Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Decision-making cognition in neurodegenerative diseases

Abstract

A large proportion of human social neuroscience research has focused on the issue of decision-making. Impaired decision-making is a symptomatic feature of a number of neurodegenerative diseases, but the nature of these decision-making deficits depends on the particular disease. Thus, examining the qualitative differences in decision-making impairments associated with different neurodegenerative diseases could provide valuable information regarding the underlying neural basis of decision-making. Nevertheless, few comparative reports of decision-making across patient groups exist. In this Review, we examine the neuroanatomical substrates of decision-making in relation to the neuropathological changes that occur in Alzheimer disease, frontotemporal dementia, Parkinson disease and Huntington disease. We then examine the main findings from studies of decision-making in these neurodegenerative diseases. Finally, we suggest a number of recommendations that future studies could adopt to aid our understanding of decision-making cognition.

Key Points

  • Decision-making is a complex mental function influenced by multiple cognitive and behavioral processes

  • Several tasks have been developed that assess different types of decision-making

  • Understanding how different brain areas contribute to successful performance on decision-making tasks can help us to identify which pathological changes associated with specific neurodegenerative diseases contribute to poor decision-making

  • Studies that incorporate multiple measures of decision-making in the same patient populations, as well as assessment of other cognitive and behavioral processes, could further our knowledge of decision-making cognition

  • Elucidation of the processes underlying decision-making could lead to more-objective diagnostic tests for impairments in this cognitive function, as well as the development of effective rehabilitation strategies and pharmacological treatments

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A neuroanatomical model of decision-making.

Similar content being viewed by others

References

  1. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    CAS  PubMed  Google Scholar 

  2. Naggara, O. et al. Diffusion tensor imaging in early Alzheimer's disease. Psychiatry Res. 146, 243–249 (2006).

    PubMed  Google Scholar 

  3. Schliebs, R. Basal forebrain cholinergic dysfunction in Alzheimer's disease—interrelationship with β-amyloid, inflammation and neurotrophin signaling. Neurochem. Res. 30, 895–908 (2005).

    CAS  PubMed  Google Scholar 

  4. Cummings, J. L. & Cole, G. Alzheimer disease. JAMA 287, 2335–2338 (2002).

    CAS  PubMed  Google Scholar 

  5. Kipps, C. M., Nestor, P. J., Fryer, T. D. & Hodges, J. R. Behavioural variant frontotemporal dementia: not all it seems? Neurocase 13, 237–247 (2007).

    CAS  PubMed  Google Scholar 

  6. Rosen, H. J. et al. Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology 58, 198–208 (2002).

    CAS  PubMed  Google Scholar 

  7. Kertesz, A., McMonagle, P., Blair, M., Davidson, W. & Munoz, D. G. The evolution and pathology of frontotemporal dementia. Brain 128, 1996–2005 (2005).

    PubMed  Google Scholar 

  8. Hallidayb, J. J. Clinicopathological staging of frontotemporal dementia severity: correlation with regional atrophy. Dement. Geriatr. Cogn. Disord. 17, 311–315 (2004).

    Google Scholar 

  9. Hodges, J. R. & Miller, B. The neuropsychology of frontal variant frontotemporal dementia and semantic dementia. Introduction to the special topic papers: Part II. Neurocase 7, 113–121 (2001).

    CAS  PubMed  Google Scholar 

  10. Rascovsky, K. et al. Diagnostic criteria for the behavioral variant of frontotemporal dementia (bvFTD): current limitations and future directions. Alzheimer Dis. Assoc. Disord. 21, S14–S18 (2007).

    PubMed  Google Scholar 

  11. Neary, D. et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51, 1546–1554 (1998).

    CAS  PubMed  Google Scholar 

  12. Jankovic, J. Parkinson's disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79, 368–376 (2008).

    CAS  PubMed  Google Scholar 

  13. Albin, R. L., Young, A. B. & Penney, J. B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375 (1989).

    CAS  PubMed  Google Scholar 

  14. Emre, M. What causes mental dysfunction in Parkinson's disease? Mov. Disord. 18 (Suppl. 6), S63–S71 (2003).

    PubMed  Google Scholar 

  15. Emre, M. et al. Clinical diagnostic criteria for dementia associated with Parkinson's disease. Mov. Disord. 22, 1689–1707 (2007).

    PubMed  Google Scholar 

  16. Weintraub, D., Moberg, P. J., Duda, J. E., Katz, I. R. & Stern, M. B. Effect of psychiatric and other nonmotor symptoms on disability in Parkinson's disease. J. Am. Geriatr. Soc. 52, 784–788 (2004).

    PubMed  Google Scholar 

  17. Schrag, A. Psychiatric aspects of Parkinson's disease—an update. J. Neurol. 251, 795–804 (2004).

    PubMed  Google Scholar 

  18. Burns, A., Folstein, S., Brandt, J. & Folstein, M. Clinical assessment of irritability, aggression, and apathy in Huntington and Alzheimer disease. J. Nerv. Ment. Dis. 178, 20–26 (1990).

    CAS  PubMed  Google Scholar 

  19. Cummings, J. L. Behavioral and psychiatric symptoms associated with Huntington's disease. Adv. Neurol. 65, 179–186 (1995).

    CAS  PubMed  Google Scholar 

  20. Brand, M., Labudda, K. & Markowitsch, H. J. Neuropsychological correlates of decision-making in ambiguous and risky situations. Neural Netw. 19, 1266–1276 (2006).

    PubMed  Google Scholar 

  21. Bechara, A., Damasio, A. R., Damasio, H. & Anderson, S. W. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50, 7–15 (1994).

    CAS  PubMed  Google Scholar 

  22. Bechara, A., Damasio, H., Tranel, D. & Anderson, S. W. Dissociation of working memory from decision making within the human prefrontal cortex. J. Neurosci. 18, 428–437 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Manes, F. et al. Decision-making processes following damage to the prefrontal cortex. Brain 125, 624–639 (2002).

    PubMed  Google Scholar 

  24. Dunn, B. D., Dalgleish, T. & Lawrence, A. D. The somatic marker hypothesis: a critical evaluation. Neurosci. Biobehav. Rev. 30, 239–271 (2006).

    PubMed  Google Scholar 

  25. Ernst, M. et al. Decision-making in a risk-taking task: a PET study. Neuropsychopharmacology 26, 682–691 (2002).

    PubMed  Google Scholar 

  26. Fellows, L. K. & Farah, M. J. Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cereb. Cortex 15, 58–63 (2005).

    PubMed  Google Scholar 

  27. Clark, L. & Manes, F. Social and emotional decision-making following frontal lobe injury. Neurocase 10, 398–403 (2004).

    PubMed  Google Scholar 

  28. Roca, M. et al. Executive function and fluid intelligence after frontal lobe lesions. Brain 133, 234–247 (2009).

    PubMed  PubMed Central  Google Scholar 

  29. Buelow, M. T. & Suhr, J. A. Construct validity of the Iowa Gambling Task. Neuropsychol. Rev. 19, 102–114 (2009).

    PubMed  Google Scholar 

  30. Maia, T. V. & McClelland, J. L. A reexamination of the evidence for the somatic marker hypothesis: What participants really know in the Iowa gambling task. Proc. Natl Acad. Sci. USA 101, 16075–16080 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hsu, M., Bhatt, M., Adolphs, R., Tranel, D. & Camerer, C. F. Neural systems responding to degrees of uncertainty in human decision-making. Science 310, 1680–1683 (2005).

    CAS  PubMed  Google Scholar 

  32. Alexander, G. E. & Crutcher, M. D. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 13, 266–271 (1990).

    CAS  PubMed  Google Scholar 

  33. Alexander, G. E., Crutcher, M. D. & DeLong, M. R. Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog. Brain Res. 85, 119–146 (1990).

    CAS  PubMed  Google Scholar 

  34. Rogers, R. D. et al. Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology 20, 322–339 (1999).

    CAS  PubMed  Google Scholar 

  35. Rogers, R. D. et al. Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. J. Neurosci. 19, 9029–9038 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Brand, M. et al. Decision-making deficits of Korsakoff patients in a new gambling task with explicit rules: associations with executive functions. Neuropsychology 19, 267–277 (2005).

    PubMed  Google Scholar 

  37. Sinz, H., Zamarian, L., Benke, T., Wenning, G. K. & Delazer, M. Impact of ambiguity and risk on decision making in mild Alzheimer's disease. Neuropsychologia 46, 2043–2055 (2008).

    CAS  PubMed  Google Scholar 

  38. Zamarian, L., Sinz, H., Bonatti, E., Gamboz, N. & Delazer, M. Normal aging affects decisions under ambiguity, but not decisions under risk. Neuropsychology 22, 645–657 (2008).

    PubMed  Google Scholar 

  39. Lejuez, C. W. et al. Evaluation of a behavioral measure of risk taking: The Balloon Analogue Risk Task (BART). J. Exp. Psychol. Appl. 8, 75–84 (2002).

    CAS  PubMed  Google Scholar 

  40. Levin, I. P. & Hart, S. S. Risk preferences in young children: early evidence of individual differences in reaction to potential gains and losses. J. Behav. Decis. Mak. 16, 397–413 (2003).

    Google Scholar 

  41. Brand, M. et al. Decision-making impairments in patients with Parkinson's disease. Behav. Neurol. 15, 77–85 (2004).

    PubMed  Google Scholar 

  42. Overman, W. H. et al. Performance on the IOWA card task by adolescents and adults. Neuropsychologia 42, 1838–1851 (2004).

    PubMed  Google Scholar 

  43. Delazer, M., Sinz, H., Zamarian, L. & Benke, T. Decision-making with explicit and stable rules in mild Alzheimer's disease. Neuropsychologia 45, 1632–1641 (2007).

    CAS  PubMed  Google Scholar 

  44. Jameson, T. L., Hinson, J. M. & Whitney, P. Components of working memory and somatic markers in decision making. Psychon. Bull. Rev. 11, 515–520 (2004).

    PubMed  Google Scholar 

  45. Hinson, J. M., Jameson, T. L. & Whitney, P. Somatic markers, working memory, and decision making. Cogn. Affect. Behav. Neurosci. 2, 341–353 (2002).

    PubMed  Google Scholar 

  46. Brand, M., Recknor, E., Grabenhorst, F. & Bechara, A. Decisions under ambiguity and decisions under risk: correlations with executive functions and comparisons of two different gambling tasks with implicit and explicit rules. J. Clin. Exp. Neuropsychol. 29, 86–99 (2007).

    PubMed  Google Scholar 

  47. Brand, M., Grabenhorst, F., Starcke, K., Vandekerckhove, M. M. & Markowitsch, H. J. Role of the amygdala in decisions under ambiguity and decisions under risk: evidence from patients with Urbach–Wiethe disease. Neuropsychologia 45, 1305–1317 (2007).

    PubMed  Google Scholar 

  48. Lee, D. Game theory and neural basis of social decision making. Nat. Neurosci. 11, 404–409 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kable, J. W. & Glimcher, P. W. The neurobiology of decision: consensus and controversy. Neuron 63, 733–745 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Glimcher, P. W. & Rustichini, A. Neuroeconomics: the consilience of brain and decision. Science 306, 447–452 (2004).

    CAS  PubMed  Google Scholar 

  51. Seymour, B. & Dolan, R. Emotion, decision making, and the amygdala. Neuron 58, 662–671 (2008).

    CAS  PubMed  Google Scholar 

  52. Bechara, A. & Van Der Linden, M. Decision-making and impulse control after frontal lobe injuries. Curr. Opin. Neurol. 18, 734–739 (2005).

    PubMed  Google Scholar 

  53. O'Doherty, J. P., Hampton, A. & Kim, H. Model-based fMRI and its application to reward learning and decision making. Ann. NY Acad. Sci. 1104, 35–53 (2007).

    PubMed  Google Scholar 

  54. Rangel, A. & Hare, T. Neural computations associated with goal-directed choice. Curr. Opin. Neurobiol. 20, 262–270 (2010).

    CAS  PubMed  Google Scholar 

  55. Rushworth, M. F., Behrens, T. E., Rudebeck, P. H. & Walton, M. E. Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behaviour. Trends Cogn. Sci. 11, 168–176 (2007).

    CAS  PubMed  Google Scholar 

  56. Assadi, S. M., Yücel, M. & Pantelis, C. Dopamine modulates neural networks involved in effort-based decision-making. Neurosci. Biobehav. Rev. 33, 383–393 (2009).

    CAS  PubMed  Google Scholar 

  57. Marschner, A. et al. Reward-based decision-making and aging. Brain Res. Bull. 67, 382–390 (2005).

    CAS  PubMed  Google Scholar 

  58. Meeks, T. W. & Jeste, D. V. Neurobiology of wisdom: a literature overview. Arch. Gen. Psychiatry 66, 355–365 (2009).

    PubMed  PubMed Central  Google Scholar 

  59. Haggard, P. Human volition: towards a neuroscience of will. Nat. Rev. Neurosci. 9, 934–946 (2008).

    CAS  PubMed  Google Scholar 

  60. Clark, L., Manes, F., Antoun, N., Sahakian, B. J. & Robbins, T. W. The contributions of lesion laterality and lesion volume to decision-making impairment following frontal lobe damage. Neuropsychologia 41, 1474–1483 (2003).

    PubMed  Google Scholar 

  61. Thiel, A. et al. Activation of basal ganglia loops in idiopathic Parkinson's disease: a PET study. J. Neural Transm. 110, 1289–1301 (2003).

    CAS  PubMed  Google Scholar 

  62. Bolla, K. I., Eldreth, D. A., Matochik, J. A. & Cadet, J. L. Neural substrates of faulty decision-making in abstinent marijuana users. Neuroimage 26, 480–492 (2005).

    PubMed  Google Scholar 

  63. Bolla, K. I. et al. Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. Neuroimage 19, 1085–1094 (2003).

    CAS  PubMed  Google Scholar 

  64. Krain, A. L., Wilson, A. M., Arbuckle, R., Castellanos, F. X. & Milham, M. P. Distinct neural mechanisms of risk and ambiguity: a meta-analysis of decision-making. Neuroimage 32, 477–484 (2006).

    PubMed  Google Scholar 

  65. Li, X., Lu, Z., D'Argembeau, A., Ng, M. & Bechara, A. The Iowa Gambling Task in fMRI images. Hum. Brain Mapp. 31, 410–423 (2010).

    CAS  PubMed  Google Scholar 

  66. Rahman, S., Sahakian, B. J., Hodges, J. R., Rogers, R. D. & Robbins, T. W. Specific cognitive deficits in mild frontal variant frontotemporal dementia. Brain 122, 1469–1493 (1999).

    PubMed  Google Scholar 

  67. Rahman, S. et al. Methylphenidate ('Ritalin') can ameliorate abnormal risk-taking behavior in the frontal variant of frontotemporal dementia. Neuropsychopharmacology 31, 651–658 (2005).

    Google Scholar 

  68. Torralva, T. et al. The relationship between affective decision-making and theory of mind in the frontal variant of fronto-temporal dementia. Neuropsychologia 45, 342–349 (2007).

    PubMed  Google Scholar 

  69. Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y. & Plumb, I. The “Reading the Mind in the Eyes” Test revised version: a study with normal adults, and adults with Asperger syndrome or high-functioning autism. J. Child Psychol. Psychiatry 42, 241–251 (2001).

    CAS  PubMed  Google Scholar 

  70. Stone, V. E., Baron-Cohen, S. & Knight, R. T. Frontal lobe contributions to theory of mind. J. Cogn. Neurosci. 10, 640–656 (1998).

    CAS  PubMed  Google Scholar 

  71. Gregory, C. et al. Theory of mind in patients with frontal variant frontotemporal dementia and Alzheimer's disease: theoretical and practical implications. Brain 125, 752–764 (2002).

    PubMed  Google Scholar 

  72. Torralva, T., Roca, M., Gleichgerrcht, E., Bekinschtein, T. & Manes, F. A neuropsychological battery to detect specific executive and social cognitive impairments in early frontotemporal dementia. Brain 132, 1299–1309 (2009).

    PubMed  Google Scholar 

  73. Gleichgerrcht, E., Torralva, T., Roca, M. & Manes, F. Utility of an abbreviated version of the executive and social cognition battery in the detection of executive deficits in early behavioral variant frontotemporal dementia patients. J. Int. Neuropsychol. Soc. 16, 687–694 (2010).

    PubMed  Google Scholar 

  74. Manes, F. F. et al. Frontotemporal dementia presenting as pathological gambling. Nat. Rev. Neurol. 6, 347–352 (2010).

    PubMed  Google Scholar 

  75. Torralva, T., Dorrego, F., Sabe, L., Chemerinski, E. & Starkstein, S. E. Impairments of social cognition and decision making in Alzheimer's disease. Int. Psychogeriatr. 12, 359–368 (2000).

    CAS  PubMed  Google Scholar 

  76. Folstein, M. F., Folstein, S. E. & McHugh, P. R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198 (1975).

    CAS  PubMed  Google Scholar 

  77. Partington, J. E. & Leiter, R. Partington's Pathway Test. The Psychological Service Center Bulletin 1, 9–20 (1949).

    Google Scholar 

  78. Hamann, S., Monarch, E. S. & Goldstein, F. C. Impaired fear conditioning in Alzheimer's disease. Neuropsychologia 40, 1187–1195 (2002).

    PubMed  Google Scholar 

  79. Mori, E. et al. Amygdalar volume and emotional memory in Alzheimer's disease. Am. J. Psychiatry 156, 216–222 (1999).

    CAS  PubMed  Google Scholar 

  80. Herholz, K. et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 17, 302–316 (2002).

    CAS  PubMed  Google Scholar 

  81. Chu, C. C., Tranel, D., Damasio, A. R. & Van Hoesen, G. W. The autonomic-related cortex: pathology in Alzheimer's disease. Cereb. Cortex 7, 86–95 (1997).

    CAS  PubMed  Google Scholar 

  82. Taylor, A., Saint-Cyr, J. A. & Lang, A. E. Frontal lobe dysfunction in Parkinson's disease. The cortical focus of neostriatal outflow. Brain 109, 845–883 (1986).

    PubMed  Google Scholar 

  83. Owen, A. M. Cognitive dysfunction in Parkinson's disease: the role of frontostriatal circuitry. Neuroscientist 10, 525–537 (2004).

    PubMed  Google Scholar 

  84. Trepel, C., Fox, C. R. & Poldrack, R. A. Prospect theory on the brain? Toward a cognitive neuroscience of decision under risk. Brain Res. Cogn. Brain Res. 23, 34–50 (2005).

    PubMed  Google Scholar 

  85. Agid, Y., Javoy-Agid, F. & Ruberg, M. Biochemistry of neurotransmitters in Parkinson's disease. In Movement Disord ers Vol. 2 (eds Marsden, C. D. & Fahn, S.) 166–230 (Butterworth, London, 1987).

    Google Scholar 

  86. Ouchi, Y. et al. Alterations in binding site density of dopamine transporter in the striatum, orbitofrontal cortex, and amygdala in early Parkinson's disease: compartment analysis for beta-CFT binding with positron emission tomography. Ann. Neurol. 45, 601–610 (2001).

    Google Scholar 

  87. Czernecki, V. et al. Motivation, reward, and Parkinson's disease: influence of dopatherapy. Neuropsychologia 40, 2257–2267 (2002).

    CAS  PubMed  Google Scholar 

  88. Cools, R., Barker, R. A., Sahakian, B. J. & Robbins, T. W. L-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson's disease. Neuropsychologia 41, 1431–1441 (2003).

    PubMed  Google Scholar 

  89. Perretta, J. G., Pari, G. & Beninger, R. J. Effects of Parkinson disease on two putative nondeclarative learning tasks. Cogn. Behav. Neurol. 18, 185–192 (2005).

    PubMed  Google Scholar 

  90. Mimura, M., Oeda, R. & Kawamura, M. Impaired decision-making in Parkinson's disease. Parkinsonism Relat. Disord. 12, 169–175 (2006).

    PubMed  Google Scholar 

  91. Kalbe, E. et al. Dissociating cognitive from affective theory of mind: a TMS study. Cortex 46, 769–780 (2009).

    PubMed  Google Scholar 

  92. Hynes, C. A., Baird, A. A. & Grafton, S. T. Differential role of the orbital frontal lobe in emotional versus cognitive perspective-taking. Neuropsychologia 44, 374–383 (2006).

    PubMed  Google Scholar 

  93. Shamay-Tsoory, S. G. & Aharon-Peretz, J. Dissociable prefrontal networks for cognitive and affective theory of mind: A lesion study. Neuropsychologia 45, 3054–3067 (2007).

    PubMed  Google Scholar 

  94. Shamay-Tsoory, S. G., Tomer, R., Berger, B. D., Goldsher, D. & Aharon-Peretz, J. Impaired “affective theory of mind” is associated with right ventromedial prefrontal damage. Cogn. Behav. Neurol. 18, 55–67 (2005).

    CAS  PubMed  Google Scholar 

  95. Pagonabarraga, J. et al. Controlled study of decision-making and cognitive impairment in Parkinson's disease. Mov. Disord. 22, 1430–1435 (2007).

    PubMed  Google Scholar 

  96. Kobayakawa, M., Koyama, S., Mimura, M. & Kawamura, M. Decision making in Parkinson's disease: Analysis of behavioral and physiological patterns in the Iowa gambling task. Mov. Disord. 23, 547–552 (2007).

    Google Scholar 

  97. Bechara, A., Damasio, H. & Damasio, A. R. Role of the amygdala in decision-making. Ann. NY Acad. Sci. 985, 356–369 (2003).

    PubMed  Google Scholar 

  98. Ibarretxe-Bilbao, N. et al. Neuroanatomical correlates of impaired decision-making and facial emotion recognition in early Parkinson's disease. Eur. J. Neurosci. 30, 1162–1171 (2009).

    PubMed  Google Scholar 

  99. Euteneuer, F. et al. Dissociation of decision-making under ambiguity and decision-making under risk in patients with Parkinson's disease: a neuropsychological and psychophysiological study. Neuropsychologia 47, 2882–2890 (2009).

    PubMed  Google Scholar 

  100. Delazer, M. et al. Decision making under risk and under ambiguity in Parkinson's disease. Neuropsychologia 47, 1901–1908 (2009).

    CAS  PubMed  Google Scholar 

  101. Poletti, M. et al. Decision making in de novo Parkinson's disease. Mov. Disord. 25, 1432–1436 (2010).

    PubMed  Google Scholar 

  102. Vonsattel, J. P. et al. Neuropathological classification of Huntington's disease. J. Neuropathol. Exp. Neurol. 44, 559–577 (1985).

    CAS  PubMed  Google Scholar 

  103. Watkins, L. H. et al. Impaired planning but intact decision making in early Huntington's disease: implications for specific fronto-striatal pathology. Neuropsychologia 38, 1112–1125 (2000).

    CAS  PubMed  Google Scholar 

  104. Baker, S. C. et al. Neural systems engaged by planning: a PET study of the Tower of London task. Neuropsychologia 34, 515–526 (1996).

    CAS  PubMed  Google Scholar 

  105. Owen, A. M. et al. Dopamine-dependent frontostriatal planning deficits in early Parkinson's disease. Neuropsychology 9, 126–140 (1995).

    Google Scholar 

  106. Stout, J. C., Rodawalt, W. C. & Siemers, E. R. Risky decision making in Huntington's disease. J. Int. Neuropsychol. Soc. 7, 92–101 (2001).

    CAS  PubMed  Google Scholar 

  107. Busemeyer, J. R. & Stout, J. C. A contribution of cognitive decision models to clinical assessment: decomposing performance on the Bechara gambling task. Psychol. Assess. 14, 253–262 (2002).

    PubMed  Google Scholar 

  108. Campbell, M. C., Stout, J. C. & Finn, P. R. Reduced autonomic responsiveness to gambling task losses in Huntington's disease. J. Int. Neuropsychol. Soc. 10, 239–245 (2004).

    PubMed  Google Scholar 

  109. Hutchinson, J. & Gigerenzer, G. Simple heuristics and rules of thumb: where psychologists and behavioural biologists might meet. Behav. Processes 69, 97–124 (2005).

    PubMed  Google Scholar 

  110. Kahneman, D. & Tversky, A. Prospect theory: an analysis of decision under risk. Econometrica 47, 263–291 (1979).

    Google Scholar 

  111. Bolla, K. I. et al. Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. Neuroimage 19, 1085–1094 (2003).

    CAS  PubMed  Google Scholar 

  112. Fukui, H., Murai, T., Fukuyama, H., Hayashi, T. & Hanakawa, T. Functional activity related to risk anticipation during performance of the Iowa Gambling Task. Neuroimage 24, 253–259 (2005).

    PubMed  Google Scholar 

  113. Christakou, A., Brammer, M., Giampietro, V. & Rubia, K. Right ventromedial and dorsolateral prefrontal cortices mediate adaptive decisions under ambiguity by integrating choice utility and outcome evaluation. J. Neurosci. 29, 11020–11028 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. San Martín, R., Manes, F., Hurtado, E., Isla, P. & Ibañez, A. Size and probability of rewards modulate the feedback error-related negativity associated with wins but not losses in a monetarily rewarded gambling task. NeuroImage 51, 1194–1204 (2010).

    PubMed  Google Scholar 

Download references

Acknowledgements

This Review was supported by a FINECO grant.

Author information

Authors and Affiliations

Authors

Contributions

E. Gleichgerrcht and A. Ibáñez researched the data for the article, provided substantial contributions to discussions of the content, and contributed to the writing, reviewing and editing of the manuscript. M. Roca, T. Torralva and F. Manes provided substantial contributions to discussions of the content, and contributed to the writing, reviewing and editing of the manuscript.

Corresponding author

Correspondence to Ezequiel Gleichgerrcht.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gleichgerrcht, E., Ibáñez, A., Roca, M. et al. Decision-making cognition in neurodegenerative diseases. Nat Rev Neurol 6, 611–623 (2010). https://doi.org/10.1038/nrneurol.2010.148

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing