Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The structural biology of type I viral membrane fusion

Key Points

  • Fusion proteins, which are viral envelope glycoproteins, participate actively in fusing viral and target-cell membranes.

  • Fusion proteins are thought to adopt a metastable conformation that relaxes to a highly stable conformation during the membrane-fusion event. This highly stable structure has been characterized for several viruses and has shown that there is a common structural motif.

  • For influenza viruses, and now also for paramyxoviruses, structural information is available for the metastable form, and this information indicates the nature of the protein conformational changes that accompany membrane fusion.

  • Although influenza viruses trigger fusion inside endosomes, for many viruses the fusion event occurs at the plasma membrane of the target cell and, in these cases, extra proteins in the viral envelope might be involved in assisting the fusion process.

  • For human immunodeficiency virus (HIV), large conformational changes in the glycoprotein gp120 accompany receptor binding and these changes might be involved in priming the fusion protein gp41.

  • An increased understanding of the structural pathways that connect the metastable and highly stable conformers of the fusion protein is helping us to discover candidate drugs that block viral entry into cells.

Abstract

The fusion of viral membranes with target-cell membranes is an essential step in the entry of enveloped viruses into cells, and recent X-ray structures of paramyxoviral envelope proteins have provided new insights into protein-mediated plasma-membrane fusion. Here, we review our understanding of the structural transitions that are involved in this fusion pathway, compare it to our understanding of influenza virus membrane fusion, and discuss the implications for retroviral membrane fusion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A model pathway of type I viral membrane fusion.
Figure 2: Three structures of the influenza virus haemagglutinin.
Figure 3: The double-layered helical rod structure of type I viral fusion proteins.
Figure 4: Experimental and proposed structures of the paramyxovirus fusion protein.
Figure 5: Electrostatic potential on the surface of the radial and axial channels of Newcastle disease virus F0′ protein.
Figure 6: A schematic of the experimental and proposed structures of HIV gp41.

Similar content being viewed by others

References

  1. Skehel, J. J. & Wiley, D. C. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69, 531–569 (2000). A comprehensive review of the known properties of the influenza virus haemagglutinin and the structural basis of these properties.

    Article  CAS  PubMed  Google Scholar 

  2. Sollner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H. & Rothman, J. E. A protein assembly–disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418 (1993).

    CAS  PubMed  Google Scholar 

  3. Weissenhorn, W. et al. Structural basis for membrane fusion by enveloped viruses. Mol. Membr. Biol. 16, 3–9 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Heinz, F. X. & Allison, S. L. Structures and mechanisms in flavivirus fusion. Adv. Virus Res. 55, 231–269 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Crennell, S., Takimoto, T., Portner, A. & Taylor, G. Crystal structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase. Nature Struct. Biol. 7, 1068–1074 (2000). This paper presents the structure of the HN attachment protein of NDV and provides a basis for interpreting data that link this protein to the fusion activity of the F protein.

    CAS  PubMed  Google Scholar 

  6. Chen, L. et al. The structure of the fusion glycoprotein of Newcastle disease virus suggests a novel paradigm for the molecular mechanism of membrane fusion. Structure 9, 255–266 (2001). Together with influenza HA, the structure presented in this paper is one of only two that provide information on the pre-fusion conformation of a type I viral fusion protein.

    CAS  PubMed  Google Scholar 

  7. Wilson, I. A., Skehel, J. J. & Wiley, D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 (tm) resolution. Nature 289, 366–373 (1981).

    CAS  PubMed  Google Scholar 

  8. Chen, J. et al. Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell 95, 409–417 (1998).

    CAS  PubMed  Google Scholar 

  9. Bullough, P. A., Hughson, F. M., Skehel, J. J. & Wiley, D. C. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371, 37–43 (1994).

    CAS  PubMed  Google Scholar 

  10. Chen, J., Skehel, J. J. & Wiley, D. C. N- and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA(2) subunit to form an N cap that terminates the triple-stranded coiled coil. Proc. Natl Acad. Sci. USA 96, 8967–8972 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Durrer, P. et al. H+-induced membrane insertion of influenza virus hemagglutinin involves the HA2 amino-terminal fusion peptide but not the coiled coil region. J. Biol. Chem. 271, 13417–13421 (1996).

    CAS  PubMed  Google Scholar 

  12. Skehel, J. J. et al. Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proc. Natl Acad. Sci. USA 79, 968–972 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kozlov, M. M. & Chernomordik, L. V. A mechanism of protein-mediated fusion: coupling between refolding of the influenza hemagglutinin and lipid rearrangements. Biophys. J. 75, 1384–1396 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bentz, J. Membrane fusion mediated by coiled coils: a hypothesis. Biophys. J. 78, 886–900 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gruenke, J. A., Armstrong, R. T., Newcomb, W. W., Brown, J. C. & White, J. M. New insights into the spring-loaded conformational change of influenza virus hemagglutinin. J. Virol. 76, 4456–4466 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Godley, L. et al. Introduction of intersubunit disulfide bonds in the membrane-distal region of the influenza hemagglutinin abolishes membrane fusion activity. Cell 68, 635–645 (1992).

    CAS  PubMed  Google Scholar 

  17. Wharton, S. A., Skehel, J. J. & Wiley, D. C. Studies of influenza haemagglutinin-mediated membrane fusion. Virology 149, 27–35 (1986).

    CAS  PubMed  Google Scholar 

  18. Ruigrok, R. W. H. et al. Conformational changes in the hemagglutinin of influenza virus which accompany heat-induced fusion of virus with liposomes. Virology 155, 484–497 (1986).

    CAS  PubMed  Google Scholar 

  19. Stegmann, T. & Helenius, A. in Viral Fusion Mechanisms (ed. Bentz, J.) 89–111 (CRC Press, Boca Raton, Florida, USA, 1993).

    Google Scholar 

  20. Ward, C. W. & Dopheide, T. A. Influenza virus haemagglutinin. Structural predictions suggest that the fibrillar appearance is due to the presence of a coiled-coil. Aust. J. Biol. Sci. 33, 441–447 (1980).

    CAS  PubMed  Google Scholar 

  21. Buckland, R. & Wild, F. Leucine zipper motif extends. Nature 338, 547 (1989).

    CAS  PubMed  Google Scholar 

  22. Chambers, P., Pringle, C. R. & Easton, A. J. Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins. J. Gen. Virol. 71, 3075–3080 (1990).

    CAS  PubMed  Google Scholar 

  23. Chen, L. et al. Cloning, expression, and crystallization of the fusion protein of Newcastle disease virus. Virology 290, 290–299 (2001).

    CAS  PubMed  Google Scholar 

  24. Calder, L. J. et al. Electron microscopy of the human respiratory syncytial virus fusion protein and complexes that it forms with monoclonal antibodies. Virology 271, 122–131 (2000).

    CAS  PubMed  Google Scholar 

  25. Dutch, R. E., Hagglund, R. N., Nagel, M. A., Paterson, R. G. & Lamb, R. A. Paramyxovirus fusion (F) protein: a conformational change on cleavage activation. Virology 281, 138–150 (2001).

    CAS  PubMed  Google Scholar 

  26. Paterson, R. G., Russell, C. J. & Lamb, R. A. Fusion protein of the paramyxovirus SV5: destabilizing and stabilizing mutants of fusion activation. Virology 270, 17–30 (2000).

    CAS  PubMed  Google Scholar 

  27. Wharton, S. A., Skehel, J. J. & Wiley, D. C. Temperature dependence of fusion by Sendai virus. Virology 271, 71–78 (2000).

    CAS  PubMed  Google Scholar 

  28. Lamb, R. A. Paramyxovirus fusion: a hypothesis for changes. Virology 197, 1–11 (1993).

    CAS  PubMed  Google Scholar 

  29. Bousse, T., Takimoto, T., Gorman, W. L., Takahashi, T. & Portner, A. Regions on the hemagglutinin-neuraminidase proteins of human parainfluenza virus type-1 and Sendai virus important for membrane fusion. Virology 204, 506–514 (1994).

    CAS  PubMed  Google Scholar 

  30. Tanabayashi, K. & Compans, R. W. Functional interaction of paramyxovirus glycoproteins: identification of a domain in Sendai virus HN which promotes cell fusion. Virology 70, 6112–6118 (1996).

    CAS  Google Scholar 

  31. Stone-Hulslander, J. & Morrison, T. G. Mutational analysis of heptad repeats in the membrane-proximal region of Newcastle disease virus HN protein. J. Virol. 73, 3630–3637 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bousse, T., Takimoto, T. & Portner, A. A single amino acid change enhances the fusion promotion activity of human parainfluenza virus type 1 hemagglutinin-neuraminidase glycoprotein. Virology 209, 654–657 (1995).

    CAS  PubMed  Google Scholar 

  33. Deng, R. et al. Mutations in the Newcastle disease virus hemagglutinin-neuraminidase protein that interfere with its ability to interact with the homologous F protein in the promotion of fusion. Virology 253, 43–54 (1999).

    CAS  PubMed  Google Scholar 

  34. Takimoto, T., Taylor, G. L., Connaris, H. C., Crennell, S. J. & Portner, A. Role of the hemagglutinin-neuraminidase protein in the mechanism of paramyxovirus–cell membrane fusion. J. Virol. 76, 13028–13033 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yao, Q., Hu, X. & Compans, R. W. Association of the parainfluenza virus fusion and hemagglutinin-neuraminidase glycoproteins on cell surfaces. J. Virol. 71, 650–656 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Stone-Hulslander, J. & Morrison, T. G. Detection of an interaction between the HN and F proteins in Newcastle disease virus-infected cells. J. Virol. 71, 6287–6295 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Earl, P. L., Broder, C. C., Doms, R. W. & Moss, B. Epitope map of human immunodeficiency virus type 1 gp41 derived from 47 monoclonal antibodies produced by immunization with oligomeric envelope protein. J. Virol. 71, 2674–2684 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Earl, P. L. et al. Native oligomeric human immunodeficiency virus type 1 envelope glycoprotein elicits diverse monoclonal antibody reactivities. J. Virol. 68, 3015–3026 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Edinger, A. L. et al. Functional dissection of CCR5 coreceptor function through the use of CD4-independent simian immunodeficiency virus strains. J. Virol. 73, 4062–4073 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Moore, J. P., McKeating, J. A., Weiss, R. A. & Sattentau, Q. J. Dissociation of gp120 from HIV-1 virions induced by soluble CD4. Science 250, 1130–1142 (1990).

    Google Scholar 

  41. Poignard, P., Fouts, T., Naniche, D., Moore, J. P. & Sattentau, Q. J. Neutralizing antibodies to human immunodeficiency virus type-1 gp120 induce envelope glycoprotein subunit dissociation. J. Exp. Med. 183, 473–484 (1996).

    CAS  PubMed  Google Scholar 

  42. Weissenhorn, W. et al. Assembly of a rod-shaped chimera of a trimeric GCN4 zipper and the HIV-1 gp41 ectodomain expressed in Escherichia coli. Proc. Natl Acad. Sci. USA 94, 6065–6069 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J. & Wiley, D. C. Atomic structure of the ectodomain from HIV-1 gp41. Nature 387, 426–430 (1997).

    CAS  PubMed  Google Scholar 

  44. Yang, Z. N. et al. The crystal structure of the SIV gp41 ectodomain at 1.47 (tm) resolution. J. Struct. Biol. 126, 131–144 (1999). This paper describes a high-resolution study of the fusion-core structure of simian immunodeficiency virus (SIV), which expands on the information that has been reported in parallel studies of HIV.

    CAS  PubMed  Google Scholar 

  45. Thali, M., Furman, C., Helseth, E., Repke, H. & Sodroski, J. Lack of correlation between soluble CD4-induced shedding of the human immunodeficiency virus type 1 exterior envelope glycoprotein and subsequent membrane fusion events. J. Virol. 66, 5516–5524 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sattentau, Q. J. & Moore, J. P. Conformational changes induced in the human immunodeficiency virus envelope glycoproteins by soluble CD4 binding. J. Exp. Med. 174, 407–415 (1991).

    CAS  PubMed  Google Scholar 

  47. Thali, M. et al. Characterization of human immunodeficiency virus type 1 (HIV-1) gp120 neutralization epitopes exposed upon gp120–CD4 binding. J. Virol. 67, 3978–3988 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sattentau, Q. J., Moore, J. P., Vignaux, F., Traincard, F. & Poignard, P. Conformational changes induced in the envelope glycoproteins of the human and simian immunodeficiency viruses by soluble receptor binding. J. Virol. 67, 7383–7393 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Myszka, D. G. et al. Energetics of the HIV gp120–CD4 binding reaction. Proc. Natl Acad. Sci. USA 97, 9026–9031 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kwong, P. D. et al. HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature 420, 678–682 (2002). This article describes a thermodynamic study of the binding of gp120 to CD4, which indicates that very large conformational changes accompany the binding event.

    CAS  PubMed  Google Scholar 

  51. Binley, J. M. et al. A recombinant human immunodeficiency virus type 1 envelope glycoprotein complex stabilized by an intermolecular disulfide bond between the gp120 and gp41 subunits is an antigenic mimic of the trimeric virion-associated structure. J. Virol. 74, 627–643 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chan, D. C., Fass, D., Berger, J. M. & Kim, P. S. Core structure of gp41 from the HIV envelope glycoprotein. Cell 89, 263–273 (1997).

    CAS  PubMed  Google Scholar 

  53. Kwong, P. D., Wyatt, R., Sattentau, Q. J., Sodroski, J. & Hendrickson, W. A. Oligomeric modeling and electrostatic analysis of the gp120 envelope glycoprotein of human immunodeficiency virus. J. Virol. 74, 1961–1972 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kwong, P. D. et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648–659 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wild, C., Oas, T., McDanal, C., Bolognesi, D. & Matthews, T. A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition. Proc. Natl Acad. Sci. USA 89, 10537–10541 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wild, C. T., Shugars, D. C., Greenwell, T. K., McDanal, C. B. & Matthews, T. J. Peptides corresponding to a predictive α-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc. Natl Acad. Sci. USA 91, 9770–9774 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Rapaport, D., Ovadia, M. & Shai, Y. A synthetic peptide corresponding to a conserved heptad repeat domain is a potent inhibitor of Sendai virus-cell fusion: an emerging similarity with functional domains of other viruses. EMBO J. 14, 5524–5531 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lambert, D. M. et al. Peptides from conserved regions of paramyxovirus fusion (F) proteins are potent inhibitors of viral fusion. Proc. Natl Acad. Sci. USA 93, 2186–2191 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Yao, Q. & Compans, R. W. Peptides corresponding to the heptad repeat sequence of human parainfluenza virus fusion protein are potent inhibitors of virus infection. Virology 223, 103–112 (1996).

    CAS  PubMed  Google Scholar 

  60. Lu, M., Blacklow, S. C. & Kim, P. S. A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nature Struct. Biol. 2, 1075–1082 (1995).

    CAS  PubMed  Google Scholar 

  61. Kilby, J. M. et al. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nature Med. 4, 1302–1307 (1998). This work describes early clinical data, which indicate that new medicines might emerge from our growing understanding of the molecular basis of viral membrane fusion.

    CAS  PubMed  Google Scholar 

  62. Rimsky, L. T., Shugars, D. C. & Matthews, T. J. Determinants of human immunodeficiency virus type 1 resistance to gp41-derived inhibitory peptides. J. Virol. 72, 986–993 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chan, D. C., Chutkowski, C. T. & Kim, P. S. Evidence that a prominent cavity in the coiled coil of HIV type 1 gp41 is an attractive drug target. Proc. Natl Acad. Sci. USA 95, 15613–15617 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Eckert, D. M., Malashkevich, V. N., Hong, L. H., Carr, P. A. & Kim, P. S. Inhibiting HIV-1 entry: discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket. Cell 99, 103–115 (1999).

    CAS  PubMed  Google Scholar 

  65. Russell, C. J., Jardetzky, T. S. & Lamb, R. A. Membrane fusion machines of paramyxoviruses: capture of intermediates of fusion. EMBO J. 20, 4024–4034 (2001). This paper decribes an important study of conformational changes in the F protein, which were probed using the inhibitory effects of N- and C-peptides.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Young, J. K., Li, D., Abramowitz, M. C. & Morrison, T. G. Interaction of peptides with sequences from the Newcastle disease virus fusion protein heptad repeat regions. J. Virol. 73, 5945–5956 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Furuta, R. A., Wild, C. T., Weng, Y. & Weiss, C. D. Capture of an early fusion-active conformation of HIV-1 gp41. Nature Struct. Biol. 5, 276–279 (1998).

    CAS  PubMed  Google Scholar 

  68. Melikyan, G. B. et al. Evidence that the transition of HIV-1 gp41 into a six-helix bundle, not the bundle configuration, induces membrane fusion. J. Cell Biol. 151, 413–423 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Doms, R. W. & Moore, J. P. HIV-1 membrane fusion: targets of opportunity. J. Cell Biol. 151, F9–F14 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Koshiba, T. & Chan, D. C. The prefusogenic intermediate of HIV-1 gp41 contains exposed C-peptide regions. J. Biol. Chem. 278, 7573–7579 (2003).

    CAS  PubMed  Google Scholar 

  71. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Google Scholar 

  72. Merritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Meth. Enzymol. 277, 505–524 (1997).

    CAS  Google Scholar 

  73. Nicholls, A. GRASP: graphical representation and analysis of surface properties. Biophys. J. 64, A116 (1993).

    Google Scholar 

  74. Wild, T. F., Malvoisin, E. & Buckland, R. Measles virus: both the haemagglutinin and fusion glycoproteins are required for fusion. J. Gen. Virol. 72, 439–442 (1991).

    CAS  PubMed  Google Scholar 

  75. Ebata, S. N., Cote, M. -J., Yong Kang, C. & Dimock, K. The fusion and hemagglutinin-neuraminidase glycoproteins of human parainfluenza virus 3 are both required for fusion. Virology 183, 437–441 (1991).

    CAS  PubMed  Google Scholar 

  76. Hu, X., Ray, R. & Compans, R. W. Functional interactions between the fusion protein and hemagglutinin-neuraminidase of human parainfluenza viruses. J. Virol. 66, 1528–1534 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bagai, S. & Lamb, R. A. Quantitative measurement of paramyxovirus fusion: differences in requirements of glycoproteins between simian virus 5 and human parainfluenxza virus 3 or Newcastle disease virus. J. Virol. 69, 6712–6719 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ito, M. et al. Role of a single amino acid at the amino terminus of the simian virus 5 F2 subunit in syncytium formation. J. Virol. 71, 9855–9858 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ito, M., Nishio, M., Komada, H., Ito, Y. & Tsurudome, M. An amino acid in the heptad repeat 1 domain is important for the haemagglutinin-neuraminidase-independent fusing activity of simian virus 5 fusion protein. J. Gen. Virol. 81, 719–727 (2000).

    CAS  PubMed  Google Scholar 

  80. Tsurudome, M. et al. Hemagglutinin-neuraminidase-independent fusion activity of simian virus 5 fusion (F) protein: difference in conformation between fusogenic and nonfusogenic F proteins on the cell surface. J. Virol. 75, 8999–9009 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sergel, T. A., McGinnes, L. W. & Morrison, T. G. A single amino acid change in the Newcastle disease virus fusion protein alters the requirement for HN protein in fusion. J. Virol. 74, 5101–5107 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Seth, S., Vincent, A. & Compans, R. W. Mutations in the cytoplasmic domain of a paramyxovirus fusion glycoprotein rescue syncytium formation and eliminate the hemagglutinin-neuraminidase protein requirement for membrane fusion. J. Virol. 77, 167–178 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. McGinnes, L. W., Reitter, J. N., Gravel, K. & Morrison, T. G. Evidence for mixed membrane topology of the Newcastle disease virus fusion protein. J. Virol. 77, 1951–1963 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Wyde, P. R. et al. CL387626 exhibits marked and unusual antiviral activity against respiratory syncytial virus in tissue culture and in cotton rats. Antiviral Res. 38, 31–42 (1998).

    CAS  PubMed  Google Scholar 

  85. Aulabaugh, A. et al. Inhibition of respiratory syncytial virus by a new class of chemotherapeutic agents. Drugs of the Future 25, 287–294 (2000).

    Google Scholar 

  86. Andries, K. et al. R170591, a new antiviral with picomolar activity against respiratory syncytial virus. Antiviral Res. 50, S1–S94 (2001).

    Google Scholar 

  87. Debnath, A. K., Radigan, L. & Jiang, S. Structure-based identification of small molecule antiviral compounds targeted to the gp41 core structure of the human immunodeficiency virus type 1. J. Med. Chem. 42, 3203–3209 (1999).

    CAS  PubMed  Google Scholar 

  88. Jiang, S., Zhao, Q. & Debnath, A. K. Peptide and non-peptide HIV fusion inhibitors. Curr. Pharm. Des. 8, 563–580 (2002).

    CAS  PubMed  Google Scholar 

  89. Zhou, G. et al. The structure of an HIV-1 specific cell entry inhibitor in complex with the HIV-1 gp41 trimeric core. Bioorg. Med. Chem. 8, 2219–2227 (2000).

    CAS  PubMed  Google Scholar 

  90. Smith, B. J., Lawrence, M. C. & Colman, P. M. Modelling the structure of the fusion protein from human respiratory syncytial virus. Protein Eng. 15, 365–371 (2002).

    CAS  PubMed  Google Scholar 

  91. McKimm-Breschkin, J. L. et al. Generation and characterization of variants of NWS/G70C influenza virus after in vitro passage in 4-amino-Neu5Ac2en and 4-guanidino-Neu5Ac2en. Antimicrob. Agents Chemother. 40, 40–46 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Blick, T. J. et al. Generation and characterization of an influenza virus neuraminidase variant with decreased sensitivity to the neuraminidase-specific inhibitor 4-guanidino-Neu5Ac2en. Virology 214, 475–484 (1995).

    CAS  PubMed  Google Scholar 

  93. Colman, P. M. Influenza virus neuraminidase: structure, antibodies, and inhibitors. Protein Sci. 3, 1687–1696 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Greengard, O., Poltoratskaia, N., Leikina, E., Zimmerberg, J. & Moscona, A. The anti-influenza virus agent 4-GU-DANA (zanamivir) inhibits cell fusion mediated by human parainfluenza virus and influenza virus HA. J. Virol. 74, 11108–11114 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Neurath, A. R., Strick, N., Jiang, S., Li, Y. Y. & Debnath, A. K. Anti-HIV-1 activity of cellulose acetate phthalate: synergy with soluble CD4 and induction of 'dead-end' gp41 six-helix bundles. BMC Infect. Dis. 2, 6 (2002).

    PubMed  PubMed Central  Google Scholar 

  96. Baker, K. A., Dutch, R. E., Lamb, R. A. & Jardetzky, T. S. Structural basis for paramyxovirus-mediated membrane fusion. Mol. Cell 3, 309–319 (1999). This paper describes the structure of the complex of N- and C-peptides from the paramyxovirus F protein and links this family of viruses to HIV.

    CAS  PubMed  Google Scholar 

  97. Zhao, X., Singh, M., Malashkevich, V. N. & Kim, P. S. Structural characterization of the human respiratory syncytial virus fusion protein core. Proc. Natl Acad. Sci. USA 97, 14172–14177 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All of the molecular graphics in this review were produced using combinations of MOLSCRIPT71, RASTER3D72 and GRASP73. P.M.C. would like to thank the National Health and Medical Research Council (Australia) and the Cancer Council Victoria for their support.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Swiss-Prot

E

F

gp160

HA

HN

FURTHER INFORMATION

The Walter and Eliza Hall Institute of Medical Research

Commonwealth Scientific & Industrial Research Organisation

Glossary

VIRAL FUSION PROTEIN

A glycoprotein that is anchored to the viral envelope. Its extracellular domain causes the fusion of the viral membrane with a membrane of target cells.

METASTABLE STATE

A state that is marginally stable (in the case of fusion proteins, by virtue of the existence of a 'nearby' stable state that is separated from it by an energy barrier).

HR-A AND HR-B

Heptad repeats or helical regions A and B of viral fusion proteins, which associate with one another in the post-fusion conformation.

COILED-COILS

Two or more helical segments of polypeptide that align either parallel or anti-parallel to each other and then twist around one another in a rope-like fashion. Such an arrangement can often be predicted from amino-acid sequence analysis.

PARAMYXOVIRUSES

The Paramyxoviridae family has two subfamilies — Paramyxovirinae (which includes parainfluenza viruses, mumps virus and measles virus) and Pneumovirinae (which includes respiratory syncytial virus). Members of both subfamilies have a related fusion protein.

N-PEPTIDES AND C-PEPTIDES

Peptides that are derived from heptad repeat or helical region (HR)-A and HR-B of viral fusion proteins, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colman, P., Lawrence, M. The structural biology of type I viral membrane fusion. Nat Rev Mol Cell Biol 4, 309–319 (2003). https://doi.org/10.1038/nrm1076

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1076

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing