Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bone disease after renal transplantation

Abstract

In light of greatly improved long-term patient and graft survival after renal transplantation, improving other clinical outcomes such as risk of fracture and cardiovascular disease is of paramount importance. After renal transplantation, a large percentage of patients lose bone. This loss of bone results from a combination of factors that include pre-existing renal osteodystrophy, immunosuppressive therapy, and the effects of chronically reduced renal function after transplantation. In addition to low bone volume, histological abnormalities include decreased bone turnover and defective mineralization. Low bone volume and low bone turnover were recently shown to be associated with cardiovascular calcifications, highlighting specific challenges for medical therapy and the need to prevent low bone turnover in the pretransplant patient. This Review discusses changes in bone histology and mineral metabolism that are associated with renal transplantation and the effects of these changes on clinical outcomes such as fractures and cardiovascular calcifications. Therapeutic modalities are evaluated based on our understanding of bone histology.

Key Points

  • Metabolic abnormalities are common in patients after renal transplantation

  • Pathogenetic mechanisms associated with bone loss in renal transplant recipients are different to those involved in postmenopausal bone loss

  • Low bone turnover is common in patients with bone disease associated with renal transplantation

  • Focal or generalized osteomalacia may coexist with bone loss after renal transplantation

  • Cardiovascular calcifications may be associated with low bone volume and low bone turnover in recipients of renal transplants

  • Use of bisphosphonates for treatment of bone loss associated with renal transplantation may have deleterious effects because of reduced glomerular filtration rate and the presence of low bone turnover

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glucocorticoids reduce bone turnover.
Figure 2: Low turnover bone disease (adynamic bone disease) in a 35-year-old white male renal transplant recipient.
Figure 3: Low turnover osteomalacia in a 49-year-old white female renal transplant recipient.
Figure 4: Administration of pamidronate reduces bone turnover after renal transplantation.113

Similar content being viewed by others

References

  1. Nishikawa, K. & Terasaki, P. I. Annual trends and triple therapy—1991–2000. Clin. Transpl. 247–269 (2001).

  2. Marcen, R. & Teruel, J. L. Patient outcomes after kidney allograft loss. Transplant Rev. (Orlando) 22, 62–72 (2008).

    Article  Google Scholar 

  3. Malluche, H. H. & Faugere, M. C. Atlas of Mineralized Bone Histology (Karger, New York, 1986).

    Google Scholar 

  4. Hruska, K. A. & Teitelbaum, S. L. Renal osteodystrophy. N. Engl. J. Med. 333, 166–174 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, M. et al. Relationship between intact 1–84 parathyroid hormone and bone histomorphometric parameters in dialysis patients without aluminum toxicity. Am. J. Kidney Dis. 26, 836–844 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Parfitt, A. M. Bone histomorphometry: proposed system for standardization of nomenclature, symbols, and units. Calcif. Tissue Int. 42, 284–286 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Malluche, H. H. & Monier-Faugere, M. C. Renal osteodystrophy: what's in a name? Presentation of a clinically useful new model to interpret bone histologic findings. Clin. Nephrol. 65, 235–242 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Moe, S. et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 69, 1945–1953 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Malluche, H., Lee, J., Wang, G., Herberth, J. & Faugere, M. C. Usefulness of the new TMV classification of renal osteodystrophy. J. Am. Soc. Nephrol. 19, 38A (2008).

    Google Scholar 

  10. Kurz, P. et al. Evidence for abnormal calcium homeostasis in patients with adynamic bone disease. Kidney Int. 46, 855–861 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Bell, K. L. et al. A novel mechanism for induction of increased cortical porosity in cases of intracapsular hip fracture. Bone 27, 297–304 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Greenspan, S. L., Beck, T. J., Resnick, N. M., Bhattacharya, R. & Parker, R. A. Effect of hormone replacement, alendronate, or combination therapy on hip structural geometry: a 3-year, double-blind, placebo-controlled clinical trial. J. Bone Miner. Res. 20, 1525–1532 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. London, G. M. et al. Arterial calcifications and bone histomorphometry in end-stage renal disease. J. Am. Soc. Nephrol. 15, 1943–1951 (2004).

    Article  PubMed  Google Scholar 

  14. Adragao, T. et al. Low bone volume—a risk factor for coronary calcifications in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 4, 450–455 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  15. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. S1–S130 (2009).

  16. Bordier, P. et al. Vitamin D metabolites and bone mineralization in man. J. Clin. Endocrinol. Metab. 46, 284–294 (1978).

    Article  CAS  PubMed  Google Scholar 

  17. Malluche, H. H., Goldstein, D. A. & Massry, S. G. Osteomalacia and hyperparathyroid bone disease in patients with nephrotic syndrome. J. Clin. Invest. 63, 494–500 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wolpaw, T. et al. Factors influencing vertebral bone density after renal transplantation. Transplantation 58, 1186–1189 (1994).

    CAS  PubMed  Google Scholar 

  19. Briner, V. A. et al. Prevention of cancellous bone loss but persistence of renal bone disease despite normal 1,25 vitamin D levels two years after kidney transplantation. Transplantation 59, 1393–1400 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Grotz, W. H. et al. Bone loss after kidney transplantation: a longitudinal study in 115 graft recipients. Nephrol. Dial. Transplant. 10, 2096–2100 (1995).

    CAS  PubMed  Google Scholar 

  21. Grotz, W. H. et al. Bone mineral density after kidney transplantation. A cross-sectional study in 190 graft recipients up to 20 years after transplantation. Transplantation 59, 982–986 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Monier-Faugere, M. C., Mawad, H., Qi, Q., Friedler, R. M. & Malluche, H. H. High prevalence of low bone turnover and occurrence of osteomalacia after kidney transplantation. J. Am. Soc. Nephrol. 11, 1093–1099 (2000).

    CAS  PubMed  Google Scholar 

  23. Julian, B. A. et al. Rapid loss of vertebral mineral density after renal transplantation. N. Engl. J. Med. 325, 544–550 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Rojas, E. et al. The pathogenesis of osteodystrophy after renal transplantation as detected by early alterations in bone remodeling. Kidney Int. 63, 1915–1923 (2003).

    Article  PubMed  Google Scholar 

  25. Canalis, E. & Delany, A. M. Mechanisms of glucocorticoid action in bone. Ann. NY Acad. Sci. 966, 73–81 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Weinstein, R. S., Jilka, R. L., Parfitt, A. M. & Manolagas, S. C. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J. Clin. Invest. 102, 274–282 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Suzuki, Y., Ichikawa, Y., Saito, E. & Homma, M. Importance of increased urinary calcium excretion in the development of secondary hyperparathyroidism of patients under glucocorticoid therapy. Metabolism 32, 151–156 (1983).

    Article  CAS  PubMed  Google Scholar 

  28. Canalis, E., Mazziotti, G., Giustina, A. & Bilezikian, J. P. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos. Int. 18, 1319–1328 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Sakakura, M., Takebe, K. & Nakagawa, S. Inhibition of luteinizing hormone secretion induced by synthetic LRH by long-term treatment with glucocorticoids in human subjects. J. Clin. Endocrinol. Metab. 40, 774–779 (1975).

    Article  CAS  PubMed  Google Scholar 

  30. Brandenburg, V. M. et al. Lumbar bone mineral density in very long-term renal transplant recipients: impact of circulating sex hormones. Osteoporos. Int. 16, 1611–1620 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. O'Shaughnessy, E. A., Dahl, D. C., Smith, C. L. & Kasiske, B. L. Risk factors for fractures in kidney transplantation. Transplantation 74, 362–366 (2002).

    Article  PubMed  Google Scholar 

  32. Vautour, L. M. et al. Long-term fracture risk following renal transplantation: a population-based study. Osteoporos. Int. 15, 160–167 (2004).

    Article  PubMed  Google Scholar 

  33. Ugur, A. et al. Osteoporosis after renal transplantation: single center experience. Transplantation 71, 645–649 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Marcen, R. et al. Lumbar bone mineral density in renal transplant patients on neoral and tacrolimus: a four-year prospective study. Transplantation 81, 826–831 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Tang, L. et al. FK506 enhanced osteoblastic differentiation in mesenchymal cells. Cell Biol. Int. 26, 75–84 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Kirino, S. et al. Regulation of bone metabolism in immunosuppressant (FK506)-treated rats. J. Bone Miner. Metab. 22, 554–560 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Patel, S. et al. Prevalence and causes of low bone density and fractures in kidney transplant patients. J. Bone Miner. Res. 16, 1863–1870 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Movsowitz, C., Epstein, S., Fallon, M., Ismail, F. & Thomas, S. Cyclosporin-A in vivo produces severe osteopenia in the rat: effect of dose and duration of administration. Endocrinology 123, 2571–2577 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Schlosberg, M. et al. The effect of cyclosporin A administration and its withdrawal on bone mineral metabolism in the rat. Endocrinology 124, 2179–2184 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Epstein, S. et al. Effect of the interaction of parathyroid hormone and cyclosporine a on bone mineral metabolism in the rat. Calcif. Tissue Int. 68, 240–247 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Rastogi, R., Faugere, M. C., Geng, Z., Bognar, B. & Malluche, H. H. Cyclosporin does not induce bone loss but enhances mineralization in normal and nephrectomized rats. J. Bone Miner. Res. 12 (Suppl. 1), 402 (1997).

    Google Scholar 

  42. Briner, V. A., Landmann, J., Brunner, F. P. & Thiel, G. Cyclosporin A-induced transient rise in plasma alkaline phosphatase in kidney transplant patients. Transpl. Int. 6, 99–107 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Bozkaya, G. et al. Impact of calcineurin inhibitors on bone metabolism in primary kidney transplant patients. Transplant. Proc. 40, 151–155 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Joffe, I. et al. Lack of change of cancellous bone volume with short-term use of the new immunosuppressant rapamycin in rats. Calcif. Tissue Int. 53, 45–52 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Bryer, H. P. et al. Azathioprine alone is bone sparing and does not alter cyclosporin A-induced osteopenia in the rat. J. Bone Miner. Res. 10, 132–138 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Dissanayake, I. R. et al. Mycophenolate mofetil: a promising new immunosuppressant that does not cause bone loss in the rat. Transplantation 65, 275–278 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Singha, U. K. et al. Rapamycin inhibits osteoblast proliferation and differentiation in MC3T3-E1 cells and primary mouse bone marrow stromal cells. J. Cell. Biochem. 103, 434–446 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Kneissel, M. et al. Everolimus suppresses cancellous bone loss, bone resorption, and cathepsin K expression by osteoclasts. Bone 35, 1144–1156 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Malluche, H. et al. Bone histology in incipient and advanced renal failure. Kidney Int. 9, 355–362 (1976).

    Article  CAS  PubMed  Google Scholar 

  50. Bellorin-Font, E., Rojas, E., Carlini, R. G., Suniaga, O. & Weisinger, J. R. Bone remodeling after renal transplantation. Kidney Int. Suppl. S125–S128 (2003).

  51. Akaberi, S., Lindergard, B., Simonsen, O. & Nyberg, G. Impact of parathyroid hormone on bone density in long-term renal transplant patients with good graft function. Transplantation 82, 749–752 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Bonarek, H. et al. Reduced parathyroid functional mass after successful kidney transplantation. Kidney Int. 56, 642–649 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Parfitt, A. M. Hypercalcemic hyperparathyroidism following renal transplantation: differential diagnosis, management, and implications for cell population control in the parathyroid gland. Miner. Electrolyte Metab. 8, 92–112 (1982).

    CAS  PubMed  Google Scholar 

  54. Evenepoel, P. et al. Natural history of parathyroid function and calcium metabolism after kidney transplantation: a single-center study. Nephrol. Dial. Transplant. 19, 1281–1287 (2004).

    Article  PubMed  Google Scholar 

  55. Reinhardt, W. et al. Sequential changes of biochemical bone parameters after kidney transplantation. Nephrol. Dial. Transplant. 13, 436–442 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Messa, P. et al. Persistent secondary hyperparathyroidism after renal transplantation. Kidney Int. 54, 1704–1713 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Kruse, A. E., Eisenberger, U., Frey, F. J. & Mohaupt, M. G. The calcimimetic cinacalcet normalizes serum calcium in renal transplant patients with persistent hyperparathyroidism. Nephrol. Dial. Transplant. 20, 1311–1314 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Torres, A., Lorenzo, V. & Salido, E. Calcium metabolism and skeletal problems after transplantation. J. Am. Soc. Nephrol. 13, 551–558 (2002).

    PubMed  Google Scholar 

  59. Lewin, E. Involution of the parathyroid glands after renal transplantation. Curr. Opin. Nephrol. Hypertens. 12, 363–371 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Caravaca, F. et al. Are plasma 1,25-dihydroxyvitamin D3 concentrations appropriate after successful kidney transplantation? Nephrol. Dial. Transplant. 13 (Suppl. 3), 91–93 (1998).

    Article  PubMed  Google Scholar 

  61. Drueke, T. B. Primary and secondary uremic hyperparathyroidism: from initial clinical observations to recent findings. Nephrol. Dial. Transplant. 13, 1384–1387 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Borchhardt, K. et al. Low-turnover bone disease in hypercalcemic hyperparathyroidism after kidney transplantation. Am. J. Transplant. 7, 2515–2521 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Evenepoel, P. et al. Calcium metabolism in the early posttransplantation period. Clin. J. Am. Soc. Nephrol. 4, 665–672 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gwinner, W. et al. Early calcification of renal allografts detected by protocol biopsies: causes and clinical implications. Am. J. Transplant. 5, 1934–1941 (2005).

    Article  PubMed  Google Scholar 

  65. Evenepoel, P., Naesens, M., Claes, K., Kuypers, D. & Vanrenterghem, Y. Tertiary 'hyperphosphatoninism' accentuates hypophosphatemia and suppresses calcitriol levels in renal transplant recipients. Am. J. Transplant. 7, 1193–1200 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Green, J. et al. Evidence for a PTH-independent humoral mechanism in post-transplant hypophosphatemia and phosphaturia. Kidney Int. 60, 1182–1196 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Bhan, I. et al. Post-transplant hypophosphatemia: Tertiary 'Hyper-Phosphatoninism'? Kidney Int. 70, 1486–1494 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Evenepoel, P. et al. Recovery of hyperphosphatoninism and renal phosphorus wasting one year after successful renal transplantation. Clin. J. Am. Soc. Nephrol. 3, 1829–1836 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Serra, A. L., Wuhrmann, C. & Wuthrich, R. P. Phosphatemic effect of cinacalcet in kidney transplant recipients with persistent hyperparathyroidism. Am. J. Kidney Dis. 52, 1151–1157 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Mann, K. J. et al. Renal denervation enhances the phosphaturic effect of parathyroid hormone. Miner. Electrolyte Metab. 17, 16–20 (1991).

    CAS  PubMed  Google Scholar 

  71. Mann, K. J., Dousa, D. M., Kerrigan, R. J., Berndt, T. J. & Knox, F. G. Acute renal denervation decreases tubular phosphate reabsorption. Miner. Electrolyte Metab. 18, 354–358 (1992).

    CAS  PubMed  Google Scholar 

  72. Berndt, T. J., Khraibi, A. A. & Knox, F. G. Interaction of the renal nerves and prostaglandins on the phosphaturic response to PTH in phosphate-deprived rats. Am. J. Physiol. 268, R731–R735 (1995).

    CAS  PubMed  Google Scholar 

  73. Straub, B. et al. Hyperphosphaturia after kidney transplantation in syngeneic rats: effects on nephrocalcinosis and bone metabolism? Transplant. Proc. 35, 1575–1580 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Gazdar, A. F. & Dammin, G. J. Neural degeneration and regeneration in human renal transplants. N. Engl. J. Med. 283, 222–224 (1970).

    Article  CAS  PubMed  Google Scholar 

  75. Sankari, B. et al. Studies on the afferent and efferent renal nerves following autotransplantation of the canine kidney. J. Urol. 148, 206–210 (1992).

    Article  CAS  PubMed  Google Scholar 

  76. Amin, H., Wall, B. M. & Cooke, C. R. Osteomalacia and secondary hyperparathyroidism after kidney transplantation: Relationship to vitamin D deficiency. Am. J. Med. Sci. 333, 58–62 (2007).

    Article  PubMed  Google Scholar 

  77. Fleseriu, M. & Licata, A. A. Failure of successful renal transplant to produce appropriate levels of 1,25-dihydroxyvitamin D. Osteoporos. Int. 18, 363–368 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Lippuner, K., Casez, J. P., Horber, F. F. & Jaeger, P. Effects of deflazacort versus prednisone on bone mass, body composition, and lipid profile: a randomized, double blind study in kidney transplant patients. J. Clin. Endocrinol. Metab. 83, 3795–3802 (1998).

    CAS  PubMed  Google Scholar 

  79. Mikuls, T. R., Julian, B. A., Bartolucci, A. & Saag, K. G. Bone mineral density changes within six months of renal transplantation. Transplantation 75, 49–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Nam, J. H. et al. Pamidronate and calcitriol trial for the prevention of early bone loss after renal transplantation. Transplant. Proc. 32, 1876 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Brandenburg, V. M. et al. Early rapid loss followed by long-term consolidation characterizes the development of lumbar bone mineral density after kidney transplantation. Transplantation 77, 1566–1571 (2004).

    Article  PubMed  Google Scholar 

  82. Pichette, V. et al. Long-term bone loss in kidney transplant recipients: a cross-sectional and longitudinal study. Am. J. Kidney Dis. 28, 105–114 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Cruz, D. N. et al. Parameters of high bone-turnover predict bone loss in renal transplant patients: a longitudinal study. Transplantation 72, 83–88 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Josephson, M. A. et al. Calcium and calcitriol prophylaxis attenuates posttransplant bone loss. Transplantation 78, 1233–1236 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Wissing, K. M. et al. A controlled study of vitamin D3 to prevent bone loss in renal-transplant patients receiving low doses of steroids. Transplantation 79, 108–115 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. El-Agroudy, A. E., El-Husseini, A. A., El-Sayed, M., Mohsen, T. & Ghoneim, M. A. A prospective randomized study for prevention of postrenal transplantation bone loss. Kidney Int. 67, 2039–2045 (2005).

    Article  PubMed  Google Scholar 

  87. Grotz, W. H. et al. Bone fracture and osteodensitometry with dual energy X-ray absorptiometry in kidney transplant recipients. Transplantation 58, 912–915 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Abbott, K. C. et al. Hospitalizations for fractures after renal transplantation in the United States. Ann. Epidemiol. 11, 450–457 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Ball, A. M. et al. Risk of hip fracture among dialysis and renal transplant recipients. JAMA 288, 3014–3018 (2002).

    Article  PubMed  Google Scholar 

  90. Nisbeth, U., Lindh, E., Ljunghall, S., Backman, U. & Fellstrom, B. Fracture frequency after kidney transplantation. Transplant. Proc. 26, 1764 (1994).

    CAS  PubMed  Google Scholar 

  91. Chiu, M. Y. et al. Analysis of fracture prevalence in kidney-pancreas allograft recipients. J. Am. Soc. Nephrol. 9, 677–683 (1998).

    CAS  PubMed  Google Scholar 

  92. Nisbeth, U., Lindh, E., Ljunghall, S., Backman, U. & Fellstrom, B. Increased fracture rate in diabetes mellitus and females after renal transplantation. Transplantation 67, 1218–1222 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Foley, R. N., Parfrey, P. S. & Sarnak, M. J. Epidemiology of cardiovascular disease in chronic renal disease. J. Am. Soc. Nephrol. 9, S16–S23 (1998).

    CAS  PubMed  Google Scholar 

  94. Ojo, A. O. et al. Long-term survival in renal transplant recipients with graft function. Kidney Int. 57, 307–313 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Braun, J. et al. Electron. beam computed tomography in the evaluation of cardiac calcification in chronic dialysis patients. Am. J. Kidney Dis. 27, 394–401 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Blacher, J., Guerin, A. P., Pannier, B., Marchais, S. J. & London, G. M. Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease. Hypertension 38, 938–942 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Nguyen, P. T. et al. Prevalence and determinants of coronary and aortic calcifications assessed by chest CT in renal transplant recipients. Am. J. Nephrol. 27, 329–335 (2007).

    Article  PubMed  Google Scholar 

  98. Kasiske, B. L. Cardiovascular disease after renal transplantation. Semin. Nephrol. 20, 176–187 (2000).

    CAS  PubMed  Google Scholar 

  99. Moe, S. M. et al. Natural history of vascular calcification in dialysis and transplant patients. Nephrol. Dial. Transplant. 19, 2387–2393 (2004).

    Article  PubMed  Google Scholar 

  100. Moe, S. M. Vascular calcification and renal osteodystrophy relationship in chronic kidney disease. Eur. J. Clin. Invest. 36 (Suppl. 2), 51–62 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Goodman, W. G. et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N. Engl. J. Med. 342, 1478–1483 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Adragao, T. et al. Vascular calcifications and bone turnover in hemodialysis patients. Nephrol. Dial. Transplant. 21 (Suppl. iv), 292 (2006).

    Google Scholar 

  103. Barreto, D. V. et al. Association of changes in bone remodeling and coronary calcification in hemodialysis patients: a prospective study. Am. J. Kidney Dis. 52, 1139–1150 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Weisinger, J. R., Carlini, R. G., Rojas, E. & Bellorin-Font, E. Bone disease after renal transplantation. Clin. J. Am. Soc. Nephrol. 1, 1300–1313 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Palmer, S. C., McGregor, D. O. & Strippoli, G. F. Interventions for preventing bone disease in kidney transplant recipients. Cochrane Database Syst. Rev. CD005015 (2007).

  106. Triponez, F., Clark, O. H., Vanrenthergem, Y. & Evenepoel, P. Surgical treatment of persistent hyperparathyroidism after renal transplantation. Ann. Surg. 248, 18–30 (2008).

    Article  PubMed  Google Scholar 

  107. Ebeling, P. R. Approach to the patient with transplantation-related bone loss. J. Clin. Endocrinol. Metab. 94, 1483–1490 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Bergua, C. et al. Effect of cinacalcet on hypercalcemia and bone mineral density in renal transplanted patients with secondary hyperparathyroidism. Transplantation 86, 413–417 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Cho, M. E. et al. Cinacalcet Improves Bone Density in Post Kidney Transplant Hyperparathyroidism. Presented at the American Society of Nephrology Renal Week, 2008.

  110. Coco, M. et al. Prevention of bone loss in renal transplant recipients: a prospective, randomized trial of intravenous pamidronate. J. Am. Soc. Nephrol. 14, 2669–2676 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Malluche, H. H., Goldstein, D. A. & Massry, S. G. Effects of 6 months therapy with 1,25 (OH)2D3 on bone disease of dialysis patients. Contrib. Nephrol. 18, 98–104 (1980).

    Article  CAS  PubMed  Google Scholar 

  112. Reeve, J. et al. Anabolic effect of human parathyroid hormone fragment on trabecular bone in involutional osteoporosis: a multicenter trial. Br. Med. J. 280, 1340–1344 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Neer, R. M. et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med. 344, 1434–1441 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Cejka, D. et al. Effect of teriparatide on early bone loss after kidney transplantation. Am. J. Transplant. 8, 1864–1870 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by grants NIH RO1 DK51530 (H. H. Malluche), by the Kentucky Nephrology Research Trust (M.-C. Monier-Faugere), and by the Dean's Clinical Research Scholar Program, University of Kentucky, no 1012,112,710 (J. Herberth). The authors want to thank Dr Jessica McAbee, MD, Department of Internal Medicine, University of Kentucky, for her assistance with the literature review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut H. Malluche.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malluche, H., Monier-Faugere, MC. & Herberth, J. Bone disease after renal transplantation. Nat Rev Nephrol 6, 32–40 (2010). https://doi.org/10.1038/nrneph.2009.192

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2009.192

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing