Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Anaemia in kidney disease: harnessing hypoxia responses for therapy

Key Points

  • The hypoxia-inducible factor (HIF) oxygen-sensing pathway has a central role in regulating erythropoiesis; it mediates the hypoxic induction of erythropoietin and coordinates erythropoietin and erythrocyte production with iron metabolism

  • Peritubular renal interstitial fibroblast-like cells and pericytes synthesize erythropoietin in an oxygen-regulated and HIF-2-dependent manner; they lose their ability to produce erythropoietin as they transdifferentiate into myofibroblasts following kidney injury

  • In anaemia associated with renal disease, erythropoiesis is suppressed due to the combined and interrelated effects of erythropoietin deficiency, inflammatory cytokines and iron deficiency

  • The pharmacologic activation of hypoxia responses with HIF stabilizers provides a physiologic and comprehensive approach to the treatment of renal anaemia and warrants large, long-term clinical safety and efficacy trials

Abstract

Improved understanding of the oxygen-dependent regulation of erythropoiesis has provided new insights into the pathogenesis of anaemia associated with renal failure and has led to the development of novel therapeutic agents for its treatment. Hypoxia-inducible factor (HIF)-2 is a key regulator of erythropoiesis and iron metabolism. HIF-2 is activated by hypoxic conditions and controls the production of erythropoietin by renal peritubular interstitial fibroblast-like cells and hepatocytes. In anaemia associated with renal disease, erythropoiesis is suppressed due to inadequate erythropoietin production in the kidney, inflammation and iron deficiency; however, pharmacologic agents that activate the HIF axis could provide a physiologic approach to the treatment of renal anaemia by mimicking hypoxia responses that coordinate erythropoiesis with iron metabolism. This Review discusses the functional inter-relationships between erythropoietin, iron and inflammatory mediators under physiologic conditions and in relation to the pathogenesis of renal anaemia, as well as recent insights into the molecular and cellular basis of erythropoietin production in the kidney. It furthermore provides a detailed overview of current clinical experience with pharmacologic activators of HIF signalling as a novel comprehensive and physiologic approach to the treatment of anaemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of erythropoiesis.
Figure 2: Regulation of HIF degradation by PHDs and hypoxic induction of erythropoietin.
Figure 3: HIF coordinates erythropoietin production with iron metabolism.
Figure 4: The number of EPCs regulates renal erythropoietin output.
Figure 5: Cellular basis of erythropoietin deficiency in renal failure.
Figure 6: Mechanisms of renal anaemia.

Similar content being viewed by others

References

  1. Mancini, E. et al. FOG-1 and GATA-1 act sequentially to specify definitive megakaryocytic and erythroid progenitors. EMBO J. 31, 351–365 (2012).

    CAS  PubMed  Google Scholar 

  2. Siatecka, M. & Bieker, J. J. The multifunctional role of EKLF/KLF1 during erythropoiesis. Blood 118, 2044–2054 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gregory, C. J. & Eaves, A. C. Human marrow cells capable of erythropoietic differentiation in vitro: definition of three erythroid colony responses. Blood 49, 855–864 (1977).

    CAS  PubMed  Google Scholar 

  4. Chasis, J. A. & Mohandas, N. Erythroblastic islands: niches for erythropoiesis. Blood 112, 470–478 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Nagata, S. Autoimmune diseases caused by defects in clearing dead cells and nuclei expelled from erythroid precursors. Immunol. Rev. 220, 237–250 (2007).

    CAS  PubMed  Google Scholar 

  6. Ney, P. A. Normal and disordered reticulocyte maturation. Curr. Opin. Hematol. 18, 152–157 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Willekens, F. L. et al. Erythrocyte vesiculation: a self-protective mechanism? Br. J. Haematol. 141, 549–556 (2008).

    CAS  PubMed  Google Scholar 

  8. Koury, M. J. Abnormal erythropoiesis and the pathophysiology of chronic anemia. Blood Rev. 28, 49–66 (2014).

    CAS  PubMed  Google Scholar 

  9. Ponka, P. Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. Blood 89, 1–25 (1997).

    CAS  PubMed  Google Scholar 

  10. Chen, J. J. Regulation of protein synthesis by the heme-regulated eIF2α kinase: relevance to anemias. Blood 109, 2693–2699 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun, J. et al. Heme regulates the dynamic exchange of Bach1 and NF-E2-related factors in the Maf transcription factor network. Proc. Natl Acad. Sci. USA 101, 1461–1466 (2004).

    CAS  PubMed  Google Scholar 

  12. Zenke-Kawasaki, Y. et al. Heme induces ubiquitination and degradation of the transcription factor Bach1. Mol. Cell Biol. 27, 6962–6971 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Koury, M. J., Sawyer, S. T. & Brandt, S. J. New insights into erythropoiesis. Curr. Opin. Hematol. 9, 93–100 (2002).

    PubMed  Google Scholar 

  14. Panzenbock, B., Bartunek, P., Mapara, M. Y. & Zenke, M. Growth and differentiation of human stem cell factor/erythropoietin-dependent erythroid progenitor cells in vitro. Blood 92, 3658–3668 (1998).

    CAS  PubMed  Google Scholar 

  15. Bauer, A. et al. The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev. 13, 2996–3002 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, L. et al. ZFP36L2 is required for self-renewal of early burst-forming unit erythroid progenitors. Nature 499, 92–96 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Paulson, R. F., Shi, L. & Wu, D. C. Stress erythropoiesis: new signals and new stress progenitor cells. Curr. Opin. Hematol. 18, 139–145 (2011).

    PubMed  PubMed Central  Google Scholar 

  18. Millot, S. et al. Erythropoietin stimulates spleen BMP4-dependent stress erythropoiesis and partially corrects anemia in a mouse model of generalized inflammation. Blood 116, 6072–6081 (2010).

    CAS  PubMed  Google Scholar 

  19. Livnah, O. et al. Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science 283, 987–990 (1999).

    CAS  PubMed  Google Scholar 

  20. Koury, M. J. Erythropoietin: the story of hypoxia and a finely regulated hematopoietic hormone. Exp. Hematol. 33, 1263–1270 (2005).

    CAS  PubMed  Google Scholar 

  21. Youssoufian, H., Longmore, G., Neumann, D., Yoshimura, A. & Lodish, H. F. Structure, function, and activation of the erythropoietin receptor. Blood 81, 2223–2236 (1993).

    CAS  PubMed  Google Scholar 

  22. Sawyer, S. T. & Penta, K. Erythropoietin cell biology. Hematol. Oncol. Clin. North Am. 8, 895–911 (1994).

    CAS  PubMed  Google Scholar 

  23. Gross, A. W. & Lodish, H. F. Cellular trafficking and degradation of erythropoietin and novel erythropoiesis stimulating protein (NESP). J. Biol. Chem. 281, 2024–2032 (2006).

    CAS  PubMed  Google Scholar 

  24. Witthuhn, B. A. et al. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 74, 227–236 (1993).

    CAS  PubMed  Google Scholar 

  25. Huang, L. J., Constantinescu, S. N. & Lodish, H. F. The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. Mol. Cell 8, 1327–1338 (2001).

    CAS  PubMed  Google Scholar 

  26. Richmond, T. D., Chohan, M. & Barber, D. L. Turning cells red: signal transduction mediated by erythropoietin. Trends Cell Biol. 15, 146–155 (2005).

    CAS  PubMed  Google Scholar 

  27. Koury, M. J. & Bondurant, M. C. Maintenance by erythropoietin of viability and maturation of murine erythroid precursor cells. J. Cell Physiol. 137, 65–74 (1988).

    CAS  PubMed  Google Scholar 

  28. Koury, M. J. & Bondurant, M. C. Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science 248, 378–381 (1990).

    CAS  PubMed  Google Scholar 

  29. Muta, K. & Krantz, S. B. Apoptosis of human erythroid colony-forming cells is decreased by stem cell factor and insulin-like growth factor I as well as erythropoietin. J. Cell Physiol. 156, 264–271 (1993).

    CAS  PubMed  Google Scholar 

  30. Wu, H., Liu, X., Jaenisch, R. & Lodish, H. F. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 83, 59–67 (1995).

    CAS  PubMed  Google Scholar 

  31. Kelley, L. L. et al. Survival or death of individual proerythroblasts results from differing erythropoietin sensitivities: a mechanism for controlled rates of erythrocyte production. Blood 82, 2340–2352 (1993).

    CAS  PubMed  Google Scholar 

  32. Rubiolo, C. et al. A balance between Raf-1 and Fas expression sets the pace of erythroid differentiation. Blood 108, 152–159 (2006).

    CAS  PubMed  Google Scholar 

  33. De Maria, R. et al. Apoptotic role of Fas/Fas ligand system in the regulation of erythropoiesis. Blood 93, 796–803 (1999).

    CAS  PubMed  Google Scholar 

  34. Liu, Y. et al. Suppression of Fas-FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. Blood 108, 123–133 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Koulnis, M., Liu, Y., Hallstrom, K. & Socolovsky, M. Negative autoregulation by Fas stabilizes adult erythropoiesis and accelerates its stress response. PLoS ONE 6, e21192 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Eymard, N., Bessonov, N., Gandrillon, O., Koury, M. J. & Volpert, V. The role of spatial organization of cells in erythropoiesis. J. Math. Biol. 70, 71–97 (2015).

    CAS  PubMed  Google Scholar 

  37. Rhodes, M. M., Kopsombut, P., Bondurant, M. C., Price, J. O. & Koury, M. J. Bcl-xL prevents apoptosis of late-stage erythroblasts but does not mediate the antiapoptotic effect of erythropoietin. Blood 106, 1857–1863 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Koulnis, M. et al. Contrasting dynamic responses in vivo of the Bcl-xL and Bim erythropoietic survival pathways. Blood 119, 1228–1239 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Scortegagna, M., Morris, M. A., Oktay, Y., Bennett, M. & Garcia, J. A. The HIF family member EPAS1/HIF-2α is required for normal hematopoiesis in mice. Blood 102, 1634–1640 (2003).

    CAS  PubMed  Google Scholar 

  40. Gruber, M. et al. Acute postnatal ablation of Hif-2alpha results in anemia. Proc. Natl Acad. Sci. USA 104, 2301–2306 (2007).

    CAS  PubMed  Google Scholar 

  41. Kapitsinou, P. P. et al. Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia. Blood 116, 3039–3048 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yoon, D. et al. Hypoxia-inducible factor-1 deficiency results in dysregulated erythropoiesis signaling and iron homeostasis in mouse development. J. Biol. Chem. 281, 25703–25711 (2006).

    CAS  PubMed  Google Scholar 

  43. Rankin, E. B. et al. Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J. Clin. Invest. 117, 1068–1077 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, F. S. & Percy, M. J. The HIF pathway and erythrocytosis. Annu. Rev. Pathol. 6, 165–192 (2011).

    CAS  PubMed  Google Scholar 

  45. Simonson, T. S., McClain, D. A., Jorde, L. B. & Prchal, J. T. Genetic determinants of Tibetan high-altitude adaptation. Hum. Genet. 131, 527–533 (2012).

    PubMed  Google Scholar 

  46. Penaloza, D. & Arias-Stella, J. The heart and pulmonary circulation at high altitudes: healthy highlanders and chronic mountain sickness. Circulation 115, 1132–1146 (2007).

    PubMed  Google Scholar 

  47. Kewley, R. J., Whitelaw, M. L. & Chapman-Smith, A. The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int. J. Biochem. Cell Biol. 36, 189–204 (2004).

    CAS  PubMed  Google Scholar 

  48. Semenza, G. L. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu. Rev. Cell Dev. Biol. 15, 551–578 (1999).

    CAS  PubMed  Google Scholar 

  49. Wenger, R. H., Stiehl, D. P. & Camenisch, G. Integration of oxygen signaling at the consensus HRE. Sci. STKE 2005, re12 (2005).

    PubMed  Google Scholar 

  50. Semenza, G. L. HIF-1 and mechanisms of hypoxia sensing. Curr. Opin. Cell Biol. 13, 167–171 (2001).

    CAS  PubMed  Google Scholar 

  51. Schodel, J. et al. High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood 117, e207–e217 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Morita, M. et al. HLF/HIF-2α is a key factor in retinopathy of prematurity in association with erythropoietin. EMBO J. 22, 1134–1146 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Scortegagna, M. et al. HIF-2α regulates murine hematopoietic development in an erythropoietin-dependent manner. Blood 105, 3133–3140 (2005).

    CAS  PubMed  Google Scholar 

  54. Mastrogiannaki, M. et al. HIF-2α, but not HIF-1α, promotes iron absorption in mice. J. Clin. Invest. 119, 1159–1166 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Percy, M. J. et al. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N. Engl. J. Med. 358, 162–168 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Jaakkola, P. et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).

    CAS  PubMed  Google Scholar 

  57. Ivan, M. et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001).

    CAS  PubMed  Google Scholar 

  58. Epstein, A. C. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001).

    CAS  PubMed  Google Scholar 

  59. Hon, W. C. et al. Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL. Nature 417, 975–978 (2002).

    CAS  PubMed  Google Scholar 

  60. Masson, N., Willam, C., Maxwell, P. H., Pugh, C. W. & Ratcliffe, P. J. Independent function of two destruction domains in hypoxia-inducible factor-α chains activated by prolyl hydroxylation. EMBO J. 20, 5197–5206 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yu, F., White, S. B., Zhao, Q. & Lee, F. S. HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc. Natl Acad. Sci. USA 98, 9630–9635 (2001).

    CAS  PubMed  Google Scholar 

  62. Bruick, R. K. & McKnight, S. L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337–1340 (2001).

    CAS  PubMed  Google Scholar 

  63. Loenarz, C. & Schofield, C. J. Expanding chemical biology of 2-oxoglutarate oxygenases. Nat. Chem. Biol. 4, 152–156 (2008).

    CAS  PubMed  Google Scholar 

  64. Kaelin, W. G. Jr & Ratcliffe, P. J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30, 393–402 (2008).

    CAS  PubMed  Google Scholar 

  65. Percy, M. J. et al. A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis. Proc. Natl Acad. Sci. USA 103, 654–659 (2006).

    CAS  PubMed  Google Scholar 

  66. Hyvarinen, J. et al. Deficiency of a transmembrane prolyl 4-hydroxylase in the zebrafish leads to basement membrane defects and compromised kidney function. J. Biol. Chem. 285, 42023–42032 (2010).

    PubMed  PubMed Central  Google Scholar 

  67. Laitala, A. et al. Transmembrane prolyl 4-hydroxylase is a fourth prolyl 4-hydroxylase regulating EPO production and erythropoiesis. Blood 120, 3336–3344 (2012).

    CAS  PubMed  Google Scholar 

  68. Schodel, J. et al. HIF-prolyl hydroxylases in the rat kidney: physiologic expression patterns and regulation in acute kidney injury. Am. J. Pathol. 174, 1663–1674 (2009).

    PubMed  PubMed Central  Google Scholar 

  69. Pan, X. et al. Isolation and characterization of renal erythropoietin-producing cells from genetically produced anemia mice. PLoS ONE 6, e25839 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Haase, V. H. Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev. 27, 41–53 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Suzuki, N. et al. Specific contribution of the erythropoietin gene 3′ enhancer to hepatic erythropoiesis after late embryonic stages. Mol. Cell Biol. 31, 3896–3905 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Semenza, G. L., Traystman, M. D., Gearhart, J. D. & Antonarakis, S. E. Polycythemia in transgenic mice expressing the human erythropoietin gene. Proc. Natl Acad. Sci. USA 86, 2301–2305 (1989).

    CAS  PubMed  Google Scholar 

  73. Semenza, G. L., Koury, S. T., Nejfelt, M. K., Gearhart, J. D. & Antonarakis, S. E. Cell-type-specific and hypoxia-inducible expression of the human erythropoietin gene in transgenic mice. Proc. Natl Acad. Sci. USA 88, 8725–8729 (1991).

    CAS  PubMed  Google Scholar 

  74. Semenza, G. L., Dureza, R. C., Traystman, M. D., Gearhart, J. D. & Antonarakis, S. E. Human erythropoietin gene expression in transgenic mice: multiple transcription initiation sites and cis-acting regulatory elements. Mol. Cell Biol. 10, 930–938 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Storti, F. et al. A novel distal upstream hypoxia response element regulating oxygen-dependent erythropoietin gene expression. Haematologica 99, e45–e48 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Shah, Y. M., Matsubara, T., Ito, S., Yim, S. H. & Gonzalez, F. J. Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. Cell. Metab. 9, 152–164 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mastrogiannaki, M. et al. Deletion of HIF-2α in the enterocytes decreases the severity of tissue iron loading in hepcidin knockout mice. Blood 119, 587–590 (2011).

    PubMed  Google Scholar 

  78. Rolfs, A., Kvietikova, I., Gassmann, M. & Wenger, R. H. Oxygen-regulated transferrin expression is mediated by hypoxia-inducible factor-1. J. Biol. Chem. 272, 20055–20062 (1997).

    CAS  PubMed  Google Scholar 

  79. Lok, C. N. & Ponka, P. Identification of a hypoxia response element in the transferrin receptor gene. J. Biol. Chem. 274, 24147–24152 (1999).

    CAS  PubMed  Google Scholar 

  80. Tacchini, L., Bianchi, L., Bernelli-Zazzera, A. & Cairo, G. Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J. Biol. Chem. 274, 24142–24146 (1999).

    CAS  PubMed  Google Scholar 

  81. Mukhopadhyay, C. K., Mazumder, B. & Fox, P. L. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency. J. Biol. Chem. 275, 21048–21054 (2000).

    CAS  PubMed  Google Scholar 

  82. Lee, P. J. et al. Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J. Biol. Chem. 272, 5375–5381 (1997).

    CAS  PubMed  Google Scholar 

  83. Taylor, M. et al. Hypoxia-inducible factor-2α mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice. Gastroenterology 140, 2044–2055 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ganz, T. Molecular control of iron transport. J. Am. Soc. Nephrol. 18, 394–400 (2007).

    CAS  PubMed  Google Scholar 

  85. Nicolas, G. et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J. Clin. Invest. 110, 1037–1044 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Gordeuk, V. R. et al. Chuvash polycythemia VHLR200W mutation is associated with down-regulation of hepcidin expression. Blood 118, 5278–5282 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Peyssonnaux, C. et al. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J. Clin. Invest. 117, 1926–1932 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Mastrogiannaki, M. et al. Hepatic hypoxia-inducible factor-2 down-regulates hepcidin expression in mice through an erythropoietin-mediated increase in erythropoiesis. Haematologica 97, 827–834 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu, Q., Davidoff, O., Niss, K. & Haase, V. H. Hypoxia-inducible factor regulates hepcidin via erythropoietin-induced erythropoiesis. J. Clin. Invest. 122, 4635–4644 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Chin, K. et al. Production and processing of erythropoietin receptor transcripts in brain. Brain Res. Mol. Brain Res. 81, 29–42 (2000).

    CAS  PubMed  Google Scholar 

  91. Manalo, D. J. et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105, 659–669 (2005).

    CAS  PubMed  Google Scholar 

  92. Yoon, D. et al. HIF-1α-deficiency results in dysregulated EPO signaling and iron homeostasis in mouse development. J. Biol. Chem. 281, 25703–25711 (2006).

    CAS  PubMed  Google Scholar 

  93. Liu, Y. L., Ang, S. O., Weigent, D. A., Prchal, J. T. & Bloomer, J. R. Regulation of ferrochelatase gene expression by hypoxia. Life Sci. 75, 2035–2043 (2004).

    CAS  PubMed  Google Scholar 

  94. Hofer, T., Wenger, R. H., Kramer, M. F., Ferreira, G. C. & Gassmann, M. Hypoxic up-regulation of erythroid 5-aminolevulinate synthase. Blood 101, 348–350 (2003).

    CAS  PubMed  Google Scholar 

  95. Adelman, D. M., Maltepe, E. & Simon, M. C. Multilineage embryonic hematopoiesis requires hypoxic ARNT activity. Genes Dev. 13, 2478–2483 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Yamashita, T. et al. The microenvironment for erythropoiesis is regulated by HIF-2α through VCAM-1 in endothelial cells. Blood 112, 1482–1492 (2008).

    CAS  PubMed  Google Scholar 

  97. Jacobson, L. O., Goldwasser, E., Fried, W. & Plzak, L. Role of the kidney in erythropoiesis. Nature 179, 633–634 (1957).

    CAS  PubMed  Google Scholar 

  98. Loya, F., Yang, Y., Lin, H., Goldwasser, E. & Albitar, M. Transgenic mice carrying the erythropoietin gene promoter linked to lacZ express the reporter in proximal convoluted tubule cells after hypoxia. Blood 84, 1831–1836 (1994).

    CAS  PubMed  Google Scholar 

  99. Mujais, S. K., Beru, N., Pullman, T. N. & Goldwasser, E. Erythropoietin is produced by tubular cells of the rat kidney. Cell Biochem. Biophys. 30, 153–166 (1999).

    CAS  PubMed  Google Scholar 

  100. Haidar, M. A. et al. Electron microscopic localization of lacZ expression in the proximal convoluted tubular cells of the kidney in transgenic mice carrying chimeric erythropoietin/lacZ gene constructs. J. Struct. Biol. 118, 220–225 (1997).

    CAS  PubMed  Google Scholar 

  101. Maxwell, A. P., Lappin, T. R., Johnston, C. F., Bridges, J. M. & McGeown, M. G. Erythropoietin production in kidney tubular cells. Br. J. Haematol. 74, 535–539 (1990).

    CAS  PubMed  Google Scholar 

  102. Lacombe, C. et al. Peritubular cells are the site of erythropoietin synthesis in the murine hypoxic kidney. J. Clin. Invest. 81, 620–623 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Koury, S. T., Bondurant, M. C. & Koury, M. J. Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization. Blood 71, 524–527 (1988).

    CAS  PubMed  Google Scholar 

  104. Koury, S. T., Koury, M. J., Bondurant, M. C., Caro, J. & Graber, S. E. Quantitation of erythropoietin-producing cells in kidneys of mice by in situ hybridization: correlation with hematocrit, renal erythropoietin mRNA, and serum erythropoietin concentration. Blood 74, 645–651 (1989).

    CAS  PubMed  Google Scholar 

  105. Bachmann, S., Le Hir, M. & Eckardt, K. U. Co-localization of erythropoietin mRNA and ecto-5′-nucleotidase immunoreactivity in peritubular cells of rat renal cortex indicates that fibroblasts produce erythropoietin. J. Histochem. Cytochem. 41, 335–341 (1993).

    CAS  PubMed  Google Scholar 

  106. Maxwell, P. H. et al. Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney Int. 44, 1149–1162 (1993).

    CAS  PubMed  Google Scholar 

  107. Obara, N. et al. Repression via the GATA box is essential for tissue-specific erythropoietin gene expression. Blood 111, 5223–5232 (2008).

    CAS  PubMed  Google Scholar 

  108. Paliege, A. et al. Hypoxia-inducible factor-2α-expressing interstitial fibroblasts are the only renal cells that express erythropoietin under hypoxia-inducible factor stabilization. Kidney Int. 77, 312–318 (2010).

    CAS  PubMed  Google Scholar 

  109. Souma, T. et al. Plasticity of renal erythropoietin-producing cells governs fibrosis. J. Am. Soc. Nephrol. 24, 1599–1616 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Yamazaki, S. et al. A mouse model of adult-onset anaemia due to erythropoietin deficiency. Nat. Commun. 4, 1950 (2013).

    PubMed  Google Scholar 

  111. Takeda, K. et al. Regulation of adult erythropoiesis by prolyl hydroxylase domain proteins. Blood 111, 3229–3235 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Minamishima, Y. A. et al. Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. Blood 111, 3236–3244 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Asada, N. et al. Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. J. Clin. Invest. 121, 3981–3990 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Suzuki, N., Hirano, I., Pan, X., Minegishi, N. & Yamamoto, M. Erythropoietin production in neuroepithelial and neural crest cells during primitive erythropoiesis. Nat. Commun. 4, 2902 (2013).

    PubMed  Google Scholar 

  115. Falke, L. L., Gholizadeh, S., Goldschmeding, R., Kok, R. J. & Nguyen, T. Q. Diverse origins of the myofibroblast—implications for kidney fibrosis. Nat. Rev. Nephrol. 11, 233–244 (2015).

    CAS  PubMed  Google Scholar 

  116. Lin, S. L., Kisseleva, T., Brenner, D. A. & Duffield, J. S. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am. J. Pathol. 173, 1617–1627 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Little, M. H. & McMahon, A. P. Mammalian kidney development: principles, progress, and projections. Cold Spring Harb. Perspect. Biol. 4, pii:a008300 (2012).

    Google Scholar 

  118. Kobayashi, A. et al. Identification of a multipotent self-renewing stromal progenitor population during mammalian kidney organogenesis. Stem Cell Reports 3, 650–662 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Liu, J. et al. Cell-specific translational profiling in acute kidney injury. J. Clin. Invest. 124, 1242–1254 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kurt, B. et al. Deletion of von Hippel-Lindau protein converts renin-producing cells into erythropoietin-producing cells. J. Am. Soc. Nephrol 24, 433–444 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Kurt, B., Gerl, K., Karger, C., Schwarzensteiner, I. & Kurtz, A. Chronic hypoxia-inducible transcription factor-2 activation stably transforms juxtaglomerular renin cells into fibroblast-like cells in vivo. J. Am. Soc. Nephrol. 26, 587–596 (2014).

    PubMed  PubMed Central  Google Scholar 

  122. Humphreys, B. D. et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am. J. Pathol. 176, 85–97 (2009).

    PubMed  Google Scholar 

  123. Dame, C. et al. Hepatic erythropoietin gene regulation by GATA-4. J. Biol. Chem. 279, 2955–2961 (2004).

    CAS  PubMed  Google Scholar 

  124. Fried, W., Kilbridge, T., Krantz, S., McDonald, T. P. & Lange, R. D. Studies on extrarenal erythropoietin. J. Lab. Clin. Med. 73, 244–248 (1969).

    CAS  PubMed  Google Scholar 

  125. Fried, W. The liver as a source of extrarenal erythropoietin production. Blood 40, 671–677 (1972).

    CAS  PubMed  Google Scholar 

  126. Koury, S. T., Bondurant, M. C., Koury, M. J. & Semenza, G. L. Localization of cells producing erythropoietin in murine liver by in situ hybridization. Blood 77, 2497–2503 (1991).

    CAS  PubMed  Google Scholar 

  127. Maxwell, P. H. et al. Expression of a homologously recombined erythopoietin-SV40 T antigen fusion gene in mouse liver: evidence for erythropoietin production by Ito cells. Blood 84, 1823–1830 (1994).

    CAS  PubMed  Google Scholar 

  128. Querbes, W. et al. Treatment of erythropoietin deficiency in mice with systemically administered siRNA. Blood 120, 1916–1922 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Minamishima, Y. A. & Kaelin, W. G. Jr. Reactivation of hepatic EPO synthesis in mice after PHD loss. Science 329, 407 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Fandrey, J. & Bunn, H. F. In vivo and in vitro regulation of erythropoietin mRNA: measurement by competitive polymerase chain reaction. Blood 81, 617–623 (1993).

    CAS  PubMed  Google Scholar 

  131. Marti, H. H. et al. Erythropoietin gene expression in human, monkey and murine brain. Eur. J. Neurosci. 8, 666–676 (1996).

    CAS  PubMed  Google Scholar 

  132. Marti, H. H. et al. Detection of erythropoietin in human liquor: intrinsic erythropoietin production in the brain. Kidney Int. 51, 416–418 (1997).

    CAS  PubMed  Google Scholar 

  133. Dame, C. et al. Erythropoietin mRNA expression in human fetal and neonatal tissue. Blood 92, 3218–3225 (1998).

    CAS  PubMed  Google Scholar 

  134. Yasuda, Y. et al. Estrogen-dependent production of erythropoietin in uterus and its implication in uterine angiogenesis. J. Biol. Chem. 273, 25381–25387 (1998).

    CAS  PubMed  Google Scholar 

  135. Bernaudin, M. et al. Neurons and astrocytes express EPO mRNA: oxygen-sensing mechanisms that involve the redox-state of the brain. Glia 30, 271–278 (2000).

    CAS  PubMed  Google Scholar 

  136. Dame, C. et al. Erythropoietin gene expression in different areas of the developing human central nervous system. Brain Res. Dev. Brain Res. 125, 69–74 (2000).

    CAS  PubMed  Google Scholar 

  137. Masuda, S., Kobayashi, T., Chikuma, M., Nagao, M. & Sasaki, R. The oviduct produces erythropoietin in an estrogen- and oxygen-dependent manner. Am. J. Physiol. Endocrinol. Metab. 278, E1038–E1044 (2000).

    CAS  PubMed  Google Scholar 

  138. Magnanti, M. et al. Erythropoietin expression in primary rat Sertoli and peritubular myoid cells. Blood 98, 2872–2874 (2001).

    CAS  PubMed  Google Scholar 

  139. Kobayashi, T., Yanase, H., Iwanaga, T., Sasaki, R. & Nagao, M. Epididymis is a novel site of erythropoietin production in mouse reproductive organs. Biochem. Biophys. Res. Commun. 296, 145–151 (2002).

    CAS  PubMed  Google Scholar 

  140. Bodo, E. et al. Human hair follicles are an extrarenal source and a nonhematopoietic target of erythropoietin. FASEB J. 21, 3346–3354 (2007).

    CAS  PubMed  Google Scholar 

  141. Miro-Murillo, M. et al. Acute Vhl gene inactivation induces cardiac HIF-dependent erythropoietin gene expression. PLoS ONE 6, e22589 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Rankin, E. B. et al. The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO. Cell 149, 63–74 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Weidemann, A. et al. The glial cell response is an essential component of hypoxia-induced erythropoiesis in mice. J. Clin. Invest. 119, 3373–3383 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Jelkmann, W. Erythropoietin after a century of research: younger than ever. Eur. J. Haematol. 78, 183–205 (2007).

    CAS  PubMed  Google Scholar 

  145. Franke, K. et al. HIF-1α is a protective factor in conditional PHD2-deficient mice suffering from severe HIF-2α-induced excessive erythropoiesis. Blood 121, 1436–1445 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Jelkmann, W. Erythropoietin: structure, control of production, and function. Physiol. Rev. 72, 449–489 (1992).

    CAS  PubMed  Google Scholar 

  147. Chiang, C. K., Tanaka, T., Inagi, R., Fujita, T. & Nangaku, M. Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner. Lab. Invest. 91, 1564–1571 (2011).

    CAS  PubMed  Google Scholar 

  148. Sakoda, Y. et al. Herpesvirus entry mediator regulates hypoxia-inducible factor-1α and erythropoiesis in mice. J. Clin. Invest. 121, 4810–4819 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Boutin, A. T. et al. Epidermal sensing of oxygen is essential for systemic hypoxic response. Cell 133, 223–234 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Evans, R. G., Gardiner, B. S., Smith, D. W. & O'Connor, P. M. Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis. Am. J. Physiol. Renal Physiol. 295, F1259–F1270 (2008).

    CAS  PubMed  Google Scholar 

  151. Paus, R., Bodo, E., Kromminga, A. & Jelkmann, W. Erythropoietin and the skin: a role for epidermal oxygen sensing? Bioessays 31, 344–348 (2009).

    CAS  PubMed  Google Scholar 

  152. von Wussow, U., Klaus, J. & Pagel, H. Is the renal production of erythropoietin controlled by the brain stem? Am. J. Physiol. Endocrinol. Metab. 289, E82–E86 (2005).

    CAS  PubMed  Google Scholar 

  153. Eckardt, K. U., Kurtz, A. & Bauer, C. Regulation of erythropoietin production is related to proximal tubular function. Am. J. Physiol. 256, F942–F947 (1989).

    CAS  PubMed  Google Scholar 

  154. Nangaku, M. & Eckardt, K. U. Pathogenesis of renal anemia. Semin. Nephrol 26, 261–268 (2006).

    CAS  PubMed  Google Scholar 

  155. Erslev, A. J. Erythropoietin. N. Engl. J. Med. 324, 1339–1344 (1991).

    CAS  PubMed  Google Scholar 

  156. Duarte, M. E., Carvalho, E. F., Cruz, E. A., Lucena, S. B. & Andress, D. L. Cytokine accumulation in osteitis fibrosa of renal osteodystrophy. Braz. J. Med. Biol. Res. 35, 25–29 (2002).

    CAS  PubMed  Google Scholar 

  157. Santos, F. R., Moyses, R. M., Montenegro, F. L., Jorgetti, V. & Noronha, I. L. IL-1β, TNF-α, TGF-β, and bFGF expression in bone biopsies before and after parathyroidectomy. Kidney Int. 63, 899–907 (2003).

    PubMed  Google Scholar 

  158. Baer, A. N., Dessypris, E. N., Goldwasser, E. & Krantz, S. B. Blunted erythropoietin response to anaemia in rheumatoid arthritis. Br. J. Haematol. 66, 559–564 (1987).

    CAS  PubMed  Google Scholar 

  159. Miller, C. B., Jones, R. J., Piantadosi, S., Abeloff, M. D. & Spivak, J. L. Decreased erythropoietin response in patients with the anemia of cancer. N. Engl. J. Med. 322, 1689–1692 (1990).

    CAS  PubMed  Google Scholar 

  160. Frede, S., Fandrey, J., Pagel, H., Hellwig, T. & Jelkmann, W. Erythropoietin gene expression is suppressed after lipopolysaccharide or interleukin-1β injections in rats. Am. J. Physiol. 273, R1067–R1071 (1997).

    CAS  PubMed  Google Scholar 

  161. Weiss, G. & Goodnough, L. T. Anemia of chronic disease. N. Engl. J. Med. 352, 1011–1023 (2005).

    CAS  PubMed  Google Scholar 

  162. Libregts, S. F. et al. Chronic IFN-γ production in mice induces anemia by reducing erythrocyte life span and inhibiting erythropoiesis through an IRF-1/PU.1 axis. Blood 118, 2578–2588 (2011).

    CAS  PubMed  Google Scholar 

  163. Dai, C. H., Price, J. O., Brunner, T. & Krantz, S. B. Fas ligand is present in human erythroid colony-forming cells and interacts with Fas induced by interferon γ to produce erythroid cell apoptosis. Blood 91, 1235–1242 (1998).

    CAS  PubMed  Google Scholar 

  164. Felli, N. et al. Multiple members of the TNF superfamily contribute to IFN-γ-mediated inhibition of erythropoiesis. J. Immunol. 175, 1464–1472 (2005).

    CAS  PubMed  Google Scholar 

  165. Suehiro, Y. et al. A novel mechanism in suppression of erythropoiesis during inflammation: a crucial role of RCAS1. Eur. J. Haematol. 74, 365–373 (2005).

    CAS  PubMed  Google Scholar 

  166. Nemeth, E. et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J. Clin. Invest. 113, 1271–1276 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Besson-Fournier, C. et al. Induction of activin B by inflammatory stimuli up-regulates expression of the iron-regulatory peptide hepcidin through Smad1/5/8 signaling. Blood 120, 431–439 (2012).

    CAS  PubMed  Google Scholar 

  168. Nemeth, E. et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 (2004).

    CAS  PubMed  Google Scholar 

  169. Skikne, B. S., Ahluwalia, N., Fergusson, B., Chonko, A. & Cook, J. D. Effects of erythropoietin therapy on iron absorption in chronic renal failure. J. Lab. Clin. Med. 135, 452–458 (2000).

    CAS  PubMed  Google Scholar 

  170. Sargent, J. A. & Acchiardo, S. R. Iron requirements in hemodialysis. Blood Purif. 22, 112–123 (2004).

    CAS  PubMed  Google Scholar 

  171. Kalantar-Zadeh, K., Streja, E., Miller, J. E. & Nissenson, A. R. Intravenous iron versus erythropoiesis-stimulating agents: friends or foes in treating chronic kidney disease anemia? Adv. Chronic Kidney Dis. 16, 143–151 (2009).

    PubMed  Google Scholar 

  172. Besarab, A. & Coyne, D. W. Iron supplementation to treat anemia in patients with chronic kidney disease. Nat. Rev. Nephrol. 6, 699–710 (2010).

    CAS  PubMed  Google Scholar 

  173. Macdougall, I. C. et al. A randomized controlled study of iron supplementation in patients treated with erythropoietin. Kidney Int. 50, 1694–1699 (1996).

    CAS  PubMed  Google Scholar 

  174. Fudin, R., Jaichenko, J., Shostak, A., Bennett, M. & Gotloib, L. Correction of uremic iron deficiency anemia in hemodialyzed patients: a prospective study. Nephron 79, 299–305 (1998).

    CAS  PubMed  Google Scholar 

  175. Kautz, L. et al. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat. Genet. 46, 678–684 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Pantopoulos, K. Iron metabolism and the IRE/IRP regulatory system: an update. Ann. N. Y. Acad. Sci. 1012, 1–13 (2004).

    CAS  PubMed  Google Scholar 

  177. Rouault, T. A. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat. Chem. Biol. 2, 406–414 (2006).

    CAS  PubMed  Google Scholar 

  178. Cianetti, L. et al. Expression of alternative transcripts of ferroportin-1 during human erythroid differentiation. Haematologica 90, 1595–1606 (2005).

    CAS  PubMed  Google Scholar 

  179. Zhang, D. L., Hughes, R. M., Ollivierre-Wilson, H., Ghosh, M. C. & Rouault, T. A. A ferroportin transcript that lacks an iron-responsive element enables duodenal and erythroid precursor cells to evade translational repression. Cell. Metab. 9, 461–473 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhang, D. L. et al. Hepcidin regulates ferroportin expression and intracellular iron homeostasis of erythroblasts. Blood 118, 2868–2877 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Ghosh, M. C. et al. Deletion of iron regulatory protein 1 causes polycythemia and pulmonary hypertension in mice through translational derepression of HIF2α. Cell. Metab. 17, 271–281 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Anderson, S. A. et al. The IRP1-HIF-2α axis coordinates iron and oxygen sensing with erythropoiesis and iron absorption. Cell. Metab. 17, 282–290 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Wilkinson, N. & Pantopoulos, K. IRP1 regulates erythropoiesis and systemic iron homeostasis by controlling HIF2α mRNA translation. Blood 122, 1658–1668 (2013).

    CAS  PubMed  Google Scholar 

  184. Singh, A. K. et al. Correction of anemia with epoetin alfa in chronic kidney disease. N. Engl. J. Med. 355, 2085–2098 (2006).

    CAS  PubMed  Google Scholar 

  185. Drueke, T. B. et al. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N. Engl. J. Med. 355, 2071–2084 (2006).

    CAS  PubMed  Google Scholar 

  186. Besarab, A. et al. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N. Engl. J. Med. 339, 584–590 (1998).

    CAS  PubMed  Google Scholar 

  187. Besarab, A., Frinak, S. & Yee, J. What is so bad about a hemoglobin level of 12 to 13 g/dl for chronic kidney disease patients anyway? Adv. Chronic Kidney Dis. 16, 131–142 (2009).

    PubMed  Google Scholar 

  188. Boudville, N. C. et al. Hemoglobin variability in nondialysis chronic kidney disease: examining the association with mortality. Clin. J. Am. Soc. Nephrol. 4, 1176–1182 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Pfeffer, M. A. et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N. Engl. J. Med. 361, 2019–2032 (2009).

    PubMed  Google Scholar 

  190. Goldberg, M. A., Glass, G. A., Cunningham, J. M. & Bunn, H. F. The regulated expression of erythropoietin by two human hepatoma cell lines. Proc. Natl Acad. Sci. USA 84, 7972–7976 (1987).

    CAS  PubMed  Google Scholar 

  191. Schuster, S. J. et al. Stimulation of erythropoietin gene transcription during hypoxia and cobalt exposure. Blood 73, 13–16 (1989).

    CAS  PubMed  Google Scholar 

  192. Goldberg, M. A., Gaut, C. C. & Bunn, H. F. Erythropoietin mRNA levels are governed by both the rate of gene transcription and posttranscriptional events. Blood 77, 271–277 (1991).

    CAS  PubMed  Google Scholar 

  193. Wang, G. L. & Semenza, G. L. Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood 82, 3610–3615 (1993).

    CAS  PubMed  Google Scholar 

  194. Wang, G. L. & Semenza, G. L. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc. Natl Acad. Sci. USA 90, 4304–4308 (1993).

    CAS  PubMed  Google Scholar 

  195. Goldwasser, E., Jacobson, L. O., Fried, W. & Plzak, L. Mechanism of the erythropoietic effect of cobalt. Science 125, 1085–1086 (1957).

    CAS  PubMed  Google Scholar 

  196. Goldwasser, E., Jacobson, L. O., Fried, W. & Plzak, L. F. Studies on erythropoiesis. V. The effect of cobalt on the production of erythropoietin. Blood 13, 55–60 (1958).

    CAS  PubMed  Google Scholar 

  197. Edwards, M. S. & Curtis, J. R. Use of cobaltous chloride in anaemia of maintenance hemodialysis patients. Lancet 2, 582–583 (1971).

    CAS  PubMed  Google Scholar 

  198. Ebert, B. & Jelkmann, W. Intolerability of cobalt salt as erythropoietic agent. Drug Test. Anal. 6, 185–189 (2014).

    CAS  PubMed  Google Scholar 

  199. Vengellur, A., Phillips, J. M., Hogenesch, J. B. & LaPres, J. J. Gene expression profiling of hypoxia signaling in human hepatocellular carcinoma cells. Physiol. Genomics 22, 308–318 (2005).

    CAS  PubMed  Google Scholar 

  200. Vengellur, A., Woods, B. G., Ryan, H. E., Johnson, R. S. & LaPres, J. J. Gene expression profiling of the hypoxia signaling pathway in hypoxia-inducible factor 1α null mouse embryonic fibroblasts. Gene Expr. 11, 181–197 (2003).

    CAS  PubMed  Google Scholar 

  201. Jefferson, J. A. et al. Excessive erythrocytosis, chronic mountain sickness, and serum cobalt levels. Lancet 359, 407–408 (2002).

    CAS  PubMed  Google Scholar 

  202. Barrett, T. D. et al. Pharmacological characterization of 1-(5-chloro-6-(trifluoromethoxy)-1H-benzoimidazol-2-yl)-1H-pyrazole-4-carboxylic acid (JNJ-42041935), a potent and selective hypoxia-inducible factor prolyl hydroxylase inhibitor. Mol. Pharmacol. 79, 910–920 (2011).

    CAS  PubMed  Google Scholar 

  203. Loenarz, C. & Schofield, C. J. Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases. Trends Biochem. Sci. 36, 7–18 (2011).

    CAS  PubMed  Google Scholar 

  204. Akebia Therapeutics. Publications: abstracts, posters and presentations. akebia.com [online], (2015).

  205. FibroGen. Publications. fibrogen.com [online], (2015).

  206. GlaxoSmithKline. Studies filtered by compound GSK1278863. GSK Clinical Study Register [online], (2015).

  207. Bernhardt, W. M. et al. Inhibition of prolyl hydroxylases increases erythropoietin production in ESRD. J. Am. Soc. Nephrol. 21, 2151–2156 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Haase, V. H. Hypoxia-inducible factors in the kidney. Am. J. Physiol. Renal Physiol. 291, F271–F281 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Haase, V. H. Pathophysiological consequences of HIF activation: HIF as a modulator of fibrosis. Ann. N. Y. Acad. Sci. 1177, 57–65 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Semenza, G. L. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu. Rev. Pathol. 9, 47–71 (2014).

    CAS  PubMed  Google Scholar 

  211. Hickey, M. M. et al. The von Hippel–Lindau Chuvash mutation promotes pulmonary hypertension and fibrosis in mice. J. Clin. Invest. 120, 827–839 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Cowburn, A. S. et al. HIF isoforms in the skin differentially regulate systemic arterial pressure. Proc. Natl Acad. Sci. USA 110, 17570–17575 (2013).

    CAS  PubMed  Google Scholar 

  213. Shimoda, L. A. & Laurie, S. S. HIF and pulmonary vascular responses to hypoxia. J. Appl. Physiol. (1985). 116, 867–874 (2014).

    CAS  Google Scholar 

  214. Bertout, J. A., Patel, S. A. & Simon, M. C. The impact of O2 availability on human cancer. Nat. Rev. Cancer 8, 967–975 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Keith, B., Johnson, R. S. & Simon, M. C. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 12, 9–22 (2012).

    CAS  Google Scholar 

  216. Semenza, G. L. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J. Clin. Invest. 123, 3664–3671 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Krock, B. L., Skuli, N. & Simon, M. C. Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2, 1117–1133 (2011).

    PubMed  PubMed Central  Google Scholar 

  218. Astellas Pharma Inc. News release: the FDA accepts the complete response for clinical holds of FG-2216*/FG-4592 for the treatment of anemia. astellas.com [online], (2008).

  219. Rabinowitz, M. H. Inhibition of hypoxia-inducible factor prolyl hydroxylase domain oxygen sensors: tricking the body into mounting orchestrated survival and repair responses. J. Med. Chem. 56, 9369–9402 (2013).

    CAS  PubMed  Google Scholar 

  220. Hong, Y. R. et al. [(4-Hydroxyl-benzo[4, 5]thieno[3, 2-c]pyridine-3-carbonyl)-amino]-acetic acid derivatives; HIF prolyl 4-hydroxylase inhibitors as oral erythropoietin secretagogues. Bioorg Med. Chem. Lett. 23, 5953–5957 (2013).

    CAS  PubMed  Google Scholar 

  221. Klaus, S., Langsetmo, I., Neff, T., Lin, A. & Liu, D. beneficial pharmacodynamic effects resulting from 'complete erythropoiesis' induced by novel HIF prolyl hydroxylase inhibitors FG-2216 and FG-4592 [abstract]. J. Am. Soc. Nephrol. 19, 524A (2008).

    Google Scholar 

  222. Besarab, A., Szczech, L., Yu, K. H. P. & Neff, N. B. Impact of iron regimen on iron indices and hepcidin during roxadustat anemia correction in incident dialysis patients [abstract]. J. Am. Soc. Nephrol. 25, 304A (2014).

    Google Scholar 

  223. Frohna, P. A. et al. Preliminary results from a randomized, single-blind, placebo-controlled trial of FG-4592, a novel hypoxia inducible factor prolyl hydroxylase inhibitor, in subjects with CKD anemia [abstract]. J. Am. Soc. Nephrol. 18, 763A (2007).

    Google Scholar 

  224. Provenzano, R. et al. FG-4592, a novel oral hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHI), maintains hemoglobin levels and lowers cholesterol in hemodialysis (HD) patients: phase 2 comparison with epoetin alfa [abstract]. J. Am. Soc. Nephrol. 23, 428A (2012).

    Google Scholar 

  225. Hsieh, M. M. et al. HIF prolyl hydroxylase inhibition results in endogenous erythropoietin induction, erythrocytosis, and modest fetal hemoglobin expression in rhesus macaques. Blood 110, 2140–2147 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Kindler, J. et al. Single-dose pharmacokinetics of recombinant human erythropoietin in patients with various degrees of renal failure. Nephrol. Dial. Transplant. 4, 345–349 (1989).

    CAS  PubMed  Google Scholar 

  227. Kapitsinou, P. P. et al. Preischemic targeting of HIF prolyl hydroxylation inhibits fibrosis associated with acute kidney injury. Am. J. Physiol. Renal Physiol. 302, F1172–F1179 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Brigandi, R. A. et al. The prolyl hydroxylase inhibitor, GSK1278863A, induced EPO in vitro and efficient erythropoiesis leading to increased hemoglobin in vivo [abstract]. J. Am. Soc. Nephrol. 21, 722A (2010).

    Google Scholar 

  229. Brigandi, R. A. et al. Prolylhydroxylase inhibitor modulation of erythropoietin in a randomized placebo controlled trial [abstract]. J. Am. Soc. Nephrol. 21, 390A (2010).

    Google Scholar 

  230. Brigandi, R. A. et al. Induction of erythropoiesis in anemic patients by prolylhydroxylase inhibitor in a repeat dose, randomized placebo controlled trial [abstract]. J. Am. Soc. Nephrol. 23, 662A (2012).

    Google Scholar 

  231. Olson, E. et al. Short-term treatment with a novel HIF-prolyl hydroxylase inhibitor (GSK1278863) failed to improve measures of performance in subjects with claudication-limited peripheral artery disease. Vasc. Med. 19, 473–482 (2014).

    CAS  PubMed  Google Scholar 

  232. Shalwitz, R., Hartman, C., Flinn, C., Shalwitz, I. & Logan, D. K. AKB-6548, a novel hypoxia-inducible factor prolyl hydroxylase inhibitor reduces hepcidin and ferritin while it increases reticulocyte production and total iron binding capacity in healthy adults [abstract]. J. Am. Soc. Nephrol. 22, 45A (2011).

    Google Scholar 

  233. Hartman, C. et al. AKB-6548, a new hypoxia-inducible factor prolyl hydroxylase inhibitor increases hemoglobin while decreasing ferritin in a 28-day, phase 2a dose escalation study in stage 3 and 4 chronic kidney disease patients with anemia [abstract]. J. Am. Soc. Nephrol. 22, 435A (2011).

    Google Scholar 

  234. Shalwitz, R. et al. AKB-6548: A new hypoxia-inducible factor prolyl hydroxylase inhibitor, increases hemoglobin in chronic kidney disease patients without increasing basal erythropoietin levels [abstract]. J. Am. Soc. Nephrol. 23, 56A (2012).

    Google Scholar 

  235. Hartman, C. S. et al. Phase 2 study of AKB-6548, a novel hypoxia-inducible factor prolyl-hydroxylase inhibitor (HIF-PHI) in patients with end stage renal disease (ESRD) undergoing hemodialysis (HD). akebia.com [online], (2014).

    Google Scholar 

  236. Jefferson, J. A. et al. Hyperuricemia, hypertension, and proteinuria associated with high-altitude polycythemia. Am. J. Kidney Dis. 39, 1135–1142 (2002).

    PubMed  Google Scholar 

  237. Baillie, J. K. et al. Endogenous urate production augments plasma antioxidant capacity in healthy lowland subjects exposed to high altitude. Chest 131, 1473–1478 (2007).

    CAS  PubMed  Google Scholar 

  238. Flamme, I. et al. Mimicking hypoxia to treat anemia: HIF-stabilizer BAY 85–3934 (molidustat) stimulates erythropoietin production without hypertensive effects. PLoS ONE 9, e111838 (2014).

    PubMed  PubMed Central  Google Scholar 

  239. Boettcher, M.-F. et al. First-in-man Study with BAY 85–3934—a new oral selective HIF-PH inhibitor for the treatment of renal anemia. J. Am. Soc. Nephrol. 24, 347A (2013).

    Google Scholar 

  240. McMahon, S., Grondin, F., McDonald, P. P., Richard, D. E. & Dubois, C. M. Hypoxia-enhanced expression of the proprotein convertase furin is mediated by hypoxia-inducible factor-1: impact on the bioactivation of proproteins. J. Biol. Chem. 280, 6561–6569 (2005).

    CAS  PubMed  Google Scholar 

  241. Silvestri, L., Pagani, A. & Camaschella, C. Furin-mediated release of soluble hemojuvelin: a new link between hypoxia and iron homeostasis. Blood 111, 924–931 (2008).

    CAS  PubMed  Google Scholar 

  242. Silvestri, L. et al. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell. Metab. 8, 502–511 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Du, X. et al. The serine protease TMPRSS6 is required to sense iron deficiency. Science 320, 1088–1092 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Lakhal, S. et al. Regulation of type II transmembrane serine proteinase TMPRSS6 by hypoxia-inducible factors: new link between hypoxia signaling and iron homeostasis. J. Biol. Chem. 286, 4090–4097 (2010).

    PubMed  PubMed Central  Google Scholar 

  245. Macdougall, I. C. Role of uremic toxins in exacerbating anemia in renal failure. Kidney Int. Suppl. 78, S67–S72 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

V.H.H. is affiliated with the Medicine and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, TN, USA and is supported by the Krick-Brooks Chair in Nephrology, by NIH grants (R01-DK081646, R01-DK080821 and R01-DK101791), and by a Department of Veterans Affairs Merit Award (1I01BX002348).

Author information

Authors and Affiliations

Authors

Contributions

M.J.K. and V.H.H. contributed equally to writing the article and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Volker H. Haase.

Ethics declarations

Competing interests

M.J.K. is a consultant for Keryx Biopharmaceuticals, Inc. V.H.H. has received honoraria from Daiichi Sankyo and serves on the Scientific Advisory Board of Akebia Therapeutics, a company that develops prolyl 4-hydroxylase inhibitors for the treatment of renal anaemia.

Supplementary information

Supplementary Figure 1

Chemical structures of PHIs. (PDF 74 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koury, M., Haase, V. Anaemia in kidney disease: harnessing hypoxia responses for therapy. Nat Rev Nephrol 11, 394–410 (2015). https://doi.org/10.1038/nrneph.2015.82

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.82

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing