts, L. E. Modulation of electrocortical brain activity by attention in individuals with and without tinnitus. Neural Plast. 2014, 127824 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Jastreboff, P. J. Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci. Res. 8, 221–254 (1990).

    Article  CAS  PubMed  Google Scholar 

  162. Leaver, A. M. et al. Cortico-limbic morphology separates tinnitus from tinnitus distress. Front. Syst. Neurosci. 6, 21 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Weisz, N. et al. The neural code of auditory phantom perception. J. Neurosci. 27, 1479–1484 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Weisz, N., Moratti, S., Meinzer, M., Dohrmann, K. & Elbert, T. Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Med. 2, e153 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Adjamian, P., Sereda, M., Zobay, O., Hall, D. A. & Palmer, A. R. Neuromagnetic indicators of tinnitus and tinnitus masking in patients with and without hearing loss. J. Assoc. Res. Otolaryngol. 13, 715–731 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Sedley, W. et al. Intracranial mapping of a cortical tinnitus system using residual inhibition. Curr. Biol. 25, 1208–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors have received funding from the Tinnitus Research Initiative. S.E.S. has received funding from the NIH (grants NIHR01-DC004825, NIH P30-DC05188). L.E.R. has received funding from the Natural Sciences and Engineering Research Council of Canada and the Canadian Institutes of Health Research and the American Tinnitus Association. B.L. has received funding from the European Commission (TINNET COST Action BM 1306). We thank Calvin Wu and Amarins Heeringa for excellent assistance with graphics.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched literature for the article, provided substantial contributions to discussion of content and wrote, reviewed and edited the manuscript.

Corresponding author

Correspondence to Susan E. Shore.

Ethics declarations

Competing interests

B.L. has received honoraria for speaking and consultancy from ANM, AstraZeneca, Autifony, Gerson Lehrman Group, Lundbeck, McKinsey, Merz, Magventure, Novartis, Neuromod Devices, Pfizer and Servier, grants and research support from AstraZeneca, Cerbomed, Deymed, Magventure, Sivantos and Otonomy, and travel and accommodation payments from Lilly, Servier and Pfizer. B.L. holds patents for the use of neuronavigation for transcranial magnetic stimulation and for the use of cyclobenzaprine for tinnitus treatment. The other authors declare no competing interests.

PowerPoint slides

Glossary

Auditory nerve

The nerve that innervates cochlear hair cells and has a central projection to the cochlear nucleus.

Suprathreshold hearing

Hearing at levels above the measuring threshold.

Hidden hearing loss

Hearing loss that is not detectible by conventional auditory threshold testing and which reflects deficits in suprathreshold hearing.

Auditory brainstem response

Volume-conducted far field potentials reflecting synchronous activation of brainstem structures beginning with the cochlear nucleus and ending at the inferior colliculus.

dB hearing level

Decibels hearing level; dB relative to the quietest sound at a given frequency that a young individual with normal hearing is able to hear.

Tonotopicity

Frequency-specific organization at the auditory system.

Spike-timing-dependent plasticity

Spike-timing-dependent strengthening or weakening of synaptic transmission measured in vitro.

Stimulus-timing-dependent plasticity

The macroscopic equivalent of spike-timing-dependent plasticity, measured in vivo.

Hebbian plasticity

The strengthening of synaptic transmission when presynaptic activation precedes postsynaptic activation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shore, S., Roberts, L. & Langguth, B. Maladaptive plasticity in tinnitus — triggers, mechanisms and treatment. Nat Rev Neurol 12, 150–160 (2016). https://doi.org/10.1038/nrneurol.2016.12

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2016.12

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing