Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Genome analyses highlight the different biological roles of cellulases

Key Points

  • Cellulose from plant cell wall components can be broken down by specialized enzymes, which are primarily found in cellulolytic microorganisms.

  • The main types of cellulase can be classified into endoglucanases and exoglucanases, although oxidative enzymes can also participate. These enzymes are often modular.

  • An analysis of 1,500 bacterial genomes listed in the Carbohydrate-Active Enzyme (CAZy) database shows that 38% of all sequenced bacterial genomes contain at least one enzyme involved in cellulose cleavage.

  • The bacteria that encode one cellulase or more can be divided into four categories: saprophytes that do not synthesize cellulose, cellulose-synthesizing saprophytes, cellulose-synthesizing non-saprophytes and those that are neither saprophytic nor cellulose producing.

  • The role of bacterial cellulases therefore appears to be far more diversified than simply breaking down plant cell wall cellulose.

Abstract

Cellulolytic enzymes have been the subject of renewed interest owing to their potential role in the conversion of plant lignocellulose to sustainable biofuels. An analysis of 1,500 complete bacterial genomes, presented here, reveals that 40% of the genomes of sequenced bacteria encode at least one cellulase gene. Most of the bacteria that encode cellulases are soil and marine saprophytes, many of which encode a range of enzymes for cellulose hydrolysis and also for the breakdown of the other constituents of plant cell walls (hemicelluloses and pectins). Intriguingly, cellulases are present in organisms that are usually considered as non-saprophytic, such as Mycobacterium tuberculosis, Legionella pneumophila, Yersinia pestis and even Escherichia coli. We also discuss newly emerging roles of cellulases in such non-saprophytic organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An overview of enzymatic cellulose breakdown in the presence of lytic oxidative enzymes.
Figure 2: Modularity of cellulolytic enzymes.
Figure 3: Overview of the distribution of cellulase genes in bacteria in the Carbohydrate-Active Enzyme database.
Figure 4: Polysaccharide biosynthesis operons and cellulase fusion proteins.

Similar content being viewed by others

References

  1. Chavez-Munguia, B. et al. Ultrastructure of cyst differentiation in parasitic protozoa. Parasitol. Res. 100, 1169–1175 (2007).Article

    Article  Google Scholar 

  2. Matthysse, A. G. et al. A functional cellulose synthase from ascidian epidermis. Proc. Natl Acad. Sci. USA 101, 986–991 (2004).Article

    Article  CAS  Google Scholar 

  3. Tomlinson, G., Jones, E. A. & Kahne, D. Isolation of cellulose from the cyst of a soil amoeba. Biochim. Biophs. Acta 63, 194–200 (1962).Article

    Article  CAS  Google Scholar 

  4. Lynd, L. R., Weimer, P. J., van Zyl, W. H. & Pretorius, I. S. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506–577 (2002).

    Article  CAS  Google Scholar 

  5. Somerville, C. et al. Toward a systems approach to understanding plant cell walls. Science 306, 2206–2211 (2004).

    Article  CAS  Google Scholar 

  6. Nishiyama, Y., Langan, P. & Chanzy, H. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124, 9074–9082 (2002).

    Article  CAS  Google Scholar 

  7. Nishiyama, Y., Sugiyama, J., Chanzy, H. & Langan, P. Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 125, 14300–14306 (2003).

    Article  CAS  Google Scholar 

  8. Yarbrough, J. M., Himmel, M. E. & Ding, S. Y. Plant cell wall characterization using scanning probe microscopy techniques. Biotechnol. Biofuels 2, 17 (2009).Article

    Article  Google Scholar 

  9. Herve, C. et al. Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc. Natl Acad. Sci. USA 107, 15293–15298 (2010).Article

    Article  CAS  Google Scholar 

  10. Himmel, M. E. et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315, 804–807 (2007).

    Article  CAS  Google Scholar 

  11. Atsumi, S., Higashide, W. & Liao, J. C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nature Biotech. 27, 1177–1180 (2009).

    Article  CAS  Google Scholar 

  12. Doi, R. H. & Kosugi, A. Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nature Rev. Microbiol. 2, 541–551 (2004).

    Article  CAS  Google Scholar 

  13. Cantarel, B. L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37, D233–D238 (2009).

    Article  CAS  Google Scholar 

  14. Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280, 309–316 (1991).

    Article  CAS  Google Scholar 

  15. Varrot, A. et al. Mycobacterium tuberculosis strains possess functional cellulases. J. Biol. Chem. 280, 20181–20184 (2005).Article

    Article  CAS  Google Scholar 

  16. Mba Medie, F., Ben Salah, I., Drancourt, M. & Henrissat, B. Paradoxical conservation of a set of three cellulose-targeting genes in Mycobacterium tuberculosis complex organisms. Microbiology 156, 1468–1475 (2010).Article

    Article  Google Scholar 

  17. Mba Medie, F., Vincentelli, R., Drancourt, M. & Henrissat, B. Mycobacterium tuberculosis Rv1090 and Rv1987 encode functional β-glucan-targeting proteins. Protein Expr. Purif. 75, 172–176 (2011).Article

    Article  CAS  Google Scholar 

  18. Pearce, M. M. & Cianciotto, N. P. Legionella pneumophila secretes an endoglucanase that belongs to the family-5 of glycosyl hydrolases and is dependent upon type II secretion. FEMS Microbiol. Lett. 300, 256–264 (2009).Article

    Article  CAS  Google Scholar 

  19. Wong, H. C. et al. Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proc. Natl Acad. Sci. USA 87, 8130–8134 (1990).Article

    Article  CAS  Google Scholar 

  20. Nicol, F. et al. A plasma membrane-bound putative endo-1,4-β-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J. 17, 5563–5576 (1998).

    Article  CAS  Google Scholar 

  21. Henrissat, B., Driguez, H., Viet, C. & Schulein, M. Synergism of cellulase from Trichoderma reesei in the degradation of cellulose. Nature Biotech. 3, 722–726 (1985).

    Article  CAS  Google Scholar 

  22. Olson, D. G. et al. Deletion of the Cel48S cellulase from Clostridium thermocellum. Proc. Natl Acad. Sci. USA 107, 17727–17732 (2010).Article

    Article  CAS  Google Scholar 

  23. Vaaje-Kolstad, G. et al. An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330, 219–222 (2010).Article

    Article  CAS  Google Scholar 

  24. Forsberg, Z. et al. Cleavage of cellulose by a CBM33 protein. Protein Sci. 20, 1479–1483 (2011).Article

    Article  CAS  Google Scholar 

  25. Harris, P. V. et al. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49, 3305–3316 (2010).

    Article  CAS  Google Scholar 

  26. Quinlan, R. J. et al. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc. Natl Acad. Sci. USA 108, 15079–15084 (2011).Article

    Article  CAS  Google Scholar 

  27. Vincent, F., Molin, D. D., Weiner, R. M., Bourne, Y. & Henrissat, B. Structure of a polyisoprenoid binding domain from Saccharophagus degradans implicated in plant cell wall breakdown. FEBS Lett. 584, 1577–1584 (2010).Article

    Article  CAS  Google Scholar 

  28. Rubin, E. M. Genomics of cellulosic biofuels. Nature 454, 841–845 (2008).

    Article  CAS  Google Scholar 

  29. Ross, P., Mayer, R. & Benziman, M. Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 55, 35–58 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zogaj, X., Nimtz, M., Rohde, M., Bokranz, W. & Romling, U. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol. Microbiol. 39, 1452–1463 (2001).

    Article  CAS  Google Scholar 

  31. Matthysse, A. G., Thomas, D. L. & White, A. R. Mechanism of cellulose synthesis in Agrobacterium tumefaciens. J. Bacteriol. 177, 1076–1081 (1995).

    Article  CAS  Google Scholar 

  32. Koo, H. M., Song, S. H., Pyun, Y. R. & Kim, Y. S. Evidence that a β-1,4-endoglucanase secreted by Acetobacter xylinum plays an essential role for the formation of cellulose fiber. Biosci. Biotechnol. Biochem. 62, 2257–2259 (1998).

    Article  CAS  Google Scholar 

  33. Yuan, Y. et al. Crystal structure of a peptidoglycan glycosyltransferase suggests a model for processive glycan chain synthesis. Proc. Natl Acad. Sci. USA 104, 5348–5353 (2007).

    Article  CAS  Google Scholar 

  34. Pear, J. R., Kawagoe, Y., Schreckengost, W. E., Delmer, D. P. & Stalker, D. M. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc. Natl Acad. Sci. USA 93, 12637–12642 (1996).

    Article  CAS  Google Scholar 

  35. Robert, S. et al. An Arabidopsis endo-1,4-β-D-glucanase involved in cellulose synthesis undergoes regulated intracellular cycling. Plant Cell 17, 3378–3389 (2005).

    Article  CAS  Google Scholar 

  36. Molmeret, M. et al. Temporal and spatial trigger of post-exponential virulence-associated regulatory cascades by Legionella pneumophila after bacterial escape into the host cell cytosol. Environ. Microbiol. 12, 704–715 (2010).

    Article  Google Scholar 

  37. Weissenmayer, B. A., Prendergast, J. G., Lohan, A. J. & Loftus, B. J. Sequencing illustrates the transcriptional response of Legionella pneumophila during infection and identifies seventy novel small non-coding RNAs. PLoS ONE 6, e17570 (2011).

    Article  CAS  Google Scholar 

  38. Molmeret, M., Horn, M., Wagner, M., Santic, M. & Abu, K. Y. Amoebae as training grounds for intracellular bacterial pathogens. Appl. Environ. Microbiol. 71, 20–28 (2005).

    Article  CAS  Google Scholar 

  39. Daniel, J., Maamar, H., Deb, C., Sirakova, T. D. & Kolattukudy, P. E. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog. 7, e1002093 (2011).

    Article  CAS  Google Scholar 

  40. Harding, C. V. & Boom, W. H. Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nature Rev. Microbiol. 8, 296–307 (2010).

    Article  CAS  Google Scholar 

  41. Mba Medie, F., Ben Salah, I., Henrissat, B., Raoult, D. & Drancourt, M. Mycobacterium tuberculosis complex mycobacteria as amoeba-resistant organisms. PLoS ONE 6, e20499 (2011).

    Article  CAS  Google Scholar 

  42. Abd, H., Saeed, A., Weintraub, A. & Sandstrom, G. Vibrio cholerae O139 requires neither capsule nor LPS O side chain to grow inside Acanthamoeba castellanii. J. Med. Microbiol. 58, 125–131 (2009).

    Article  Google Scholar 

  43. Thomas, V., McDonnell, G., Denyer, S. P. & Maillard, J. Y. Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality. FEMS Microbiol. Rev. 34, 231–259 (2009).

    Article  Google Scholar 

  44. Davies, G. J., Tolley, S. P., Henrissat, B., Hjort, C. & Schulein, M. Structures of oligosaccharide-bound forms of the endoglucanase V from Humicola insolens at 1.9 Å resolution. Biochemistry 34, 16210–16220 (1995).

    Article  CAS  Google Scholar 

  45. Henrissat, B. & Davies, G. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7, 637–644 (1997).

    Article  CAS  Google Scholar 

  46. Zechel, D. L. & Withers, S. G. Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc. Chem. Res. 33, 11–18 (2000).

    Article  CAS  Google Scholar 

  47. Vocadlo, D. J. & Davies, G. J. Mechanistic insights into glycosidase chemistry. Curr. Opin. Chem. Biol. 12, 539–555 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F.M.M. was funded by La Fondation Infectiopole Sud, France. G.J.D. is a Royal Society Wolfson Research Merit Award recipient.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Henrissat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

CAZy

ENZYME

GenBank

Gene

Protein

Glossary

Saprophytic lifestyle

Referring to the lifestyle of an organism that feeds on dead organic matter of plant origin.

Xylophages

Organisms that feed on wood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medie, F., Davies, G., Drancourt, M. et al. Genome analyses highlight the different biological roles of cellulases. Nat Rev Microbiol 10, 227–234 (2012). https://doi.org/10.1038/nrmicro2729

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2729

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing