Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

An evolutionary link between capsular biogenesis and surface motility in bacteria

An Erratum to this article was published on 27 April 2015

This article has been updated

Abstract

Studying the evolution of macromolecular assemblies is important to improve our understanding of how complex cellular structures evolved, and to identify the functional building blocks that are involved. Recent studies suggest that the macromolecular complexes that are involved in two distinct processes in Myxococcus xanthus — surface motility and sporulation — are derived from an ancestral polysaccharide capsule assembly system. In this Opinion article, we argue that the available data suggest that the motility machinery evolved from this capsule assembly system following a gene duplication event, a change in carbohydrate polymer specificity and the acquisition of additional proteins by the motility complex, all of which are key features that distinguish the motility and sporulation systems. Furthermore, the presence of intermediates of these systems in bacterial genomes suggests a testable evolutionary model for their emergence and spread.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular composition of the core complex, the Agl–Glt machinery and the Agl–Nfs machinery.
Figure 2: The Agl–Glt and Agl–Nfs machineries form a new class of 'spreader' systems that distribute surface polysaccharide to facilitate motility and sporulation.
Figure 3: The Agl motor forms a new class of Mot–Tol–Exb proton-gated motors in bacteria.
Figure 4: Taxonomic distribution and co-occurrence of agl genes and glt and nfs genes in bacteria.

Similar content being viewed by others

Change history

  • 27 April 2015

    In the above article, the credit lines for Figure 2a,d and Figure 4 were incorrect and have been corrected online. We apologize to the readers for any misunderstanding caused.

References

  1. Faro-Trindade, I. & Cook, P. R. Transcription factories: structures conserved during differentiation and evolution. Biochem. Soc. Trans. 34, 1133–1137 (2006).

    Article  CAS  Google Scholar 

  2. Lapuente-Brun, E. et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340, 1567–1570 (2013).

    Article  CAS  Google Scholar 

  3. Fronzes, R., Christie, P. J. & Waksman, G. The structural biology of type IV secretion systems. Nature Rev. Microbiol. 7, 703–714 (2009).

    Article  CAS  Google Scholar 

  4. Jarrell, K. F. & McBride, M. J. The surprisingly diverse ways that prokaryotes move. Nature Rev. Microbiol. 6, 466–476 (2008).

    Article  CAS  Google Scholar 

  5. Chevance, F. F. V. & Hughes, K. T. Coordinating assembly of a bacterial macromolecular machine. Nature Rev. Microbiol. 6, 455–465 (2008).

    Article  CAS  Google Scholar 

  6. Pallen, M. J. & Matzke, N. J. From The Origin of Species to the origin of bacterial flagella. Nature Rev. Microbiol. 4, 784–790 (2006).

    Article  CAS  Google Scholar 

  7. Snyder, L. A. S., Loman, N. J., Fütterer, K. & Pallen, M. J. Bacterial flagellar diversity and evolution: seek simplicity and distrust it? Trends Microbiol. 17, 1–5 (2009).

    Article  CAS  Google Scholar 

  8. Abby, S. S. & Rocha, E. P. C. The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems. PLoS Genet. 8, e1002983 (2012).

    Article  CAS  Google Scholar 

  9. Wadhams, G. H. & Armitage, J. P. Making sense of it all: bacterial chemotaxis. Nature Rev. Mol. Cell Biol. 5, 1024–1037 (2004).

    Article  CAS  Google Scholar 

  10. Liu, R. & Ochman, H. Stepwise formation of the bacterial flagellar system. Proc. Natl Acad. Sci. USA 104, 7116–7121 (2007).

    Article  CAS  Google Scholar 

  11. Ko, M. & Park, C. Two novel flagellar components and H-NS are involved in the motor function of Escherichia coli. J. Mol. Biol. 303, 371–382 (2000).

    Article  CAS  Google Scholar 

  12. Pelicic, V. Type IV pili: e pluribus unum? Mol. Microbiol. 68, 827–837 (2008).

    Article  CAS  Google Scholar 

  13. Kroos, L. The Bacillus and Myxococcus developmental networks and their transcriptional regulators. Annu. Rev. Genet. 41, 13–39 (2007).

    Article  CAS  Google Scholar 

  14. Chater, K. F., Biró, S., Lee, K. J., Palmer, T. & Schrempf, H. The complex extracellular biology of Streptomyces. FEMS Microbiol. Rev. 34, 171–198 (2010).

    Article  CAS  Google Scholar 

  15. Wartel, M. et al. A versatile class of cell surface directional motors gives rise to gliding motility and sporulation in Myxococcus xanthus. PLoS Biol. 11, e1001728 (2013).

    Article  Google Scholar 

  16. Zhang, Y., Ducret, A., Shaevitz, J. & Mignot, T. From individual cell motility to collective behaviors: insights from a prokaryote, Myxococcus xanthus. FEMS Microbiol. Rev. 36, 149–164 (2012).

    Article  CAS  Google Scholar 

  17. Bui, N. K. et al. The peptidoglycan sacculus of Myxococcus xanthus has unusual structural features and is degraded during glycerol-induced myxospore development. J. Bacteriol. 191, 494–505 (2009).

    Article  CAS  Google Scholar 

  18. Müller, F. D., Schink, C. W., Hoiczyk, E., Cserti, E. & Higgs, P. I. Spore formation in Myxococcus xanthus is tied to cytoskeleton functions and polysaccharide spore coat deposition. Mol. Microbiol. 83, 486–505 (2012).

    Article  Google Scholar 

  19. Holkenbrink, C., Hoiczyk, E., Kahnt, J. & Higgs, P. I. Synthesis and assembly of a novel glycan layer in Myxococcus xanthus spores. J. Biol. Chem. 289, 32364–32378 (2014).

    Article  CAS  Google Scholar 

  20. Sun, H., Zusman, D. R. & Shi, W. Y. Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system. Curr. Biol. 10, 1143–1146 (2000).

    Article  CAS  Google Scholar 

  21. Nan, B. & Zusman, D. R. Uncovering the mystery of gliding motility in the myxobacteria. Annu. Rev. Genet. 45, 21–39 (2011).

    Article  CAS  Google Scholar 

  22. Shi, W. & Zusman, D. R. The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc. Natl Acad. Sci. USA 90, 3378–3382 (1993).

    Article  CAS  Google Scholar 

  23. Mignot, T., Shaevitz, J. W., Hartzell, P. L. & Zusman, D. R. Evidence that focal adhesion complexes power bacterial gliding motility. Science 315, 853–856 (2007).

    Article  CAS  Google Scholar 

  24. Luciano, J. et al. Emergence and modular evolution of a novel motility machinery in bacteria. PLoS Genet. 7, e1002268 (2011).

    Article  CAS  Google Scholar 

  25. Nan, B., Mauriello, E. M., Sun, I. H., Wong, A. & Zusman, D. R. A multi-protein complex from Myxococcus xanthus required for bacterial gliding motility. Mol. Microbiol. 76, 1539–1554 (2010).

    Article  CAS  Google Scholar 

  26. Morimoto, Y. V. & Minamino, T. Structure and function of the bi-directional bacterial flagellar motor. Biomolecules 4, 217–234 (2014).

    Article  Google Scholar 

  27. Cascales, E., Lloubès, R. & Sturgis, J. N. The TolQ–TolR proteins energize TolA and share homologies with the flagellar motor proteins MotA–MotB. Mol. Microbiol. 42, 795–807 (2001).

    Article  CAS  Google Scholar 

  28. Postle, K. & Larsen, R. A. TonB-dependent energy transduction between outer and cytoplasmic membranes. Biometals 20, 453–465 (2007).

    Article  CAS  Google Scholar 

  29. Nan, B. et al. Myxobacteria gliding motility requires cytoskeleton rotation powered by proton motive force. Proc. Natl Acad. Sci. USA 108, 2498–2503 (2011).

    Article  CAS  Google Scholar 

  30. Nan, B. et al. Flagella stator homologs function as motors for myxobacterial gliding motility by moving in helical trajectories. Proc. Natl Acad. Sci. USA 110, E1508–E1513 (2013).

    Article  CAS  Google Scholar 

  31. Balagam, R. et al. Myxococcus xanthus gliding motors are elastically coupled to the substrate as predicted by the focal adhesion model of gliding motility. PLoS Comput. Biol. 10, e1003619 (2014).

    Article  Google Scholar 

  32. Ducret, A., Valignat, M.-P., Mouhamar, F., Mignot, T. & Theodoly, O. Wet-surface-enhanced ellipsometric contrast microscopy identifies slime as a major adhesion factor during bacterial surface motility. Proc. Natl Acad. Sci. USA 109, 10036–10041 (2012).

    Article  CAS  Google Scholar 

  33. Nan, B., McBride, M. J., Chen, J., Zusman, D. R. & Oster, G. Bacteria that glide with helical tracks. Curr. Biol. 24, R169–R173 (2014).

    Article  CAS  Google Scholar 

  34. Sun, M., Wartel, M., Cascales, E., Shaevitz, J. W. & Mignot, T. Motor-driven intracellular transport powers bacterial gliding motility. Proc. Natl Acad. Sci. USA 108, 7559–7564 (2011).

    Article  CAS  Google Scholar 

  35. Burchard, R. P. Trail following by gliding bacteria. J. Bacteriol. 152, 495–501 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mauriello, E. M. F. et al. Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA. EMBO J. 29, 315–326 (2010).

    Article  CAS  Google Scholar 

  37. Patryn, J., Allen, K., Dziewanowska, K., Otto, R. & Hartzell, P. L. Localization of MglA, an essential gliding motility protein in Myxococcus xanthus. Cytoskeleton 67, 322–337 (2010).

    CAS  PubMed  Google Scholar 

  38. Kojima, S. & Blair, D. F. The bacterial flagellar motor: structure and function of a complex molecular machine. Int. Rev. Cytol. 233, 93–134 (2004).

    Article  CAS  Google Scholar 

  39. Goemaere, E. L., Cascales, E. & Lloubes, R. Mutational analyses define helix organization and key residues of a bacterial membrane energy-transducing complex. J. Mol. Biol. 366, 1424–1436 (2007).

    Article  CAS  Google Scholar 

  40. Lazzaroni, J. C. et al. Transmembrane α-helix interactions are required for the functional assembly of the Escherichia coli Tol complex. J. Mol. Biol. 246, 1–7 (1995).

    Article  CAS  Google Scholar 

  41. Goemaere, E. L., Devert, A., Lloubès, R. & Cascales, E. Movements of the TolR C-terminal domain depend on TolQR ionizable key residues and regulate activity of the Tol complex. J. Biol. Chem. 282, 17749–17757 (2007).

    Article  CAS  Google Scholar 

  42. Zhang, X. Y.-Z. et al. Mapping the interactions between Escherichia coli tol subunits: rotation of the TolR transmembrane helix. J. Biol. Chem. 284, 4275–4282 (2009).

    Article  CAS  Google Scholar 

  43. Dong, J.-H., Wen, J.-F. & Tian, H.-F. Homologs of eukaryotic Ras superfamily proteins in prokaryotes and their novel phylogenetic correlation with their eukaryotic analogs. Gene 396, 116–124 (2007).

    Article  CAS  Google Scholar 

  44. Ozyamak, E., Kollman, J. M. & Komeili, A. Bacterial actins and their diversity. Biochemistry 52, 6928–6939 (2013).

    Article  CAS  Google Scholar 

  45. Thomas, S. H. et al. The mosaic genome of Anaeromyxobacter dehalogenans strain 2CP-C suggests an aerobic common ancestor to the Delta-proteobacteria. PLoS ONE 3, e2103 (2008).

    Article  Google Scholar 

  46. Goldman, B. S. et al. Evolution of sensory complexity recorded in a myxobacterial genome. Proc. Natl Acad. Sci. USA 103, 15200–15205 (2006).

    Article  CAS  Google Scholar 

  47. Finnigan, G. C., Hanson-Smith, V., Stevens, T. H. & Thornton, J. W. Evolution of increased complexity in a molecular machine. Nature 481, 360–364 (2012).

    Article  CAS  Google Scholar 

  48. Capra, E. J., Perchuk, B. S., Skerker, J. M. & Laub, M. T. Adaptive mutations that prevent crosstalk enable the expansion of paralogous signaling protein families. Cell 150, 222–232 (2012).

    Article  CAS  Google Scholar 

  49. Skerker, J. M. et al. Rewiring the specificity of two-component signal transduction systems. Cell 133, 1043–1054 (2008).

    Article  CAS  Google Scholar 

  50. Fiegna, F., Yu, Y.-T. N., Kadam, S. V. & Velicer, G. J. Evolution of an obligate social cheater to a superior cooperator. Nature 441, 310–314 (2006).

    Article  CAS  Google Scholar 

  51. Velicer, G. J. & Yu, Y.-T. N. Evolution of novel cooperative swarming in the bacterium Myxococcus xanthus. Nature 425, 75–78 (2003).

    Article  CAS  Google Scholar 

  52. Hizukuri, Y., Kojima, S. & Homma, M. Disulphide cross-linking between the stator and the bearing components in the bacterial flagellar motor. J. Biochem. 148, 309–318 (2010).

    Article  CAS  Google Scholar 

  53. Howard, C. J. et al. Ancestral resurrection reveals evolutionary mechanisms of kinase plasticity. eLife 3, e04126 (2014).

    Article  Google Scholar 

  54. Pallen, M. J., Penn, C. W. & Chaudhuri, R. R. Bacterial flagellar diversity in the post-genomic era. Trends Microbiol. 13, 143–149 (2005).

    Article  CAS  Google Scholar 

  55. Paul, K., Erhardt, M., Hirano, T., Blair, D. F. & Hughes, K. T. Energy source of flagellar type III secretion. Nature 451, 489–492 (2008).

    Article  CAS  Google Scholar 

  56. Whitfield, C. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu. Rev. Biochem. 75, 39–68 (2006).

    Article  CAS  Google Scholar 

  57. Nakane, D., Sato, K., Wada, H., McBride, M. J. & Nakayama, K. Helical flow of surface protein required for bacterial gliding motility. Proc. Natl Acad. Sci. USA 110, 11145–11150 (2013).

    Article  CAS  Google Scholar 

  58. Shrivastava, A., Rhodes, R. G., Pochiraju, S., Nakane, D. & McBride, M. J. Flavobacterium johnsoniae RemA is a mobile cell surface lectin involved in gliding. J. Bacteriol. 194, 3678–3688 (2012).

    Article  CAS  Google Scholar 

  59. Shih, A. C.-C., Lee, D. T., Peng, C.-L. & Wu, Y.-W. Phylo–mLogo: an interactive and hierarchical multiple-logo visualization tool for alignment of many sequences. BMC Bioinformatics 8, 63 (2007).

    Article  Google Scholar 

  60. Ronquist, F. et al. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank E. Mauriello and J.P. Castaing for comments to improve the manuscript. C.B.-A. is supported by the Investissement d'Avenir grant Ancestrome (ANR-10-BINF-01-01) and is a member of the Institut Universitaire de France. This work was supported by a European Research Council starting grant (DOME 261105) to T.M. and a coup d'élan pour la recherche française award (2011) from the Bettencourt–Schueller foundation to T.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tâm Mignot.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

agl gene sequence used for logo construction using the Phylo-mLogo program (XLSX 37 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrebi, R., Wartel, M., Brochier-Armanet, C. et al. An evolutionary link between capsular biogenesis and surface motility in bacteria. Nat Rev Microbiol 13, 318–326 (2015). https://doi.org/10.1038/nrmicro3431

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3431

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology