Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The predator becomes the prey: regulating the ubiquitin system by ubiquitylation and degradation

An Erratum to this article was published on 07 September 2011

This article has been updated

Key Points

  • Monomeric ubiquitin is relatively stable; however, it appears to be degraded by the proteasome following its own ubiquitylation, which is mediated by the thyroid receptor-interacting protein 12 (TRIP12) ligase. Ubiquitin is also degraded through two other mechanisms: along with the target substrate as part of the polyubiquitin chain attached to it, and along with a peptide attached, either linearly or in an isopeptide bond, to its carboxy-terminal Gly residue.

  • Ubiquitin-protein ligases (E3s) are largely responsible for conferring substrate specificity to the ubiquitin–proteasome system (UPS). An increasing number of these ligases are being shown to be subject to self-ubiquitylation (also known as auto-ubiquitylation), ubiquitylation by heterologous ligases, or both. In some cases, both self-ubiquitylation and ubiquitylation by heterologous ligases lead to degradation of the protein. In other cases, self-ubiquitylation can regulate the cellular function of the ligase, whereas ubiquitylation by a heterologous E3 results in degradation of the target ligase.

  • Other components of the UPS, including ubiquitin-conjugating enzymes (E2s) and deubiquitylating enzymes, are also subject to ubiquitylation.

  • Components of the ubiquitin system are also subject to modification by other ubiquitin-like protein modifiers.

  • The 26S proteasome is a stable, long-lived complex and is probably degraded through microautophagy. As part of the response to some specific cellular signals, such as oxidative stress, starvation, and stimulation of the NMDA (N-methyl-D-aspartate) receptor, it is disassembled into its two subcomplexes, the 19S regulatory particle (RP) and the 20S catalytic (or core) particle (CP). The RP is probably disassembled into its individual subunits, which are degraded by the proteasome following ubiquitylation. Caspase-mediated cleavage of specific 19S subunits has also been shown to regulate proteasomal activity under certain conditions.

  • The effect of disassembly of the 26S proteasome on the 20S complex has remained unclear: in some cases it was shown to inhibit its activity, to avoid damage of uncontrolled degradation, whereas in others cases it has been shown to stimulate activity and to efficiently remove — apparently in a ubiquitin-independent manner — excess damaged proteins.

Abstract

Ubiquitylation (also known as ubiquitination) regulates essentially all of the intracellular processes in eukaryotes through highly specific modification of numerous cellular proteins, which is often tightly regulated in a spatial and temporal manner. Although most often associated with proteasomal degradation, ubiquitylation frequently serves non-proteolytic functions. In light of its central roles in cellular regulation, it has not been surprising to find that many of the components of the ubiquitin system itself are regulated by ubiquitylation. This observation has broad implications for pathophysiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the ubiquitin–proteasome system.
Figure 2: Modes of degradation of ubiquitin and ubiquitin-protein ligases.
Figure 3: Targeting of specific ligases for degradation by both heterologous and self-ubiquitylation.
Figure 4: Regulation of specific ligases.
Figure 5: The 26S proteasome and its regulation by degradation.

Similar content being viewed by others

Change history

  • 07 September 2011

    On page 619 of the above article, there was a mistake in the highlighted reference comment under reference 54: "53" in the second sentence should have been "54" ("Reference 54 is the first clear example of the targeting of one E3 family by another."). We apologize for any confusion caused to readers.

References

  1. Wilkinson, K. D. The discovery of ubiquitin-dependent proteolysis. Proc. Natl Acad. Sci. USA 102, 15280–15282 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Shabek, N., Iwai, K. & Ciechanover, A. Ubiquitin is degraded by the ubiquitin system as a monomer and as part of its conjugated target. Biochem. Biophys. Res. Commun. 363, 425–431 (2007).

    CAS  PubMed  Google Scholar 

  3. Hershko, A., Eytan, E., Ciechanover, A. & Haas, A. L. Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells. Relationship to the breakdown of abnormal proteins. J. Biol. Chem. 257, 13964–13970 (1982). The first description of the role of the ubiquitin proteolytic system in the degradation of proteins in intact nucleated cells. All prior studies describing the roles of the system were carried out using reticulocytes and mostly cell-free extracts from these cells, which are terminally differentiating red blood cells.

    CAS  PubMed  Google Scholar 

  4. Haas, A. L. & Bright, P. M. The dynamics of ubiquitin pools within cultured human lung fibroblasts. J. Biol. Chem. 262, 345–351 (1987).

    CAS  PubMed  Google Scholar 

  5. Patel, M. B. & Majetschak, M. Distribution and interrelationship of ubiquitin proteasome pathway component activities and ubiquitin pools in various porcine tissues. Physiol. Res. 56, 341–350 (2007).

    CAS  PubMed  Google Scholar 

  6. Ciechanover, A., Elias, S., Heller, H., Ferber, S. & Hershko, A. Characterization of the heat-stable polypeptide of the ATP-dependent proteolytic system from reticulocytes. J. Biol. Chem. 255, 7525–7528 (1980). The first detailed characterization of ubiquitin.

    CAS  PubMed  Google Scholar 

  7. Vijay-Kumar, S., Bugg, C. E. & Cook, W. J. Structure of ubiquitin refined at 1.8 Å resolution. J. Mol. Biol. 194, 531–544 (1987). Detailed three-dimensional structure of ubiquitin.

    CAS  PubMed  Google Scholar 

  8. Carlson, N. & Rechsteiner, M. Microinjection of ubiquitin: intracellular distribution and metabolism in HeLa cells maintained under normal physiological conditions. J. Cell Biol. 104, 537–546 (1987).

    CAS  PubMed  Google Scholar 

  9. Hiroi, Y. & Rechsteiner, M. Ubiquitin metabolism in HeLa cells starved of amino acids. FEBS Lett. 307, 156–161 (1992).

    CAS  PubMed  Google Scholar 

  10. Leggett, D. S. et al. Multiple associated proteins regulate proteasome structure and function. Mol. Cell 10, 495–507 (2002). Describes Ubp6 as a proteasome-associated DUB and details its role in controlling cellular ubiquitin levels and proteasomal degradation by balancing the deubiquitylating and proteolytic activities of the protease.

    CAS  PubMed  Google Scholar 

  11. Shabek, N., Herman-Bachinsky, Y. & Ciechanover, A. Ubiquitin degradation with its substrate, or as a monomer in a ubiquitination-independent mode, provides clues to proteasome regulation. Proc. Natl Acad. Sci. USA 106, 11907–11912 (2009). Description of degradation of ubiquitin as a monomer, as a C-terminally extended molecule and as part of the substrate-anchored polyubiquitin chain.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Verhoef, L. G. et al. Minimal length requirement for proteasomal degradation of ubiquitin-dependent substrates. FASEB J. 23, 123–133 (2009). Describes the C-terminal extension tail as a ubiquitin-destabilizing element.

    CAS  PubMed  Google Scholar 

  13. Piotrowski, J. et al. Inhibition of the 26S proteasome by polyubiquitin chains synthesized to have defined lengths. J. Biol. Chem. 272, 23712–23721 (1997).

    CAS  PubMed  Google Scholar 

  14. Park, Y., Yoon, S. K. & Yoon, J. B. The HECT domain of TRIP12 ubiquitinates substrates of the ubiquitin fusion degradation pathway. J. Biol. Chem. 284, 1540–1549 (2009).

    CAS  PubMed  Google Scholar 

  15. Xia, Z. P. et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461, 114–119 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kimura, Y. et al. An inhibitor of a deubiquitinating enzyme regulates ubiquitin homeostasis. Cell 137, 549–559 (2009).

    CAS  PubMed  Google Scholar 

  17. Anderson, C. et al. Loss of Usp14 results in reduced levels of ubiquitin in ataxia mice. J. Neurochem. 95, 724–731 (2005).

    CAS  PubMed  Google Scholar 

  18. Hanna, J., Leggett, D. S. & Finley, D. Ubiquitin depletion as a key mediator of toxicity by translational inhibitors. Mol. Cell. Biol. 23, 9251–9261 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Verma, R. et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611–615 (2002).

    CAS  PubMed  Google Scholar 

  20. Lee, M. J., Lee, B. H., Hanna, J., King, R. W. & Finley, D. Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol. Cell Proteomics 10, R110.003871 (2011).

    PubMed  Google Scholar 

  21. Hanna, J., Meides, A., Zhang, D. P. & Finley, D. A ubiquitin stress response induces altered proteasome composition. Cell 129, 747–759 (2007). Demonstrates that ubiquitin stress induces Ubp6, which rescues ubiquitin from target substrates, thus helping to restore ubiquitin homeostasis.

    CAS  PubMed  Google Scholar 

  22. Hanna, J. et al. Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 127, 99–111 (2006).

    CAS  PubMed  Google Scholar 

  23. Peth, A., Uchiki, T. & Goldberg, A. L. ATP-dependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation. Mol. Cell 40, 671–681 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kumar, K. S., Spasser, L., Ohayon, S., Erlich, L. A. & Brik, A. Expeditious chemical synthesis of ubiquitinated peptides employing orthogonal protection and native chemical ligation. Bioconjug. Chem. 22, 137–143 (2011). Describes a novel synthetic method to generate peptides and proteins to which ubiquitin is attached by an isopeptide bond to a Lys residue that can be inserted at any point of choice along the chain.

    CAS  PubMed  Google Scholar 

  25. Ciechanover, A. & Ben-Saadon, R. N-terminal ubiquitination: more protein substrates join in. Trends Cell Biol. 14, 103–106 (2004).

    CAS  PubMed  Google Scholar 

  26. Papa, F. R. & Hochstrasser, M. The yeast DOA4 gene encodes a deubiquitinating enzyme related to a product of the human tre-2 oncogene. Nature 366, 313–319 (1993).

    CAS  PubMed  Google Scholar 

  27. Dupre, S. & Haguenauer-Tsapis, R. Deubiquitination step in the endocytic pathway of yeast plasma membrane proteins: crucial role of Doa4p ubiquitin isopeptidase. Mol. Cell. Biol. 21, 4482–4494 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Prakash, S., Inobe, T., Hatch, A. J. & Matouschek, A. Substrate selection by the proteasome during degradation of protein complexes. Nature Chem. Biol. 5, 29–36 (2009). Establishes that two elements are critical for the proteasome to recognize and degrade a target substrate — conjugated ubiquitin and an unstructured tail in the substrate that will allow its entry into the 20S CP.

    CAS  Google Scholar 

  29. van Leeuwen, F. W., Hol, E. M. & Fischer, D. F. Frameshift proteins in Alzheimer's disease and in other conformational disorders: time for the ubiquitin-proteasome system. J. Alzheimers Dis. 9, 319–325 (2006). Describes the naturally occurring C-terminally extended ubiquitin UBB+1, which inhibits the proteasome as it binds to it but, owing to its tail, which is too short (19 residues), cannot be degraded.

    CAS  PubMed  Google Scholar 

  30. Lam, Y. A. et al. Inhibition of the ubiquitin-proteasome system in Alzheimer's disease. Proc. Natl Acad. Sci. USA 97, 9902–9906 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lorick, K. L. et al. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc. Natl Acad. Sci. USA 96, 11364–11369 (1999). Establishes that RING finger proteins are generally E3s and that they can mediate self-ubiquitylation in vitro.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ravid, T. & Hochstrasser, M. Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue. Nature Cell Biol. 9, 422–427 (2007).

    CAS  PubMed  Google Scholar 

  33. Dikic, I., Wakatsuki, S. & Walters, K. J. Ubiquitin-binding domains — from structures to functions. Nature Rev. Mol. Cell Biol. 10, 659–671 (2009).

    CAS  Google Scholar 

  34. Wade, M., Wang, Y. V. & Wahl, G. M. The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol. 20, 299–309 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee, J. T. & Gu, W. The multiple levels of regulation by p53 ubiquitination. Cell Death Differ. 17, 86–92 (2010).

    CAS  PubMed  Google Scholar 

  36. Fang, S., Jensen, J. P., Ludwig, R. L., Vousden, K. H. & Weissman, A. M. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 275, 8945–8951 (2000).

    CAS  PubMed  Google Scholar 

  37. Honda, R. & Yasuda, H. Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase. Oncogene 19, 1473–1476 (2000). References 36 and 37 establish that MDM2 can target itself for ubiquitylation through its RING finger.

    CAS  PubMed  Google Scholar 

  38. Linke, K. et al. Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans. Cell Death Differ. 15, 841–848 (2008).

    CAS  PubMed  Google Scholar 

  39. Tanimura, S. et al. MDM2 interacts with MDMX through their RING finger domains. FEBS Lett. 447, 5–9 (1999).

    CAS  PubMed  Google Scholar 

  40. Linares, L. K., Hengstermann, A., Ciechanover, A., Muller, S. & Scheffner, M. HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53. Proc. Natl Acad. Sci. USA 100, 12009–12014 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Okamoto, K., Taya, Y. & Nakagama, H. Mdmx enhances p53 ubiquitination by altering the substrate preference of the Mdm2 ubiquitin ligase. FEBS Lett. 583, 2710–2714 (2009).

    CAS  PubMed  Google Scholar 

  42. Stad, R. et al. Mdmx stabilizes p53 and Mdm2 via two distinct mechanisms. EMBO Rep. 2, 1029–1034 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Cummins, J. M. & Vogelstein, B. HAUSP is required for p53 destabilization. Cell Cycle 3, 689–692 (2004).

    CAS  PubMed  Google Scholar 

  44. Li, M., Brooks, C. L., Kon, N. & Gu, W. A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol. Cell 13, 879–886 (2004).

    CAS  PubMed  Google Scholar 

  45. Meulmeester, E., Pereg, Y., Shiloh, Y. & Jochemsen, A. G. ATM-mediated phosphorylations inhibit Mdmx/Mdm2 stabilization by HAUSP in favor of p53 activation. Cell Cycle 4, 1166–1170 (2005).

    CAS  PubMed  Google Scholar 

  46. Meulmeester, E. et al. Loss of HAUSP-mediated deubiquitination contributes to DNA damage-induced destabilization of Hdmx and Hdm2. Mol. Cell 18, 565–576 (2005). References 43, 44, 45, 46 establish the deubiquitylation of MDM2 and MDMX by the DUB USP7 and the significance of regulation of this association in response to genotoxic stress.

    CAS  PubMed  Google Scholar 

  47. Acconcia, F., Sigismund, S. & Polo, S. Ubiquitin in trafficking: the network at work. Exp. Cell Res. 315, 1610–1618 (2009).

    CAS  PubMed  Google Scholar 

  48. Rotin, D. & Kumar, S. Physiological functions of the HECT family of ubiquitin ligases. Nature Rev. Mol. Cell Biol. 10, 398–409 (2009).

    CAS  Google Scholar 

  49. Macias, M. J., Wiesner, S. & Sudol, M. WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett. 513, 30–37 (2002).

    CAS  PubMed  Google Scholar 

  50. Ryan, P. E., Davies, G. C., Nau, M. M. & Lipkowitz, S. Regulating the regulator: negative regulation of Cbl ubiquitin ligases. Trends Biochem. Sci. 31, 79–88 (2006).

    CAS  PubMed  Google Scholar 

  51. Kales, S. C., Ryan, P. E., Nau, M. M. & Lipkowitz, S. Cbl and human myeloid neoplasms: the Cbl oncogene comes of age. Cancer Res. 70, 4789–4794 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Davies, G. C. et al. Cbl-b interacts with ubiquitinated proteins; differential functions of the UBA domains of c-Cbl and Cbl-b. Oncogene 23, 7104–7115 (2004).

    CAS  PubMed  Google Scholar 

  53. Ettenberg, S. A. et al. Cbl-b-dependent coordinated degradation of the epidermal growth factor receptor signaling complex. J. Biol. Chem. 276, 27677–27684 (2001).

    CAS  PubMed  Google Scholar 

  54. Magnifico, A. et al. WW domain HECT E3s target Cbl RING finger E3s for proteasomal degradation. J. Biol. Chem. 278, 43169–43177 (2003). References 53 and 54 , respectively, establish the RTK-mediated down regulation of CBL proteins by self-ubiquitylation and their ubiquitylation by NEDD4 family members. Reference 54 is the first clear example of the targeting of one E3 family by another.

    CAS  PubMed  Google Scholar 

  55. Yang, B. et al. Nedd4 augments the adaptive immune response by promoting ubiquitin-mediated degradation of Cbl-b in activated T cells. Nature Immunol. 9, 1356–1363 (2008).

    CAS  Google Scholar 

  56. Gay, D. L., Ramon, H. & Oliver, P. M. Cbl- and Nedd4-family ubiquitin ligases: balancing tolerance and immunity. Immunol. Res. 42, 51–64 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Gallagher, E., Gao, M., Liu, Y. C. & Karin, M. Activation of the E3 ubiquitin ligase Itch through a phosphorylation-induced conformational change. Proc. Natl Acad. Sci. USA 103, 1717–1722 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Azakir, B. A. & Angers, A. Reciprocal regulation of the ubiquitin ligase Itch and the epidermal growth factor receptor signaling. Cell. Signal. 21, 1326–1336 (2009).

    CAS  PubMed  Google Scholar 

  59. Mouchantaf, R. et al. The ubiquitin ligase itch is auto-ubiquitylated in vivo and in vitro but is protected from degradation by interacting with the deubiquitylating enzyme FAM/USP9X. J. Biol. Chem. 281, 38738–38747 (2006).

    CAS  PubMed  Google Scholar 

  60. Tsai, Y. C. & Weissman, A. M. The unfolded protein response, degradation from endoplasmic reticulum and cancer. Genes Cancer 1, 764–778 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Fang, S. et al. The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 98, 14422–14427 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tsai, Y. C. et al. The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation. Nature Med. 13, 1504–1509 (2007).

    CAS  PubMed  Google Scholar 

  63. Morito, D. et al. Gp78 cooperates with RMA1 in endoplasmic reticulum-associated degradation of CFTRδF508. Mol. Biol. Cell 19, 1328–1336 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ye, Y. et al. Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane. Proc. Natl Acad. Sci. USA 102, 14132–14138 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee, J. N., Song, B., DeBose-Boyd, R. A. & Ye, J. Sterol-regulated degradation of Insig-1 mediated by the membrane-bound ubiquitin ligase gp78. J. Biol. Chem. 281, 39308–39315 (2006).

    CAS  PubMed  Google Scholar 

  66. Chen, B. et al. The activity of a human endoplasmic reticulum-associated degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding site. Proc. Natl Acad. Sci. USA 103, 341–346 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Das, R. et al. Allosteric activation of E2-RING finger-mediated ubiquitylation by a structurally defined specific E2-binding region of gp78. Mol. Cell 34, 674–685 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Shmueli, A., Tsai, Y. C., Yang, M., Braun, M. A. & Weissman, A. M. Targeting of gp78 for ubiquitin-mediated proteasomal degradation by Hrd1: cross-talk between E3s in the endoplasmic reticulum. Biochem. Biophys. Res. Commun. 390, 758–762 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ballar, P., Ors, A. U., Yang, H. & Fang, S. Differential regulation of CFTRΔF508 degradation by ubiquitin ligases gp78 and Hrd1. Int. J. Biochem. Cell Biol. 42, 167–173 (2010). Reference 68 and 69 describe the regulation of the pro-metastatic ERAD E3 gp78 by HRD1.

    CAS  PubMed  Google Scholar 

  70. Gardner, R. G. et al. Endoplasmic reticulum degradation requires lumen to cytosol signaling. Transmembrane control of Hrd1p by Hrd3p. J. Cell Biol. 151, 69–82 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Iida, Y. et al. SEL1L protein critically determines the stability of the HRD1-SEL1L endoplasmic reticulum-associated degradation (ERAD) complex to optimize the degradation kinetics of ERAD substrates. J. Biol. Chem. 286, 16929–16939 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Carroll, S. M. & Hampton, R. Y. Usa1p is required for optimal function and regulation of the Hrd1p endoplasmic reticulum-associated degradation ubiquitin ligase. J. Biol. Chem. 285, 5146–5156 (2010). Shows that the critical yeast ERAD E3 Hrd1 undergoes self-ubiquitylation in trans in a manner that is regulated by a relative lack of Hrd3 and the presence of Usa1, both of which are components of the Hrd1 ubiquitin ligase complex.

    CAS  PubMed  Google Scholar 

  73. Horn, S. C. et al. Usa1 functions as a scaffold of the HRD-ubiquitin ligase. Mol. Cell 36, 782–793 (2009).

    CAS  PubMed  Google Scholar 

  74. Cao, R. et al. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 298, 1039–1043 (2002).

    CAS  PubMed  Google Scholar 

  75. Ben-Saadon, R., Zaaroor, D., Ziv, T. & Ciechanover, A. The polycomb protein RING1B generates self atypical mixed ubiquitin chains required for its in vitro histone H2A ligase activity. Mol. Cell 24, 701–711 (2006). Establishes that RING1B undergoes self-ubiquitylation with the formation of multiply branched chains that do not target it for degradation but rather activate the ligase.

    CAS  PubMed  Google Scholar 

  76. Kim, H. T., Kim, K. P., Uchiki, T., Gygi, S. P. & Goldberg, A. L. S5a promotes protein degradation by blocking synthesis of nondegradable forked ubiquitin chains. EMBO J. 28, 1867–1877 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zaaroor-Regev, D. et al. Regulation of the polycomb protein Ring1B by self-ubiquitination or by E6-AP may have implications to the pathogenesis of Angelman syndrome. Proc. Natl Acad. Sci. USA 107, 6788–6793 (2010). Demonstrates that the stability of RING1B is regulated by heterologous ligases, including the HECT domain E3 E6AP.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Bernassola, F., Ciechanover, A. & Melino, G. The ubiquitin proteasome system and its involvement in cell death pathways. Cell Death Differ. 17, 1–3 (2010).

    CAS  PubMed  Google Scholar 

  79. Vucic, D., Dixit, V. M. & Wertz, I. E. Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nature Rev. Mol. Cell Biol. 12, 439–452 (2011).

    CAS  Google Scholar 

  80. Yang, Y., Fang, S., Jensen, J. P., Weissman, A. M. & Ashwell, J. D. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288, 874–877 (2000). Demonstrates that the activation of IAPs by steroids leads to auto-ubiquitylation and the induction of apoptosis. Provides a mechanistic description of the deleterious effect of steroids on lymphocytes.

    CAS  PubMed  Google Scholar 

  81. Ditzel, M. et al. Degradation of DIAP1 by the N-end rule pathway is essential for regulating apoptosis. Nature Cell Biol. 5, 467–473 (2003).

    CAS  PubMed  Google Scholar 

  82. Ryoo, H. D., Bergmann, A., Gonen, H., Ciechanover, A. & Steller, H. Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nature Cell Biol. 4, 432–438 (2002). Establishes that one mechanism of induction of apoptosis by the small protein Reaper is via its ability to bind and induce self-ubiquitylation and subsequent degradation of D. melanogaster IAP1.

    CAS  PubMed  Google Scholar 

  83. Herman-Bachinsky, Y., Ryoo, H. D., Ciechanover, A. & Gonen, H. Regulation of the Drosophila ubiquitin ligase DIAP1 is mediated via several distinct ubiquitin system pathways. Cell Death Differ. 14, 861–871 (2007).

    CAS  PubMed  Google Scholar 

  84. Steller, H. Regulation of apoptosis in Drosophila. Cell Death Differ. 15, 1132–1138 (2008).

    CAS  PubMed  Google Scholar 

  85. Wing, J. P. et al. Drosophila Morgue is an F box/ubiquitin conjugase domain protein important for grim-reaper mediated apoptosis. Nature Cell Biol. 4, 451–456 (2002).

    CAS  PubMed  Google Scholar 

  86. Fu, J., Jin, Y. & Arend, L. J. Smac3, a novel Smac/DIABLO splicing variant, attenuates the stability and apoptosis-inhibiting activity of X-linked inhibitor of apoptosis protein. J. Biol. Chem. 278, 52660–52672 (2003).

    CAS  PubMed  Google Scholar 

  87. Silke, J., Kratina, T., Ekert, P. G., Pakusch, M. & Vaux, D. L. Unlike Diablo/Smac, Grim promotes global ubiquitination and specific degradation of X chromosome-linked inhibitor of apoptosis (XIAP) and neither cause apoptosis. J. Biol. Chem. 279, 4313–4321 (2004).

    CAS  PubMed  Google Scholar 

  88. Garrison, J. B. et al. ARTS and Siah collaborate in a pathway for XIAP degradation. Mol. Cell 41, 107–116 (2011).

    CAS  PubMed  Google Scholar 

  89. Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477–513 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Cuervo, A. M., Palmer, A., Rivett, A. J. & Knecht, E. Degradation of proteasomes by lysosomes in rat liver. Eur. J. Biochem. 227, 792–800 (1995).

    CAS  PubMed  Google Scholar 

  91. Isasa, M. et al. Monoubiquitination of RPN10 regulates substrate recruitment to the proteasome. Mol. Cell 38, 733–745 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Panasenko, O. O. & Collart, M. A. Not4 E3 ligase contributes to proteasome assembly and functional integrity in part through Ecm29. Mol. Cell. Biol. 31, 1610–1623 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Holic, R. et al. Cks1 activates transcription by binding to the ubiquitylated proteasome. Mol. Cell. Biol. 30, 3894–3901 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Tai, H. C., Besche, H., Goldberg, A. L. & Schuman, E. M. Characterization of the brain 26S proteasome and its interacting proteins. Front. Mol. Neurosci. 3, 12 (2010). A detailed analysis of the brain proteasome and its regulation by different stimuli, such as oxidative stress and NMDA receptor activity.

    PubMed  PubMed Central  Google Scholar 

  95. Peth, A., Besche, H. C. & Goldberg, A. L. Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening. Mol. Cell 36, 794–804 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bech-Otschir, D. et al. Polyubiquitin substrates allosterically activate their own degradation by the 26S proteasome. Nature Struct. Mol. Biol. 16, 219–225 (2009).

    CAS  Google Scholar 

  97. Sun, X. M. et al. Caspase activation inhibits proteasome function during apoptosis. Mol. Cell 14, 81–93 (2004). Describes the regulation of the proteasome during apoptosis.

    CAS  PubMed  Google Scholar 

  98. Wang, X. H. et al. Caspase-3 cleaves specific 19S proteasome subunits in skeletal muscle stimulating proteasome activity. J. Biol. Chem. 285, 21249–21257 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang, X., Yen, J., Kaiser, P. & Huang, L. Regulation of the 26S proteasome complex during oxidative stress. Sci. Signal. 3, ra88 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Medicherla, B. & Goldberg, A. L. Heat shock and oxygen radicals stimulate ubiquitin-dependent degradation mainly of newly synthesized proteins. J. Cell Biol. 182, 663–673 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Bajorek, M., Finley, D. & Glickman, M. H. Proteasome disassembly and downregulation is correlated with viability during stationary phase. Curr. Biol. 13, 1140–1144 (2003). Describes the regulation of the proteasome by starvation.

    CAS  PubMed  Google Scholar 

  102. Peters, J. M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nature Rev. Mol. Cell Biol. 7, 644–656 (2006).

    CAS  Google Scholar 

  103. Manchado, E., Eguren, M. & Malumbres, M. The anaphase-promoting complex/cyclosome (APC/C): cell-cycle-dependent and -independent functions. Biochem. Soc. Trans. 38, 65–71 (2010).

    CAS  PubMed  Google Scholar 

  104. Carrano, A. C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol. 1, 193–199 (1999).

    CAS  PubMed  Google Scholar 

  105. Sutterluty, H. et al. p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nature Cell Biol. 1, 207–214 (1999).

    CAS  PubMed  Google Scholar 

  106. Tsvetkov, L. M., Yeh, K. H., Lee, S. J., Sun, H. & Zhang, H. p27Kip1 ubiquitination and degradation is regulated by the SCFSkp2 complex through phosphorylated Thr187 in p27. Curr. Biol. 9, 661–664 (1999).

    CAS  PubMed  Google Scholar 

  107. Bashir, T., Dorrello, N. V., Amador, V., Guardavaccaro, D. & Pagano, M. Control of the SCFSkp2–Cks1 ubiquitin ligase by the APC/CCdh1 ubiquitin ligase. Nature 428, 190–193 (2004). References 106 and 107 establish that S phase kinase-associated protein 2 (SKP2) is targeted for degradation by the APC/C.

    CAS  PubMed  Google Scholar 

  108. Wei, W. et al. Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428, 194–198 (2004).

    CAS  PubMed  Google Scholar 

  109. Yamanaka, A. et al. Cell cycle-dependent expression of mammalian E2-C regulated by the anaphase-promoting complex/cyclosome. Mol. Biol. Cell 11, 2821–2831 (2000). Provides an example of cell cycle-dependent degradation of an E2 as a means to inactive its cognate E3.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Listovsky, T. et al. Mammalian Cdh1/Fzr mediates its own degradation. EMBO J. 23, 1619–1626 (2004). Establishes a role for the CDH1 component of the APC/C in its own cell cycle-dependent degradation.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Benmaamar, R. & Pagano, M. Involvement of the SCF complex in the control of Cdh1 degradation in S-phase. Cell Cycle 4, 1230–1232 (2005).

    CAS  PubMed  Google Scholar 

  112. Hsu, J. Y., Reimann, J. D., Sorensen, C. S., Lukas, J. & Jackson, P. K. E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APCCdh1. Nature Cell Biol. 4, 358–366 (2002).

    CAS  PubMed  Google Scholar 

  113. Reimann, J. D., Gardner, B. E., Margottin-Goguet, F. & Jackson, P. K. Emi1 regulates the anaphase-promoting complex by a different mechanism than Mad2 proteins. Genes Dev. 15, 3278–3285 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Reimann, J. D. et al. Emi1 is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase promoting complex. Cell 105, 645–655 (2001).

    CAS  PubMed  Google Scholar 

  115. Di Fiore, B. & Pines, J. Defining the role of Emi1 in the DNA replication-segregation cycle. Chromosoma 117, 333–338 (2008).

    CAS  PubMed  Google Scholar 

  116. Guardavaccaro, D. et al. Control of meiotic and mitotic progression by the F box protein β-Trcp1 in vivo. Dev. Cell 4, 799–812 (2003).

    CAS  PubMed  Google Scholar 

  117. Margottin-Goguet, F. et al. Prophase destruction of Emi1 by the SCFβTrCP/Slimb ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev. Cell 4, 813–826 (2003). References 116 and 117 establish that the APC/C pseudosubstrate and inhibitor EMI1 is targeted for degradation by SCFβ-TrCP.

    CAS  PubMed  Google Scholar 

  118. Moshe, Y., Boulaire, J., Pagano, M. & Hershko, A. Role of Polo-like kinase in the degradation of early mitotic inhibitor 1, a regulator of the anaphase promoting complex/cyclosome. Proc. Natl Acad. Sci. USA 101, 7937–7942 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Hansen, D. V., Loktev, A. V., Ban, K. H. & Jackson, P. K. Plk1 regulates activation of the anaphase promoting complex by phosphorylating and triggering SCFβTrCP-dependent destruction of the APC inhibitor Emi1. Mol. Biol. Cell 15, 5623–5634 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Xu, P. et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137, 133–145 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Matsumoto, M. L. et al. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol. Cell 39, 477–484 (2010).

    CAS  PubMed  Google Scholar 

  122. Saeki, Y. et al. Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J. 28, 359–371 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Carvalho, A. F. et al. Ubiquitination of mammalian Pex5p, the peroxisomal import receptor. J. Biol. Chem. 282, 31267–31272 (2007).

    CAS  PubMed  Google Scholar 

  124. Cadwell, K. & Coscoy, L. Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science 309, 127–130 (2005).

    CAS  PubMed  Google Scholar 

  125. Ishikura, S., Weissman, A. M. & Bonifacino, J. S. Serine residues in the cytosolic tail of the T-cell antigen receptor α-chain mediate ubiquitination and endoplasmic reticulum-associated degradation of the unassembled protein. J. Biol. Chem. 285, 23916–23924 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang, X. et al. Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3. J. Cell Biol. 177, 613–624 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Williams, C., van den Berg, M., Sprenger, R. R. & Distel, B. A conserved cysteine is essential for Pex4p-dependent ubiquitination of the peroxisomal import receptor Pex5p. J. Biol. Chem. 282, 22534–22543 (2007).

    CAS  PubMed  Google Scholar 

  128. Tait, S. W. et al. Apoptosis induction by Bid requires unconventional ubiquitination and degradation of its N-terminal fragment. J. Cell Biol. 179, 1453–1466 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Shimizu, Y., Okuda-Shimizu, Y. & Hendershot, L. M. Ubiquitylation of an ERAD substrate occurs on multiple types of amino acids. Mol. Cell 40, 917–926 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Scheffner, M., Huibregtse, J. M., Vierstra, R. D. & Howley, P. M. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75, 495–505 (1993).

    CAS  PubMed  Google Scholar 

  131. Nuber, U., Schwarz, S. E. & Scheffner, M. The ubiquitin-protein ligase E6-associated protein (E6-AP) serves as its own substrate. Eur. J. Biochem. 254, 643–649 (1998).

    CAS  PubMed  Google Scholar 

  132. Hassink, G. et al. TEB4 is a C4HC3 RING finger-containing ubiquitin ligase of the endoplasmic reticulum. Biochem. J. 388, 647–655 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang, L. et al. Degradation of the bile salt export pump at endoplasmic reticulum in progressive familial intrahepatic cholestasis type II. Hepatology 48, 1558–1569 (2008).

    CAS  PubMed  Google Scholar 

  134. Zavacki, A. M. et al. The E3 ubiquitin ligase TEB4 mediates degradation of type 2 iodothyronine deiodinase. Mol. Cell. Biol. 29, 5339–5347 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhou, P. & Howley, P. M. Ubiquitination and degradation of the substrate recognition subunits of SCF ubiquitin-protein ligases. Mol. Cell 2, 571–580 (1998).

    CAS  PubMed  Google Scholar 

  136. Li, X., Yang, Y. & Ashwell, J. D. TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature 416, 345–347 (2002).

    PubMed  Google Scholar 

  137. Wu, W. et al. HERC2 is an E3 ligase that targets BRCA1 for degradation. Cancer Res. 70, 6384–6392 (2010).

    CAS  PubMed  Google Scholar 

  138. Kee, Y., Kim, J. M. & D'Andrea, A. D. Regulated degradation of FANCM in the Fanconi anemia pathway during mitosis. Genes Dev. 23, 555–560 (2009). Establishes that a critical component (FANCM) of the Fanconi anaemia ubiquitin ligase is targeted for degradation by SCFβ-TrCP as a way of inactivating the E3 during mitosis and preventing chromosomal abnormalities.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Lilley, C. E. et al. A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses. EMBO J. 29, 943–955 (2010). Provides an example of how a virally-encoded E3 targets critical RING finger E3s involved in the DNA damage response for degradation.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Nathan, J. A. et al. The ubiquitin E3 ligase MARCH7 is differentially regulated by the deubiquitylating enzymes USP7 and USP9X. Traffic 9, 1130–1145 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Wada, K. & Kamitani, T. Autoantigen Ro52 is an E3 ubiquitin ligase. Biochem. Biophys. Res. Commun. 339, 415–421 (2006).

    CAS  PubMed  Google Scholar 

  142. Wada, K., Niida, M., Tanaka, M. & Kamitani, T. Ro52-mediated monoubiquitination of IKKβ down-regulates NF-κB signalling. J. Biochem. 146, 821–832 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Shen, C. et al. Calcium/calmodulin regulates ubiquitination of the ubiquitin-specific protease TRE17/USP6. J. Biol. Chem. 280, 35967–35973 (2005).

    CAS  PubMed  Google Scholar 

  144. Meray, R. K. & Lansbury, P. T. J. Reversible monoubiquitination regulates the Parkinson disease-associated ubiquitin hydrolase UCH-L1. J. Biol. Chem. 282, 10567–10575 (2007).

    CAS  PubMed  Google Scholar 

  145. Todi, S. V. et al. Ubiquitination directly enhances activity of the deubiquitinating enzyme ataxin-3. EMBO J. 28, 372–382 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Todi, S. V. et al. Activity and cellular functions of the deubiquitinating enzyme and polyglutamine disease protein ataxin-3 are regulated by ubiquitination at lysine 117. J. Biol. Chem. 285, 39303–39313 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Ying, Z. et al. Gp78, an ER associated E3, promotes SOD1 and ataxin-3 degradation. Hum. Mol. Genet. 18, 4268–4281 (2009).

    CAS  PubMed  Google Scholar 

  148. Wada, K. & Kamitani, T. UnpEL/Usp4 is ubiquitinated by Ro52 and deubiquitinated by itself. Biochem. Biophys. Res. Commun. 342, 253–258 (2006).

    CAS  PubMed  Google Scholar 

  149. Boutell, C., Canning, M., Orr, A. & Everett, R. D. Reciprocal activities between herpes simplex virus type 1 regulatory protein ICP0, a ubiquitin E3 ligase, and ubiquitin-specific protease USP7. J. Virol. 79, 12342–12354 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Lee, H. J., Kim, M. S., Kim, Y. K., Oh, Y. K. & Baek, K. H. HAUSP, a deubiquitinating enzyme for p53, is polyubiquitinated, polyneddylated, and dimerized. FEBS Lett. 579, 4867–4872 (2005).

    CAS  PubMed  Google Scholar 

  151. Denuc, A., Bosch-Comas, A., Gonzalez-Duarte, R. & Marfany, G. The UBA-UIM domains of the USP25 regulate the enzyme ubiquitination state and modulate substrate recognition. PLoS ONE 4, e5571 (2009).

    PubMed  PubMed Central  Google Scholar 

  152. Bazirgan, O. A. & Hampton, R. Y. Cue1p is an activator of Ubc7p E2 activity in vitro and in vivo. J. Biol. Chem. 283, 12797–12810 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Kostova, Z., Mariano, J., Scholz, S., Koenig, C. & Weissman, A. M. A Ubc7p-binding domain in Cue1p activates ER-associated protein degradation. J. Cell Sci. 122, 1374–1381 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Kreft, S. G. & Hochstrasser, M. An unusual transmembrane helix in the Doa10 ERAD ubiquitin ligase modulates degradation of its cognate E2. J. Biol. Chem. 286, 20163–20174 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Ho, C. W., Chen, H. T. & Hwang, J. UBC9 autosumoylation negatively regulates sumoylation of septins in Saccharomyces cerevisiae. J. Biol. Chem. 286, 21826–21834 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Pichler, A. et al. SUMO modification of the ubiquitin-conjugating enzyme E2–25K. Nature Struct. Mol. Biol. 12, 264–269 (2005).

    CAS  Google Scholar 

  157. Duda, D. M. et al. Structural regulation of cullin-RING ubiquitin ligase complexes. Curr. Opin. Struct. Biol. 21, 257–264 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Space constrains do not allow us to cite many of the studies in this evolving, yet already prolific, research area, and we apologize for that. Research in the laboratory of A.M.W. is supported by the US National Institutes of Health National Cancer Institute and Center for Cancer Research. Research in the laboratory of A.C. is supported by grants from the Miriam and Sheldon Adelson Foundation for Medical Research, the Israel Science Foundation, the German–Israeli Foundation for Research and Scientific Development, the Deutsch–Israelische Projektkooperation and Rubicon — the European Union Network of Excellence Studying the Role of Ubiquitin and Ubiquitin-like Modifiers in Cellular Regulation. A.C. is an Israel Cancer Research Fund USA Professor.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Allan M. Weissman or Aaron Ciechanover.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Allan M. Weissman's homepage

Aaron Ciechanover's homepage

Glossary

Deubiquitylating enzymes

(DUBs; also known as deubiquitinating enzymes and ubiquitin-specific proteases). These enzymes have multiple roles, for example, in processing ubiquitin precursors, in disassembling and trimming ubiquitin chains and in antagonizing the activity of ubiquitin-protein ligases in general or towards specific substrates.

Catalytic particle

(CP). The 20S core particle of the 26S proteasome. It is made of four rings: two external α-rings that are each made of seven distinct subunits (which are identical between the rings), and two adjacent β-rings, also made of seven distinct subunits (which are also identical between the rings). Three of the seven β-subunits are proteases with distinct cleaving activities.

'Canonical' ubiquitin chains

Lys48-based chains that are well-characterized as being proteasome targeting signals.

Regulatory particle

(RP). The 19S complex of the 26S proteasome, which consists of two subcomplexes that are linked together — the base and the lid. The base contains the ATPases that are involved in unfolding the substrate and in opening the entrance to the catalytic 20S subcomplex. The lid contains the polyubiquitin chain-recognizing subunits. The RP also includes deubiquitylating enzymes that recycle ubiquitin.

Helper T cells

T cells that function as inducers of the effector cells for humoral and cell-mediated immunity. These cells recognize and bind antigens.

Unfolded protein response

(UPR). A cellular response that is triggered by the accumulation of misfolded proteins in the endoplasmic reticulum (ER) and that results in the transcriptional upregulation of ER chaperones and degradative enzymes and a general inhibition of protein synthesis.

Microautophagy

The formation of vacuoles containing a small portion of the cytosol that is digested by the lysosomal enzymes following the destruction or dissolution of the surrounding membrane. The process occurs under basal metabolic conditions and, unlike stress-induced macroautophagy, the vacuoles are small and their generation does not involve the formation of a new membrane and the engulfment and digestion of membrane-limited organelles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weissman, A., Shabek, N. & Ciechanover, A. The predator becomes the prey: regulating the ubiquitin system by ubiquitylation and degradation. Nat Rev Mol Cell Biol 12, 605–620 (2011). https://doi.org/10.1038/nrm3173

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3173

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing