Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The emerging agenda of stratified medicine in neurology

Key Points

  • Stratified medicine focuses on the scientifically based classification of disease and treatment response, and is well suited to the practice of neurology

  • Stratification of patients on the basis of genetic and clinical characteristics and imaging has already had an impact on the cost-effectiveness of preventative and therapeutic interventions in patients with primary and secondary stroke

  • Pharmacogenetic stratification has been introduced to manage warfarin treatment in patients at risk of stroke and to reduce risks of severe cutaneous reactions in patients treated with antiepileptic drugs

  • Stratification of patients with multiple sclerosis on the basis of baseline characteristics and short-term pharmacodynamic responses could increase treatment benefits, limit adverse effects and reduce the costs of treatment

  • Brain imaging and other biomarkers enable specific diagnoses of dementia syndromes, and could be used to stratify healthy individuals at risk of developing dementia for early preventative interventions

  • Major challenges to clinical implementation of stratified neurology exist, but its high value, together with technological and scientific advances, justify a concerted effort to accelerate development in this area

Abstract

Stratified medicine can reduce the costs of neurological care, bringing benefits to both patients and physicians. The availability of routine genetic testing, new biomarkers and advanced imaging, as well as new technologies for patient-centred data collection, has expanded the potential for patient stratification. Several neurology subspecialities, including stroke, epilepsy and behavioural neurology, have already applied stratification for disease prognosis, optimization of disease management and reduction of treatment-related adverse events. Stratification approaches could improve the cost-effectiveness of neurological care that involves treatments with high costs or risks of adverse reactions, as well as guide the use of emerging, highly individualized therapies. There are still major challenges in the development of clinically actionable stratification concepts, and practical barriers can limit adoption of these concepts into clinical practice. However, improved technologies and disease understanding are making more precise stratification practical. We believe that neurologists should become leaders in the development and validation of these practices, and that use of these approaches should be part of a broader strategy for addressing both the growing needs of an ageing population and the rising pressures for rapid improvements in the cost-effectiveness of therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The range of factors that should be addressed by stratified medicine approaches.
Figure 2: Stratification of patients for efficacy can substantially reduce the number needed to treat for benefit.
Figure 3: PET imaging in the diagnosis of Alzheimer disease.

Similar content being viewed by others

References

  1. Trusheim, M. R., Berndt, E. R. & Douglas, F. L. Stratified medicine: strategic and economic implications of combining drugs and clinical biomarkers. Nat. Rev. Drug Discov. 6, 287–293 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Horwitz, R. I., Cullen, M. R., Abell, J. & Christian, J. B. (De)personalized medicine. Science 339, 1155–1156 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Schilsky, R. L. Personalized medicine in oncology: the future is now. Nat. Rev. Drug Discov. 9, 363–366 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Saver, J. L. et al. Number needed to treat to benefit and to harm for intravenous tissue plasminogen activator therapy in the 3- to 4.5-hour window: joint outcome table analysis of the ECASS 3 trial. Stroke 40, 2433–2437 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Costa, J. et al. Clinical comparability of the new antiepileptic drugs in refractory partial epilepsy: a systematic review and meta-analysis. Epilepsia 52, 1280–1291 (2011).

    Article  PubMed  Google Scholar 

  6. Romero, J. R. Prevention of ischemic stroke: overview of traditional risk factors. Curr. Drug Targets 8, 794–801 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. North American Symptomatic Carotid Endarterectomy Trial Collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis (North American Symptomatic Carotid Endarterectomy Trial Collaborators). N. Engl. J. Med. 325, 445–453 (1991).

  8. [No authors listed] Endarterectomy for asymptomatic carotid artery stenosis. Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. JAMA 273, 1421–1428 (1995).

  9. Sitzer, M. et al. Plaque ulceration and lumen thrombus are the main sources of cerebral microemboli in high-grade internal carotid artery stenosis. Stroke 26, 1231–1233 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Johnston, S. C. et al. Validation and refinement of scores to predict very early stroke risk after transient ischaemic attack. Lancet 369, 283–292 (2007).

    Article  PubMed  Google Scholar 

  11. Gage, B. F. et al. Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation. JAMA 285, 2864–2870 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Lip, G. Y., Nieuwlaat, R., Pisters, R., Lane, D. A. & Crijns, H. J. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the Euro Heart Survey on Atrial Fibrillation. Chest 137, 263–272 (2010).

    Article  PubMed  Google Scholar 

  13. Pisters, R. et al. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey. Chest 138, 1093–1100 (2010).

    Article  PubMed  Google Scholar 

  14. Carlquist, J. F. & Anderson, J. L. Using pharmacogenetics in real time to guide warfarin initiation: a clinician update. Circulation 124, 2554–2559 (2011).

    Article  PubMed  Google Scholar 

  15. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  16. Lou, M. et al. The HAT Score: a simple grading scale for predicting hemorrhage after thrombolysis. Neurology 71, 1417–1423 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cucchiara, B., Tanne, D., Levine, S. R., Demchuk, A. M. & Kasner, S. A risk score to predict intracranial hemorrhage after recombinant tissue plasminogen activator for acute ischemic stroke. J. Stroke Cerebrovasc. Dis. 17, 331–333 (2008).

    Article  PubMed  Google Scholar 

  18. Strbian, D. et al. Predicting outcome of IV thrombolysis-treated ischemic stroke patients: the DRAGON score. Neurology 78, 427–432 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Stroke Outcomes Research Canada. Ischemic Stroke Predictive Risk Score [online], (2012).

  20. Chung, W. H. & Hung, S. I. Recent advances in the genetics and immunology of Stevens–Johnson syndrome and toxic epidermal necrosis. J. Dermatol. Sci. 66, 190–196 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Ferrell, P. B. Jr & McLeod, H. L. Carbamazepine, HLA-B*1502 and risk of Stevens–Johnson syndrome and toxic epidermal necrolysis: US FDA recommendations. Pharmacogenomics 9, 1543–1546 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Yip, V. L., Marson, A. G., Jorgensen, A. L., Pirmohamed, M. & Alfirevic, A. HLA genotype and carbamazepine-induced cutaneous adverse drug reactions: a systematic review. Clin. Pharmacol. Ther. 92, 757–765 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Hung, S. I. et al. Common risk allele in aromatic antiepileptic-drug induced Stevens–Johnson syndrome and toxic epidermal necrolysis in Han Chinese. Pharmacogenomics 11, 349–356 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. US Department of Health and Human Services. Information for healthcare professionals: dangerous or even fatal skin reactions—carbamazepine (marketed as Carbatrol, Equetro, Tegretol, and generics). US Food and Drug Administration [online], (2007).

  25. Medicines and Healthcare Products Regulators Agency. Carbamazepine: genetic testing recommended in some Asian populations. Medicines and Healthcare Products Regulators Agency [online], (2008).

  26. Dong, D., Sung, C. & Finkelstein, E. A. Cost-effectiveness of HLA-B*1502 genotyping in adult patients with newly diagnosed epilepsy in Singapore. Neurology 79, 1259–1267 (2012).

    Article  PubMed  Google Scholar 

  27. Hung, S. I. & Chung, W. H. Cost-effectiveness of HLA-B*1502 genotyping in adult patients with newly diagnosed epilepsy in Singapore. Neurology 80, 1621 (2013).

    Article  PubMed  Google Scholar 

  28. Ozeki, T. et al. Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese population. Hum. Mol. Genet. 20, 1034–1041 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. McCormack, M. et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N. Engl. J. Med. 364, 1134–1143 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Franciotta, D., Kwan, P. & Perucca, E. Genetic basis for idiosyncratic reactions to antiepileptic drugs. Curr. Opin. Neurol. 22, 144–149 (2009).

    Article  PubMed  Google Scholar 

  31. Johnson, M. R., Tan, N. C., Kwan, P. & Brodie, M. J. Newly diagnosed epilepsy and pharmacogenomics research: a step in the right direction? Epilepsy Behav. 22, 3–8 (2011).

    Article  PubMed  Google Scholar 

  32. Chan, A., Pirmohamed, M. & Comabella, M. Pharmacogenomics in neurology: current state and future steps. Ann. Neurol. 70, 684–697 (2011).

    Article  PubMed  Google Scholar 

  33. Kwan, P. & Brodie, M. J. Early identification of refractory epilepsy. N. Engl. J. Med. 342, 314–319 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Johnson, M. R. et al. A twin study of genetic influences on epilepsy outcome. Twin Res. 6, 140–146 (2003).

    Article  PubMed  Google Scholar 

  35. Speed, D. A genome-wide association study and biological pathway analysis of epilepsy prognosis in a prospective cohort of newly treated epilepsy. Hum. Mol. Genet. http://dx.doi.org/10.1093/hmg/ddt403.

  36. De Jonghe, P. Molecular genetics of Dravet syndrome. Dev. Med. Child Neurol. 53 (Suppl. 2), 7–10 (2011).

    Article  PubMed  Google Scholar 

  37. Epi, K. C. et al. De novo mutations in epileptic encephalopathies. Nature 501, 217–221 (2013).

    Article  CAS  Google Scholar 

  38. Weinshenker, B. G. et al. The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. Brain 112, 133–146 (1989).

    Article  PubMed  Google Scholar 

  39. Derfuss, T. Personalized medicine in multiple sclerosis: hope or reality? BMC Med. 10, 116 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Miller, A., Avidan, N., Tzunz-Henig, N. & Glass-Marmor, L. Translation towards personalized medicine in multiple sclerosis. J. Neurol. Sci. 274, 68–75 (2008).

    Article  PubMed  Google Scholar 

  41. Sormani, M. P. & De Stefano, N. Defining and scoring response to IFN-β. Nat. Rev. Neurol. 9, 504–512 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Rio, J., Comabella, M. & Montalban, X. Predicting responders to therapies for multiple sclerosis. Nat. Rev. Neurol. 5, 553–560 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Koch, M. W., Metz, L. M., Agrawal, S. M. & Yong, V. W. Environmental factors and their regulation of immunity in multiple sclerosis. J. Neurol. Sci. 324, 10–16 (2013).

    Article  PubMed  Google Scholar 

  44. Ramagopalan, S. V. et al. Association of smoking with risk of multiple sclerosis: a population-based study. J. Neurol. 260, 1778–1781 (2013).

    Article  PubMed  Google Scholar 

  45. Montalban, X. et al. MRI criteria for MS in patients with clinically isolated syndromes. Neurology 74, 427–434 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Sormani, M. P., Rovaris, M., Comi, G. & Filippi, M. A reassessment of the plateauing relationship between T2 lesion load and disability in MS. Neurology 73, 1538–1542 (2009).

    Article  PubMed  Google Scholar 

  47. Bielekova, B. et al. MRI as a marker for disease heterogeneity in multiple sclerosis. Neurology 65, 1071–1076 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Rovaris, M. et al. Relationship between brain MRI lesion load and short-term disease evolution in non-disabling MS: a large-scale, multicentre study. Mult. Scler. 17, 319–326 (2011).

    Article  PubMed  Google Scholar 

  49. Fisniku, L. K. et al. Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain 131, 808–817 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Sormani, M. P. et al. Magnetic resonance imaging as a potential surrogate for relapses in multiple sclerosis: a meta-analytic approach. Ann. Neurol. 65, 268–275 (2009).

    Article  PubMed  Google Scholar 

  51. Sormani, M. P., Arnold, D. L. & De Stefano, N. Treatment effect on brain atrophy correlates with treatment effect on disability in multiple sclerosis. Ann. Neurol. http://dx.doi.org/10.1002/ana.24018.

  52. Owen, D. R. & Matthews, P. M. Imaging brain microglial activation using positron emission tomography and translocator protein-specific radioligands. Int. Rev. Neurobiol. 101, 19–39 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Politis, M. et al. Increased PK11195 PET binding in the cortex of patients with MS correlates with disability. Neurology 79, 523–530 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Farrell, R. A. et al. Humoral immune response to EBV in multiple sclerosis is associated with disease activity on MRI. Neurology 73, 32–38 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lunemann, J. D. et al. Elevated Epstein–Barr virus-encoded nuclear antigen-1 immune responses predict conversion to multiple sclerosis. Ann. Neurol. 67, 159–169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wandinger, K. et al. Association between clinical disease activity and Epstein–Barr virus reactivation in MS. Neurology 55, 178–184 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Ascherio, A. & Marrie, R. A. Vitamin D in MS: a vitamin for 4 seasons. Neurology 79, 208–210 (2012).

    Article  PubMed  Google Scholar 

  58. Kebir, H. et al. Preferential recruitment of interferon-γ-expressing TH17 cells in multiple sclerosis. Ann. Neurol. 66, 390–402 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Bushnell, S. E. et al. Serum IL-17F does not predict poor response to IM IFNβ-1a in relapsing-remitting MS. Neurology 79, 531–537 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Avolio, C. et al. Serum MMP-9/TIMP-1 and MMP-2/TIMP-2 ratios in multiple sclerosis: relationships with different magnetic resonance imaging measures of disease activity during IFN-β-1a treatment. Mult. Scler. 11, 441–446 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Villar, L. M. et al. Intrathecal IgM synthesis is a prognostic factor in multiple sclerosis. Ann. Neurol. 53, 222–226 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Khademi, M. et al. Cerebrospinal fluid CXCL13 in multiple sclerosis: a suggestive prognostic marker for the disease course. Mult. Scler. 17, 335–343 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Comabella, M. et al. Plasma osteopontin levels in multiple sclerosis. J. Neuroimmunol. 158, 231–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Axelsson, M. et al. Glial fibrillary acidic protein: a potential biomarker for progression in multiple sclerosis. J. Neurol. 258, 882–888 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Gunnarsson, M. et al. Axonal damage in relapsing multiple sclerosis is markedly reduced by natalizumab. Ann. Neurol. 69, 83–89 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Norgren, N. et al. Neurofilament and glial fibrillary acidic protein in multiple sclerosis. Neurology 63, 1586–1590 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Grossman, I. et al. Pharmacogenetics of glatiramer acetate therapy for multiple sclerosis reveals drug-response markers. Pharmacogenet. Genomics 17, 657–666 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Hesse, D., Sellebjerg, F. & Sorensen, P. S. Absence of MxA induction by interferon beta in patients with MS reflects complete loss of bioactivity. Neurology 73, 372–377 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Fainardi, E. et al. Presence of detectable levels of soluble HLA-G molecules in CSF of relapsing-remitting multiple sclerosis: relationship with CSF soluble HLA-I and IL-10 concentrations and MRI findings. J. Neuroimmunol. 142, 149–158 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Polman, C. H. et al. Recommendations for clinical use of data on neutralising antibodies to interferon-beta therapy in multiple sclerosis. Lancet Neurol. 9, 740–750 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Goodin, D. S. et al. Neutralizing antibodies to interferon beta: assessment of their clinical and radiographic impact: an evidence report: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 68, 977–984 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Baranzini, S. E. et al. Transcription-based prediction of response to IFNβ using supervised computational methods. PLoS Biol. 3, e2 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Baarsen, L. G. & Baarsen, V. Pharmacogenomics of IFN-β in multiple sclerosis: towards a personalized medicine approach. Pharmacogenomics 10, 97–108 (2009).

    Article  PubMed  Google Scholar 

  74. Sturzebecher, S. et al. Expression profiling identifies responder and non-responder phenotypes to interferon-beta in multiple sclerosis. Brain 126, 1419–1429 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Cribbs, D. H. et al. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J. Neuroinflammation 9, 179 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jones, J. L. et al. IL-21 drives secondary autoimmunity in patients with multiple sclerosis, following therapeutic lymphocyte depletion with alemtuzumab (Campath-1H). J. Clin. Invest. 119, 2052–2061 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Feldman, H. H. et al. Diagnosis and treatment of dementia: 2. Diagnosis. CMAJ 178, 825–836 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Jack, C. R. Jr et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 7, 257–262 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kantarci, K. et al. Magnetic resonance spectroscopy, beta-amyloid load, and cognition in a population-based sample of cognitively normal older adults. Neurology 77, 951–958 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nordberg, A., Rinne, J. O., Kadir, A. & Langstrom, B. The use of PET in Alzheimer disease. Nat. Rev. Neurol. 6, 78–87 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Weiner, M. W. et al. The Alzheimer's Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimers Dement. 8, S1–S68 (2012).

    Article  PubMed  Google Scholar 

  82. Pike, K. E. et al. Cognition and beta-amyloid in preclinical Alzheimer's disease: data from the AIBL study. Neuropsychologia 49, 2384–2390 (2011).

    Article  PubMed  Google Scholar 

  83. Nussbaum, R. L. Genome-wide association studies, Alzheimer disease, and understudied populations. JAMA 309, 1527–1528 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat. Genet. http://dx.doi.org/10.1038/ng.2802.

  85. Goate, A. & Hardy, J. Twenty years of Alzheimer's disease-causing mutations. J. Neurochem. 120 (Suppl. 1), 3–8 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Sanan, D. A. et al. Apolipoprotein E associates with beta amyloid peptide of Alzheimer's disease to form novel monofibrils. Isoform apoE4 associates more efficiently than apoE3. J. Clin. Invest. 94, 860–869 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Weisgraber, K. H. & Mahley, R. W. Human apolipoprotein E: the Alzheimer's disease connection. FASEB J. 10, 1485–1494 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Toledo, J. B. et al. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer's Coordinating Centre. Brain 136, 2697–2706 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Harold, D. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat. Genet. 41, 1088–1093 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hollingworth, P. et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat. Genet. 43, 429–435 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Critical Path Institute. Alzheimer's Disease Clinical Trial Simulation Tool. Critical Path Institute [online].

  92. Klunk, W. E. et al. The binding of 2-(4′-methylaminophenyl)benzothiazole to postmortem brain homogenates is dominated by the amyloid component. J. Neurosci. 23, 2086–2092 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Klunk, W. E. Amyloid imaging as a biomarker for cerebral beta-amyloidosis and risk prediction for Alzheimer dementia. Neurobiol. Aging 32 (Suppl. 1), S20–S36 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Edison, P. et al. Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study. Neurology 68, 501–508 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Pike, K. E. et al. β-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease. Brain 130, 2837–2844 (2007).

    Article  PubMed  Google Scholar 

  96. Jack, C. R. Jr et al. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fagan, A. M. et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ42 in humans. Ann. Neurol. 59, 512–519 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Buerger, K. et al. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer's disease. Brain 129, 3035–3041 (2006).

    Article  PubMed  Google Scholar 

  99. Hampel, H. et al. Biomarkers for Alzheimer's disease therapeutic trials. Prog. Neurobiol. 95, 579–593 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Whitwell, J. L. et al. Neuroimaging correlates of pathologically defined subtypes of Alzheimer's disease: a case-control study. Lancet Neurol. 11, 868–877 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ryan, N. S. & Fox, N. C. Imaging biomarkers in Alzheimer's disease. Ann. N. Y. Acad. Sci. 1180, 20–27 (2009).

    Article  PubMed  Google Scholar 

  102. Douaud, G. et al. Brain microstructure reveals early abnormalities more than two years prior to clinical progression from mild cognitive impairment to Alzheimer's disease. J. Neurosci. 33, 2147–2155 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Landau, S. M. et al. Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol. Aging 32, 1207–1218 (2011).

    Article  PubMed  Google Scholar 

  104. Landau, S. M. et al. Comparing predictors of conversion and decline in mild cognitive impairment. Neurology 75, 230–238 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sabate, E. Adherence to long-term therapies. Evidence for action (World Health Organisation, 2003).

  106. Hamburg, M. A. & Collins, F. S. The path to personalized medicine. N. Engl. J. Med. 363, 301–304 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Hobart, J. C., Cano, S. J., Zajicek, J. P. & Thompson, A. J. Rating scales as outcome measures for clinical trials in neurology: problems, solutions, and recommendations. Lancet Neurol. 6, 1094–1105 (2007).

    Article  PubMed  Google Scholar 

  108. Bristol-Myers Squibb Company. Full prescribing information: Coumadin (warfarin sodium) (Bristol-Myers Squibb, 2011).

  109. Marburger, J. H. & Kvamme, E. F. Report of the President's Council of Advisors on Science and Technology (ed. US President's Council of Advisors on Science and Technology (PCOST); Washington, 2008).

    Google Scholar 

  110. Committee on a Framework for Development of a New Taxonomy of Disease; National Research Council. Toward precision medicine: building a knowledge network for biomedical research and a new taxonomy of disease (The National Academies Press, 2013).

  111. Hood, L. & Friend, S. H. Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat. Rev. Clin. Oncol. 8, 184–187 (2011).

    Article  PubMed  Google Scholar 

  112. Puetz, V., Dzialowski, I., Hill, M. D. & Demchuk, A. M. The Alberta Stroke Program Early CT Score in clinical practice: what have we learned? Stroke 4, 354–364 (2009).

    Article  CAS  Google Scholar 

  113. Bermel, R. A. et al. Predictors of long-term outcome in multiple sclerosis patients treated with interferon beta. Ann. Neurol. 73, 95–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Wei, X. et al. Targeted next-generation sequencing as a comprehensive test for patients with and female carriers of DMD/BMD: a multi-population diagnostic study. Eur. J. Hum. Genet. http://dx.doi.org/10.1038/ejhg.2013.82.

  115. Vasli, N. et al. Next generation sequencing for molecular diagnosis of neuromuscular diseases. Acta Neuropathol. 124, 273–283 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Vasli, N. & Laporte, J. Impacts of massively parallel sequencing for genetic diagnosis of neuromuscular disorders. Acta Neuropathol. 125, 173–185 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Dziubianau, M. et al. TCR repertoire analysis by next generation sequencing allows complex differential diagnosis of T cell-related pathology. Am. J. Transplant. http://dx.doi.org/10.1111/ajt.12431.

  118. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Marrie, R. A. et al. Comorbidity delays diagnosis and increases disability at diagnosis in MS. Neurology 72, 117–124 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Marrie, R. A. et al. Vascular comorbidity is associated with more rapid disability progression in multiple sclerosis. Neurology 74, 1041–1047 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Banerjee, A. K. & Ingate, S. Web-based patient-reported outcomes in drug safety and risk management: challenges and opportunities? Drug Saf. 35, 437–446 (2012).

    Article  PubMed  Google Scholar 

  122. Willke, R. J., Burke, L. B. & Erickson, P. Measuring treatment impact: a review of patient-reported outcomes and other efficacy endpoints in approved product labels. Control. Clin. Trials 25, 535–552 (2004).

    Article  PubMed  Google Scholar 

  123. van Ommen, G. J., van Deutekom, J. & Aartsma-Rus, A. The therapeutic potential of antisense-mediated exon skipping. Curr. Opin. Mol. Ther. 10, 140–149 (2008).

    CAS  PubMed  Google Scholar 

  124. Nakamura, A. & Takeda, S. Exon-skipping therapy for Duchenne muscular dystrophy. Lancet 378, 546–547 (2011).

    Article  PubMed  Google Scholar 

  125. Kanagawa, M. & Toda, T. The genetic and molecular basis of muscular dystrophy: roles of cell-matrix linkage in the pathogenesis. J. Hum. Genet. 51, 915–926 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Mitrpant, C., Fletcher, S. & Wilton, S. D. Personalised genetic intervention for Duchenne muscular dystrophy: antisense oligomers and exon skipping. Curr. Mol. Pharmacol. 2, 110–121 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Cox, T. M. & Cachon-Gonzalez, M. B. The cellular pathology of lysosomal diseases. J. Pathol. 226, 241–254 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Suzuki, Y. Chaperone therapy update: Fabry disease, GM1-gangliosidosis and Gaucher disease. Brain Dev. 35, 515–523 (2013).

    Article  PubMed  Google Scholar 

  129. Germain, D. P. et al. Safety and pharmacodynamic effects of a pharmacological chaperone on alpha-galactosidase A activity and globotriaosylceramide clearance in Fabry disease: report from two phase 2 clinical studies. Orphanet J. Rare Dis. 7, 91 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Davis, J. C. et al. The microeconomics of personalized medicine: today's challenge and tomorrow's promise. Nat. Rev. Drug Discov. 8, 279–286 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P. M. Matthews is grateful for support from the Medical Research Council to develop the OPTIMISE consortium for stratified medicine in MS. He received considerable input concerning stratified medicine approaches from many involved in the consortium, particularly R. Horwitz and J. Abell (GSK), R. Hyde (Biogen), G. Giovanonni (Queen Mary College London), L. Fugger and M. Craner (University of Oxford), C. Green (Exeter University), M. P. Sormani (Genoa University), D. Miller (University College London) and S. Baranzini (UCSF). This work also benefited from support to Imperial College London from the UK NIHR Biomedical Research Centres Scheme.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and made substantial contributions to discussion of the content, writing of the article and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Paul M. Matthews.

Ethics declarations

Competing interests

P. M. Matthews is a part-time employee of GlaxoSmithKline Research and Development, Ltd, and holds stocks and options in the company. He has received speakers honoraria from Novartis and Biogen. P. Edison has received consultancy honoraria from Piramal Life Sciences. M. R. Johnson has received Advisory Board and speakers honoraria from GlaxoSmithKline, UCB Pharma and Esai.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthews, P., Edison, P., Geraghty, O. et al. The emerging agenda of stratified medicine in neurology. Nat Rev Neurol 10, 15–26 (2014). https://doi.org/10.1038/nrneurol.2013.245

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2013.245

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing