Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Peritoneal changes in patients on long-term peritoneal dialysis

Abstract

Long-term peritoneal dialysis can lead to morphological and functional changes in the peritoneum. Although the range of morphological alterations is known for the peritoneal dialysis population as a whole, these changes will not occur in every patient in the same sequence and to the same extent. Longitudinal studies are therefore required to help identify which patients might develop the changes. Although longitudinal studies using peritoneal biopsies are not possible, analyses of peritoneal effluent biomarkers that represent morphological alterations could provide insight. Longitudinal studies on peritoneal transport have been performed, but follow-up has often been too short and an insufficient number of parameters have been investigated. This Review will firstly describe peritoneal morphology and structure and will then focus on peritoneal effluent biomarkers and their changes over time. Net ultrafiltration will also be discussed together with the transport of small solutes. Data on the peritoneal transport of serum proteins show that serum protein levels do not increase to the same extent as levels of small solutes with long-term peritoneal dialysis. Early alterations in peritoneal transport must be distinguished from alterations that only develop with long-term peritoneal dialysis. Early alterations are related to vasoactive mediators, whereas later alterations are related to neoangiogenesis and fibrosis. Modern peritoneal dialysis should focus on the early detection of long-term membrane alterations by biomarkers—such as cancer antigen 125, interleukin-6 and plasminogen activator inhibitor 1—and the improved assessment of peritoneal transport.

Key Points

  • Studies have provided information regarding peritoneal morphological changes occurring with long-term peritoneal dialysis on a population scale, but this information cannot be used to identify changes occurring in individual patients

  • Longitudinal studies—investigating peritoneal effluent biomarkers and peritoneal fluid and solute transport—are required to investigate the development of alterations in individual patients

  • Promising biomarkers include cancer antigen 125, interleukin-6 and plasminogen activator inhibitor 1

  • Early ultrafiltration failure is often reversible and is usually associated with fast transport rates of low molecular weight solutes, which result in a rapid disappearance of the osmotic gradient

  • Long-term ultrafiltration failure develops over time and is often characterized by impaired osmotic conductance to glucose and reduced free water transport; in the absence of residual urine production, it can easily lead to overhydration

  • Peritoneal clearances of serum proteins increase less with peritoneal dialysis duration than do clearances of small solutes

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fenton, S. S. et al. Hemodialysis versus peritoneal dialysis: a comparison of adjusted mortality rates. Am. J. Kidney Dis. 30, 334–342 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Liem, Y. S., Wong, J. B., Hunink, M. G., de Charro, F. T. & Winkelmayer, W. C. Comparison of hemodialysis and peritoneal dialysis survival in The Netherlands. Kidney Int. 71, 153–158 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Rodrigues, A. S. et al. Long-term peritoneal dialysis experience on Portugal. Int. J. Artif. Organs. 29, 1109–1116 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Kolesnyk, I., Dekker, F. W., Boeschoten, E. W. & Krediet, R. T. Time-dependent reasons for PD technique failure and mortality. Perit. Dial. Int. 30, 170–177 (2010).

    Article  PubMed  Google Scholar 

  5. Flessner, M. F. et al. Peritoneal inflammation after twenty-week exposure to dialysis solution: effect of solution versus catheter-foreign body reaction. Perit. Dial. Int. 30, 284–293 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Flessner, M. F., Li, X., Potter, R. & He, Z. Foreign-body response to sterile catheters is variable over 20 weeks. Adv. Perit. Dial. 26, 101–104 (2010).

    PubMed  Google Scholar 

  7. Zareie, M. et al. Immunopathological changes in a uraemic rat model for peritoneal dialysis. Nephrol. Dial. Transplant. 20, 1350–1361 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Combet, S. et al. Chronic uremia induces permeability changes, increased nitric oxide synthase expression, and structural modifications in the peritoneum. J. Am. Soc. Nephrol. 12, 2146–2157 (2001).

    CAS  PubMed  Google Scholar 

  9. Vrtovsnik, F. et al. Induction of chronic kidney failure in a long-term peritoneal exposure model in the rat: effects on functional and structural peritoneal alterations. Perit. Dial. Int. 30, 558–569 (2010).

    Article  PubMed  Google Scholar 

  10. Schambye, H. T. et al. Bicarbonate- versus lactate-based CAPD fluids: a biocompatibility study in rabbits. Perit. Dial. Int. 12, 281–286 (1992).

    CAS  PubMed  Google Scholar 

  11. Krediet, R. T., Zweers, M. M., van Westrhenen, R., Zegwaard, A. & Struijk, D. G. Effects of reducing the lactate and glucose content of PD solutions on the peritoneum. Is the future GLAD? NDT Plus 1 (Suppl. 4), iv56–iv62 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zweers, M. M., Splint, L. J., Krediet, R. T. & Struijk, D. G. Ultrastructure of basement membranes of peritoneal capillaries in a chronic peritoneal infusion model in the rat. Nephrol. Dial. Transplant. 16, 651–654 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Dobbie, J. W., Zaki, M. & Wilson, L. Ultrastructural studies on the peritoneum with special reference to chronic ambulatory peritoneal dialysis. Scott. Med. J. 26, 213–223 (1981).

    Article  CAS  PubMed  Google Scholar 

  14. Pollock, C. A. et al. Peritoneal morphology on maintenance dialysis. Am. J. Nephrol. 9, 198–204 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. Williams, J. D. et al. Morphologic changes in the peritoneal membrane of patients with renal disease. J. Am. Soc. Nephrol. 13, 470–479 (2002).

    PubMed  Google Scholar 

  16. Vlahu, C. A. et al. Damage of the endothelial glycocalyx in dialysis patients. J. Am. Soc. Nephrol. 23, 1900–1908 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yanez-Mo, M. et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N. Engl. J. Med. 348, 403–413 (2003).

    Article  PubMed  Google Scholar 

  18. Del Peso, G. et al. Epithelial-to-mesenchymal transition of mesothelial cells is an early event during peritoneal dialysis and is associated with high peritoneal transport. Kidney Int. 73, S26–S33 (2008).

    Article  CAS  Google Scholar 

  19. Aroeira, L. S. et al. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J. Am. Soc. Nephrol. 18, 2004–2013 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Dobbie, J. W. Morphology of the peritoneum in CAPD. Blood Purif. 7, 74–85 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Di Paolo, N. et al. Morphology of the peritoneal membrane during continuous ambulatory peritoneal dialysis. Nephron 44, 204–211 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. Mateijsen, M. A. et al. Vascular and interstitial changes in the peritoneum of CAPD patients with peritoneal sclerosis. Perit. Dial. Int. 19, 517–525 (1999).

    CAS  PubMed  Google Scholar 

  23. Honda, K. et al. Morphological changes in the peritoneal vasculature of patients on CAPD with ultrafiltration failure. Nephron 72, 171–176 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Di Paolo, N. & Sacchi, G. Peritoneal vascular changes in continuous ambulatory peritoneal dialysis (CAPD): an in vivo model for the study of diabetic microangiopathy. Perit. Dial. Int. 9, 41–45 (1989).

    CAS  PubMed  Google Scholar 

  25. Krediet, R. T., Van Westrhenen, R., Zweers, M. M. & Struijk, D. G. Clinical advantages of new peritoneal dialysis solutions. Nephrol. Dial. Transplant. 17 (Suppl. 3), 16–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, T.-C., Yang, J.-Y., Wang, H.-P., Tsai, T.-J. & Yang, Y. Peritoneal thickening is not inevitable in long-term peritoneal dialysis and is associated with peritoneal transport characteristics: a two-centre sonographic study. Nephrol. Dial. Transplant. 23, 1005–1010 (2008).

    Article  PubMed  Google Scholar 

  27. Sampimon, D. E., Coester, A. M., Struijk, D. G. & Krediet, R. T. The time course of peritoneal transport parameters in peritoneal dialysis patients who develop encapsulating peritoneal sclerosis. Nephrol. Dial. Transplant. 26, 291–298 (2011).

    Article  PubMed  Google Scholar 

  28. Korte, M. R., Sampimon, D. E., Betjes, M. G. & Krediet, R. T. Encapsulating peritoneal sclerosis: the state of affairs. Nat. Rev. Nephrol. 7, 528–539 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Davies, M. et al. Proteoglycans of CAPD-dialysate fluid and mesothelium. Contr. Nephrol. 85, 134–141 (1990).

    Article  CAS  Google Scholar 

  30. Yung, S. et al. Source of peritoneal proteoglycans. Am. J. Pathol. 146, 520–529 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yung, S. & Chan, T. M. Pathophysiology of the peritoneal membrane during peritoneal dialysis: the role of hyaluronan. J. Biomed. Biotechnol. http://dx.doi.org/10.1155/2011/180594.

  32. Osada, S. et al. Alterations in proteoglycan components and histopathology of the peritoneum in uraemic and peritoneal dialysis patients. Nephrol. Dial. Transplant. 24, 3504–3512 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Yamada, K. et al. Immunohistochemical study of human advanced glycosylation end-products (AGE) in chronic renal failure. Clin. Nephrol. 42, 354–361 (1994).

    CAS  PubMed  Google Scholar 

  34. Nakayama, M. et al. Immunohistochemical detection of advanced glycosylation end-products in the peritoneum and its possible pathophysiological role in CAPD. Kidney Int. 51, 182–186 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Weiss, M. F. et al. Mechanisms for the formation of glyoxidation products in end-stage renal disease. Kidney Int. 57, 2571–2585 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Combet, S. et al. Vascular proliferation and enhanced expression of endothelial nitric oxide synthase in human peritoneum exposed to long-term peritoneal dialysis. J. Am. Soc. Nephrol. 11, 717–728 (2000).

    CAS  PubMed  Google Scholar 

  37. Kihm, L. P. et al. RAGE expression in the human peritoneal membrane. Nephrol. Dial. Transplant. 23, 3302–3306 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Makita, Z. et al. Reactive glycosylation endproducts in diabetic uraemia and treatment of renal failure. Lancet 343, 1519–1522 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Raj, D. S., Choudhury, D., Welbourne, T. C. & Levi, M. Advanced glycation end products: a nephrologist's perspective. Am. J. Kidney Dis. 35, 365–380 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Friedlander, M. A., Wu, Y.-C., Schulak, J. A., Monnier, V. M. & Hricik, D. E. Influence of dialysis modality on plasma and tissue concentrations of pentosodine in patients with end-stage renal disease. Am. J. Kidney Dis. 25, 445–451 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Hartog, J. W. et al. Accumulation of advanced glycation end products, measured as skin autofluorescence, in renal disease. Ann. NY Acad. Sci. 1043, 299–307 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Jiang, J. et al. Accumulation of tissue advanced glycation end products correlated with glucose exposure and associated with cardiovascular morbidity in patients on peritoneal dialysis. Atherosclerosis 224, 187–194 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. McIntyre, N. J. et al. Tissue-advanced glycation end product concentration in dialysis patients. Clin. J. Am. Soc. Nephrol. 5, 51–55 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brown, E. et al. Guidelines on encapsulating peritoneal sclerosis (EPS). Perit. Dial. Int. 29, 595–602 (2009).

    PubMed  Google Scholar 

  45. Dulaney, J. T. & Hatch, F. E. Peritoneal dialysis and loss of proteins: a review. Kidney Int. 26, 253–262 (1984).

    Article  CAS  PubMed  Google Scholar 

  46. Lopes Barreto, D. & Krediet, R. T. Current status and practical use of effluent biomarkers in peritoneal dialysis patients. Am. J. Kidney Dis. (in press).

  47. Cuccurullo, M. et al. Proteomic analysis of peritoneal fluid of patients treated by peritoneal dialysis: effect of glucose concentration. Nephrol. Dial. Transplant. 26, 1990–1999 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Raaijmakers, R. et al. Proteomic profiling and identification in peritoneal fluid of children treated by peritoneal dialysis. Nephrol. Dial. Transplant. 23, 2402–2405 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Lin, W. T. et al. Proteomic analysis of peritoneal dialysate fluid in patients with dialysis-related peritonitis. Ren. Fail. 30, 772–777 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Wang, H. Y. et al. Differential proteomic characterization between normal peritoneal fluid & diabetic dialysate. Nephrol. Dial. Transplant. 25, 1955–1963 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Sritippayawan, S. et al. Proteomic analysis of peritoneal dialysate fluid in patients with different types of peritoneal membranes. J. Proteome Res. 6, 4356–4362 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Krediet, R. T. et al. Biological markers in the peritoneal dialysate effluent: are they useful. Contrib. Nephrol. 163, 54–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Zemel, D. et al. Appearance of tumor necrosis factor-α and soluble TNF-receptors I and II in peritoneal effluent of CAPD. Kidney Int. 46, 1422–1430 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Zweers, M. M., De Waart, D. R., Smit, W., Struijk, D. G. & Krediet, R. T. The growth factors VEGF and TGFβ-1 in peritoneal dialysis. J. Lab. Clin. Med. 134, 124–132 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Krediet, R. T. Dialysate cancer antigen concentration as marker of peritoneal membrane status in patients treated with chronic peritoneal dialysis. Perit. Dial. Int. 21, 560–567 (2001).

    CAS  PubMed  Google Scholar 

  56. Visser, C. E. et al. Cancer antigen 125: a bulk marker for mesothelial mass in stable peritoneal dialysis patients. Nephrol. Dial. Transplant. 10, 64–69 (1995).

    CAS  PubMed  Google Scholar 

  57. Breborowicz, A., Breborowicz, M., Pyda, M., Polubinska, A. & Oreopoulos, D. Limitations of CA 125 as an index of peritoneal mesothelial cell mass. Nephron Clin. Pract. 100, c46–c51 (2005).

    Article  PubMed  Google Scholar 

  58. Koomen, G. C. et al. Dialysate cancer antigen (CA) 125 is a reflection of peritoneal cell mass in CAPD patients. Perit. Dial. Int. 14, 132–136 (1994).

    CAS  PubMed  Google Scholar 

  59. Ho-dac-Pannekeet, M. M., Hiralall, J. K., Struijk, D. G. & Krediet, R. T. Longitudinal follow-up of CA125 in peritoneal effluent. Kidney Int. 51, 888–893 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Lopes-Barreto, D. et al. Variability of effluent cancer antigen 125 and interleukin-6 determination in dialysis patients. Nephrol. Dial. Transplant. 26, 3739–3744 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Coester, A. M., Zweers, M. M., De Waart, D. E. & Krediet, R. T. The relationship between effluent potassium due to cellular release, free water transport and CA125 in peritoneal dialysis patients. NDT Plus 1, iv41–iv45 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sampimon, D. E. et al. Early diagnostic markers for encapsulating peritoneal sclerosis: a case-control study. Perit. Dial. Int. 30, 163–169 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Goldman, M. et al. Intraperitoneal secretion of interleukin-6 during continuous ambulatory peritoneal dialysis. Nephron 56, 277–280 (1990).

    Article  CAS  PubMed  Google Scholar 

  64. Zemel, D. et al. Interleukin-6 in CAPD patients without peritonitis: relationship to the intrinsic permeability of the peritoneal membrane. Clin. Nephrol. 37, 97–103 (1992).

    CAS  PubMed  Google Scholar 

  65. Pecoits-Filho, R. et al. Plasma and dialysate Il-6 and VEGF concentrations are associated with high peritoneal solute transport rate. Nephrol. Dial. Transplant. 17, 1480–1486 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Oh, K. H. et al. Intra-peritoneal interleukin-6 system is a potent determinant of the baseline periritoneal solute transport in incident peritoneal dialysis. Nephrol. Dial. Transplant. 25, 1639–1646 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Rodrigues, A. S. et al. Peritoneal fast transport in incident peritoneal dialysis patients is not consistently associated with systemic inflammation. Nephrol. Dial. Transplant. 21, 763–769 (2006).

    Article  PubMed  Google Scholar 

  68. Van Esch, S. et al. Determinants of peritoneal solute transport rates in newly started nondiabetic peritoneal dialysis patients. Perit. Dial. Int. 24, 554–561 (2004).

    PubMed  Google Scholar 

  69. Pecoits-Filho, R., Carvalho, M. J., Stenvinkel, P., Lindholm, B. & Heimburger, O. Systemic and intraperitoneal interleukin-6 system during the first year of peritoneal dialysis. Perit. Dial. Int. 26, 53–63 (2006).

    CAS  PubMed  Google Scholar 

  70. Rodrigues, A. S. et al. Evaluation of peritoneal transport and membrane status in peritoneal dialysis: focus on incident fast transporters. Am. J. Nephrol. 27, 84–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Dvorak, H. F., Brown, L. F., Detmar, M. & Dvorak, A. M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J. Pathol. 146, 1029–1039 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Tanaka, Y., Katoh, S., Hori, S., Miura, M. & Yamashita, H. Vascular endothelial growth factor in diabetic retinopathy. Lancet 349, 1520 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Aiello, L. P., Avary, R. L. & Arrigg, P. G. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retina disorders. N. Engl. J. Med. 331, 1480–1487 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Zweers, M. M., Struijk, D. G. & Krediet, R. T. Vascular endothelial growth factor in peritoneal dialysis, a longitudinal follow-up. J. Lab. Clin. Med. 137, 125–132 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Shimo, T. et al. Connective tissue growth factor induces proliferation, migration, and tube formation of endothelial cells in vitro, and angiogenesis in vivo. J. Biochem. 126, 137–145 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Mizutani, M. et al. Connective tissue growth factor (CTGF/CCN2) is increased in peritoneal dialysis patients with high peritoneal solute transport rate. Am. J. Physiol. Renal Physiol. 298, F721–F733 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Krediet, R. T. et al. Connective tissue growth factor (CTGF) is associated with peritoneal transport parameters. Perit. Dial. Int. 26 (Suppl. 2), S8 (2006).

    Google Scholar 

  78. Ho-dac-Pannekeet, M. M., Hiralall, J. K., Struijk, D. G. & Krediet, R. T. Markers of peritoneal mesothelial cells during treatment with peritoneal dialysis. Adv. Perit. Dial. 13, 72–76 (1997).

    CAS  PubMed  Google Scholar 

  79. Lai, K. N. et al. Increased production of hyaluronan by peritoneal cells and its significance in patients on CAPD. Am. J. Kidney Dis. 32, 318–324 (1999).

    Article  Google Scholar 

  80. Wong, T. Y. et al. Longitudinal study of peritoneal membrane function in continuous ambulatory peritoneal dialysis: relationship with peritonitis and fibrosing factors. Perit. Dial. Int. 20, 679–685 (2000).

    CAS  PubMed  Google Scholar 

  81. Martikainen, T., Ekstrand, A., Honkanen, E., Teppo, A.-M. & Gronhagen-Riska, C. Do interleukin-6, hyaluronan, soluble adhesion molecule-1 and cancer antigen 125 in dialysate predict changes in peritoneal function? Scand. J. Urol. Nephrol. 39, 410–416 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Yamagata, K., Tomida, C. & Koyama, A. Intraperitoneal hyaluronan production in stable continuous ambulatory peritoneal dialysis patients. Perit. Dial. Int. 19, 131–137 (1999).

    CAS  PubMed  Google Scholar 

  83. Szeto, C. C. et al. Dialysate hyaluronan concentration predicts survival but not peritoneal sclerosis in continuous ambulatory peritoneal dialysis. Am. J. Kidney Dis. 36, 609–614 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Ho-dac-Pannekeet, M. M. et al. Analysis of non enzymatic glycosylation in vivo: impact of different dialysis solutions. Perit. Dial. Int. 19 (Suppl. 2), S68–S74 (1999).

    PubMed  Google Scholar 

  85. Ahmad, S. et al. CCL18 in peritoneal dialysis patients and encapsulating peritoneal sclerosis. Eur. J. Clin. Invest. 40, 1067–1073 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Eddy, A. A. Plasminogen activator inhibitor-1 and the kidney. Am. J. Physiol. Renal Physiol. 283, F209–F220 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Goedde, M. et al. Coagulation and fibrinolysis-related antigens in plasma and dialysate of CAPD patients. Perit. Dial. Int. 17, 162–166 (1997).

    CAS  PubMed  Google Scholar 

  88. De Boer, A. W. et al. Intraperitoneal hypercoagulation ans hypofibrinolysis is present in childhood peritonitis. Pediatr. Nephrol. 13, 284–287 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Lopes-Barreto, D., Coester, A. M., Struijk, D. G. & Krediet, R. T. Can effluent matrix metalloproteinase-2 and plasminogen activator-1 be used as biomarkers of peritoneal membrane alterations in peritoneal dialysis patients? Perit. Dial. Int. (in press).

  90. Masunaga, Y. et al. A case of encapsulating peritoneal sclerosis at the clinical early stage with high concentration of matrix metalloproteinase-2 in peritoneal effluent. Clin. Exp. Nephrol. 9, 85–89 (2005).

    Article  PubMed  Google Scholar 

  91. Hirahara, I. et al. The potential of matrix metalloproteinase-2 as a marker of peritoneal injury, increased solute transport, or progression to encapsulating peritoneal sclerosis during peritoneal dialysis—a multi centre study in Japan. Nephrol. Dial. Transplant. 22, 560–567 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Hommes, N. H. et al. Matrix metalloproteinase-2 and procollagen lll peptide in peritoneal effluent: relationship with markers of mesothelial cell mass and angiogenesis. Perit. Dial. Int. 23 (Suppl. 1), S8 (2003).

    Google Scholar 

  93. Flessner, M. Osmotic barrier of the parietal peritoneum. Am. J. Physiol. 267, F861–F870 (1994).

    CAS  PubMed  Google Scholar 

  94. Lindholm, B., Heimburger, O., Waniewski, J., Werynski, A. & Bergstrom, J. Peritoneal ultrafiltration and fluid reabsorption during peritoneal dialysis. Nephrol. Dial. Transplant. 4, 805–813 (1989).

    CAS  PubMed  Google Scholar 

  95. Krediet, R. T., Struijk, D. G., Koomen, G. C. & Arisz, L. Peritoneal fluid kinetics during CAPD measured with intraperitoneal dextran 70. ASAIO Trans. 37, 662–667 (1991).

    CAS  PubMed  Google Scholar 

  96. Tran, L. et al. Lymphatic drainage of hypertonic solution from peritoneal cavity of anasthetized and conscious sheep. J. Appl. Physiol. 74, 859–867 (1993).

    Article  CAS  PubMed  Google Scholar 

  97. Zakaria, E. R., Mays, C. J., Matheson, P. J., Hurt, R. T. & Garrison, R. N. Plasma appearance rate of intraperitoneal macromolecular tracer underestimates peritoneal lymph flow. Adv. Perit. Dial. 24, 16–21 (2008).

    Google Scholar 

  98. Zakaria, E. R. & Rippe, B. Peritoneal fluid and tracer albumin kinetics in the rat. Effects of increases in intraperitoneal hydrostatic pressure. Perit. Dial. Int. 15, 118–128 (1995).

    CAS  PubMed  Google Scholar 

  99. Galach, M., Werynski, A., Lindholm, B. & Waniewski, J. in Progress in Peritoneal Dialysis (ed. Krediet, R. T.) 1–22 (InTech, Rijeka, 2011).

    Google Scholar 

  100. Blake, P. G. Controversies in peritoneal dialysis. Perit. Dial. Int. 24, 309–317 (2004).

    Google Scholar 

  101. Pannekeet, M. M. et al. The standard peritoneal permeability analysis: a tool for the assessment of peritoneal permeability characteristics in CAPD patients. Kidney Int. 48, 866–875 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Smit, W. et al. Peritoneal function and assessment of reference values using a 3.86% glucose solution. Perit. Dial. Int. 23, 440–449 (2003).

    CAS  PubMed  Google Scholar 

  103. Fuszholler, A., Zur Nieden, S., Grabensee, B. & Plum, J. Peritoneal fluid and solute transport: influence of treatment time, peritoneal dialysis modality, and peritonitis incidence. J. Am. Soc. Nephrol. 13, 1055–1060 (2002).

    Google Scholar 

  104. Michels, W. M. et al. Does lymphatic absorption change with the duration of peritoneal dialysis? Perit. Dial. Int. 24, 347–352 (2004).

    PubMed  Google Scholar 

  105. Coester, A. M., Smit, W., Struijk, D. G., Parikova, A. & Krediet, R. T. Longitudinal analysis of peritoneal fluid transport and its determinants in a cohort of incident PD patients. Perit. Dial. Int. (in press).

  106. Smit, W., Parikova, A., Struijk, D. G. & Krediet, R. T. The difference in causes of early and late ultrafiltration failure in peritoneal dialysis. Perit. Dial. Int. 25 (Suppl. 1), S41–S45 (2005).

    PubMed  Google Scholar 

  107. Rippe, B. & Haraldsson, B. Transport of macromolecules across microvascular walls. Physiol. Rev. 74, 163–219 (1994).

    Article  CAS  PubMed  Google Scholar 

  108. Nolph, K. D., Hano, J. E. & Teschan, P. E. Peritoneal sodium transport during hypertonic peritoneal dialysis: physiologic mechanisms and clinical implications. Ann. Intern. Med. 70, 931–941 (1969).

    Article  CAS  PubMed  Google Scholar 

  109. Rippe, B. & Stelin, G. Simulations of peritoneal solute transport during CAPD. Application of two-pore formalism. Kidney Int. 35, 1234–1244 (1989).

    Article  CAS  PubMed  Google Scholar 

  110. Rippe, B., Stelin, G. & Haraldsson, B. Computer simulations of peritoneal fluid transport in CAPD. Kidney Int. 40, 315–325 (1991).

    Article  CAS  PubMed  Google Scholar 

  111. Pannekeet, M. M. et al. Demonstration of aquaporin-CHIP in peritoneal tissue of uremic and CAPD patients. Perit. Dial. Int. 19 (Suppl. 1), S54–S57 (1996).

    Google Scholar 

  112. Ni, J. et al. Aquaporin-1 plays an essential role in water permeability and ultrafiltration during peritoneal dialysis. Kidney Int. 69, 1518–1525 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Smit, W., Struijk, D. G., Ho-dac-Pannekeet, M. M. & Krediet, R. T. Quantification of free water transport in peritoneal dialysis. Kidney Int. 66, 849–854 (2004).

    Article  PubMed  Google Scholar 

  114. La Milia, V. et al. Mini-peritoneal equilibration test: a simple and fast method to assess free water and small solute transport across the peritoneal membrane. Kidney Int. 68, 840–846 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Parikova, A., Smit, W., Struijk, D. G., Zweers, M. M. & Krediet, R. T. The contribution of free water transport and small pore transport to the total fluid removal in peritoneal dialysis. Kidney Int. 68, 1849–1856 (2005).

    Article  PubMed  Google Scholar 

  116. Parikova, A., Smit, W., Zweers, M. M., Struijk, D. G. & Krediet, R. T. Free water transport, small pore transport and the osmotic gradient. Nephrol. Dial. Transplant. 23, 2350–2355 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Numata, M. et al. Association between an increased surface area of peritoneal microvessels and a high peritoneal solute transport rate. Perit. Dial. Int. 23, 116–122 (2003).

    PubMed  Google Scholar 

  118. Davies, S. J., Brown, B., Bryan, J. & Russel, G. I. Clinical evaluation of the peritoneal equilibration test: a population-based study. Nephrol. Dial. Transplant. 8, 64–70 (1993).

    Article  CAS  PubMed  Google Scholar 

  119. Smit, W. et al. Free water transport in fast transport status: a comparison between CAPD peritonitis and long-term PD. Kidney Int. 65, 298–303 (2004).

    Article  PubMed  Google Scholar 

  120. Parikova, A., Smit, W., Struijk, D. G. & Krediet, R. T. Analysis of fluid transport pathways and their determinants in peritoneal dialysis patients with ultrafiltration failure. Kidney Int. 70, 1988–1994 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Michels, W. M. et al. Time course of peritoneal function in automated and continuous peritoneal dialysis. Perit. Dial. Int. 32, 605–611 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Lo, W. K. et al. Changes in the peritoneal equilibration test in selected chronic peritoneal dialysis patients. J. Am. Soc. Nephrol. 4, 1466–1474 (1994).

    CAS  PubMed  Google Scholar 

  123. Struijk, D. G. et al. A prospective study of peritoneal transport in CAPD patients. Kidney Int. 45, 1739–1744 (1994).

    Article  CAS  PubMed  Google Scholar 

  124. Heimburger, O., Wang, T. & Lindholm, B. Alterations in water and solute transport with time on peritoneal dialysis. Perit. Dial. Int. 19 (Suppl. 2), S83–S90 (1999).

    PubMed  Google Scholar 

  125. Del Peso, G. et al. Factors influencing peritoneal transport parameters during the first year on peritoneal dialysis: peritonitis is the main factor. Nephrol. Dial. Transplant. 20, 1201–1206 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Clerbaux, G., Francart, J., Wallemacq, P., Robert, A. & Goffin, E. Evaluation of peritoneal transport properties at onset of peritoneal dialysis and longitudinal follow-up. Nephrol. Dial. Transplant. 21, 1032–1039 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Fernandez-Reyes, M. J. et al. The influence of initial peritoneal transport characteristics, inflammation, and high glucose exposure on prognosis of peritoneal membrane function. Perit. Dial. Int. 32, 636–644 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Davies, S. J., Bryan, J., Phillips, L. & Russel, G. I. Longitudinal changes in peritoneal kinetics: the effects of peritoneal dialysis and peritonitis. Nephrol. Dial. Transplant. 11, 498–506 (1996).

    Article  CAS  PubMed  Google Scholar 

  129. Fernandez-Reyes, M. J. et al. Inherent high peritoneal transport and ultrafiltration deficiency: their mid-term clinical relevance. Nephrol. Dial. Transplant. 22, 218–223 (2007).

    Article  Google Scholar 

  130. Oliveira, L. & Rodrigues, A. Previous renal replacement therapy time at start of peritoneal dialysis independently impact on peritoneal membrane ultrafiltration failure. Int. J. Nephrol. http://dx.doi.org/10.4061/2011/685457.

  131. Chung, S. H. et al. Peritoneal transport characteristics, comorbid diseases and survival in CAPD patients. Perit. Dial. Int. 20, 541–547 (2000).

    CAS  PubMed  Google Scholar 

  132. Szeto, C. C., Law, M. C., Wong, T. Y., Leung, C. B. & Li, P. K. Peritoneal transport status correlates with morbidity but not longitudinal change of nutritioinal status of continuous ambulatory peritoneal dialysis patients: a 2-year prospective study. Am. J. Kidney Dis. 37, 329–336 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Selgas, R. et al. Ultrafiltration and small solute transport at initiation of PD: Questioning the paradigm of peritoneal function. Perit. Dial. Int. 25, 68–70 (2005).

    CAS  PubMed  Google Scholar 

  134. Smit, W. et al. Analysis of the prevalence and causes of ultrafiltration failure during long-term peritoneal dialysis: a cross-sectional study. Perit. Dial. Int. 24, 562–570 (2004).

    PubMed  Google Scholar 

  135. Davies, S. J. Longitudinal relationship between solute transport and ultrafiltration capacity in peritoneal dialysis patients. Kidney Int. 66, 2437–2445 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Lambie, M. L., John, B., Mushahar, L., Huckvale, C. & Davies, S. J. The peritoneal osmotic conductance is low well before the diagnosis of encapsulating peritoneal sclerosis is made. Kidney Int. 78, 611–618 (2010).

    Article  PubMed  Google Scholar 

  137. Feit, J., Richard, C., McCaffrey, C. & Levy, M. Peritoneal clearance of creatinine and inulin in dogs: effect of splanchnic vasodilators. Kidney Int. 16, 459–469 (1979).

    Article  Google Scholar 

  138. Pietrzak, I. et al. Splanchnic volume, not flow rate, determines peritoneal permeability. ASAIO Trans. 35, 583–587 (1989).

    Article  CAS  PubMed  Google Scholar 

  139. Kim, M., Lofthouse, J. & Flessner, M. F. A method to test blood flow limitation of peritoneal-blood solute transport. J. Am. Soc. Nephrol. 8, 471–474 (1997).

    CAS  PubMed  Google Scholar 

  140. Flessner, M. F., Henegar, J., Bigler, S. & Genous, L. Is the peritoneum a significant transport barrier in peritoneal dialysis? Perit. Dial. Int. 23, 542–549 (2003).

    CAS  PubMed  Google Scholar 

  141. Levick, J. R. Flow through interstitium and other fibrous matrices. Q. J. Exp. Physiol. 72, 409–438 (1987).

    Article  CAS  PubMed  Google Scholar 

  142. Fox, J. R. & Wayland, H. Interstitial diffusion of macromolecules in the rat mesentery. Microvasc. Res. 18, 255–276 (1979).

    Article  CAS  PubMed  Google Scholar 

  143. Flessner, M. F., Fenstermacher, J. D., Dedrick, R. L. & Blasberg, R. G. A distributed model of peritoneal-plasma transport: tissue concentration gradients. Am. J. Physiol. 248, F425–F435 (1985).

    Article  CAS  PubMed  Google Scholar 

  144. Wiig, H., DeCarlo, M., Sibley, L., Renkin, E. M. Interstitial exclusion of albumin in rat tissues measured by a continuous infusion method. Am. J. Physiol. 263, H1222–H1233 (1992).

    CAS  PubMed  Google Scholar 

  145. Hirszel, P., Shea-Donohue, T., Chakrabarti, E., Montcalm, E. & Maher, J. F. The role of the capillary wall in restricting diffusion of macromolecules. Nephron 49, 58–61 (1988).

    Article  CAS  PubMed  Google Scholar 

  146. Lasrich, M., Maher, J. M, Hirszel, P. & Maher, J. F. Correlation of peritoneal transport rates with molecular weight: a method for predicting clearances. ASAIO J. 2, 107–113 (1979).

    Google Scholar 

  147. Leypoldt, J. K., Parker, H. R., Frigon, R. P. & Henderson, L. W. Molecular size dependence of peritoneal transport. J. Lab. Clin. Med. 110, 207–216 (1987).

    CAS  PubMed  Google Scholar 

  148. Krediet, R. T., Zuyderhoudt, F. M., Boeschoten, E. W. & Arisz, L. Alterations in the peritoneal transport of water and solutes during peritonitis in continuous ambulatory peritoneal dialysis patients. Eur. J. Clin. Invest. 17, 43–52 (1987).

    Article  CAS  PubMed  Google Scholar 

  149. Krediet, R. T. et al. The peritoneal transport of serum proteins and neutral dextran in CAPD patients. Kidney Int. 35, 1064–1072 (1989).

    Article  CAS  PubMed  Google Scholar 

  150. Gotloib, L., Bar Sella, P. & Shustack, A. Ruthenium-red-stained polyanionic fixed charges in peritoneal microvessels. Nephron 47, 22–28 (1998).

    Article  Google Scholar 

  151. Buis, B. et al. Effect of electric charge on the transperitoneal transport of plasma proteins during CAPD. Nephrol. Dial. Transplant. 11, 1113–1120 (1996).

    Article  CAS  PubMed  Google Scholar 

  152. Zemel, D., Krediet, R. T., Koomen, G. C., Struijk, D. G. & Arisz, L. Day to day variability of protein transport used as a method for the analysis of peritoneal permeability in continuous ambulatory peritoneal dialysis patients. Perit. Dial. Int. 11, 217–223 (1991).

    CAS  PubMed  Google Scholar 

  153. Rumpsfeld, M., McDonald, S. P., Purdie, D. M., Collins, J. & Johnson, D. W. Predictors of baseline peritoneal transport status in Australian and New Zealand peritoneal dialysis patients. Am. J. Kidney Dis. 43, 492–501 (2004).

    Article  PubMed  Google Scholar 

  154. Serlie, M. J., Struijk, D. G., de Blok, K. & Krediet, R. T. Differences in fluid and solute transport between diabetic and nondiabetic patients at the onset of CAPD. Adv. Perit. Dial. 13, 29–32 (1997).

    CAS  PubMed  Google Scholar 

  155. Hendriks, P. M. et al. Peritoneal sclerosis in chronic peritoneal dialysis patients: analysis of clinical presentation, risk factors, and peritoneal transport kinetics. Perit. Dial. Int. 17, 136–143 (1997).

    CAS  PubMed  Google Scholar 

  156. Davies, S. J., Phillips, L., Naish, P. F. & Russell, G. I. Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis. J. Am. Soc. Nephrol. 12, 1046–1051 (2001).

    CAS  PubMed  Google Scholar 

  157. Goel, S., Kathuria, P., Moore, H. L., Prowant, B. F. & Nolph, K. D. The effect of peritonitis on the peritoneal membrane transport properties in patients on CAPD. Adv. Perit. Dial. 12, 181–184 (1996).

    CAS  PubMed  Google Scholar 

  158. Kolesnyk, I. et al. The impact of ACE inhibitors and AII receptor blockers on the peritoneal membrane transport characteristics in long-term PD patients. Perit. Dial. Int. 27, 446–453 (2007).

    CAS  PubMed  Google Scholar 

  159. Kolesnyk, I. et al. A positive effect of AII inhibitors on peritoneal membrane function in long-term PD patients. Nephrol. Dial. Transplant. 24, 272–277 (2009).

    Article  CAS  PubMed  Google Scholar 

  160. Selgas, R. et al. Stability of the peritoneal membrane in long-term peritoneal dialysis patients. Adv. Ren. Replace. Ther. 5, 168–178 (1998).

    Article  CAS  PubMed  Google Scholar 

  161. Rodrigues, A., Cabrita, A., Maia, P. & Guimares, S. Peritoneal rest may successfully recover ultrafiltration in patients who develop hyperpermeability with time on continuous ambulatory peritoneal dialysis. Adv. Perit. Dial. 18, 78–80 (2002).

    CAS  PubMed  Google Scholar 

  162. Struijk, D. G. et al. Functional characteristics of the peritoneal membrane in long-term continuous ambulatory peritoneal dialysis. Nephron 59, 213–220 (1991).

    Article  CAS  PubMed  Google Scholar 

  163. Ho-dac-Pannekeet, M. M., Koopmans, J. G., Struijk, D. G. & Krediet, R. T. Restriction coefficients of low molecular weight solutes and macromolecules during peritoneal dialysis. Adv. Perit. Dial. 13, 17–22 (1997).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Raymond T. Krediet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krediet, R., Struijk, D. Peritoneal changes in patients on long-term peritoneal dialysis. Nat Rev Nephrol 9, 419–429 (2013). https://doi.org/10.1038/nrneph.2013.99

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.99

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing