Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The ins and outs of MHC class II-mediated antigen processing and presentation

Key Points

  • MHC class II molecules bind antigenic peptides that are generated in endosomal–lysosomal antigen-processing compartments. These peptides are derived from proteins that access these compartments using various endocytic pathways and also as a result of autophagy.

  • Proteolysis in antigen-processing compartments is regulated in antigen-presenting cells (APCs) to favour the formation of antigenic peptides that can bind to MHC class II and to avoid the complete hydrolysis of proteins to very short peptides or to amino acids.

  • Nonspecific endocytosis processes are terminated following dendritic cell (DC) activation, but mature DCs can still internalize antigen by receptor-mediated endocytosis or phagocytosis. Using these pathways, mature DCs can generate peptide–MHC class II complexes and activate naive CD4+ T cells.

  • The formation of antigen-processing compartments is regulated during APC activation. B cell activation results in MHC class II recruitment to endosomes and lysosomes to form these compartments, whereas in DCs, lysosomal proteases relocalize to antigen-processing compartments and enhance antigen proteolysis.

  • APC activation leads to efficient generation of peptide–MHC class II complexes and markedly increases the expression of these complexes on the APC plasma membrane. Increased surface expression of peptide–MHC class II complexes on activated APCs is a result of enhanced MHC class II transcription and/or translation, movement of intracellular peptide–MHC class II complexes to the APC plasma membrane and reduced lysosomal MHC class II degradation.

  • Expression of the E3 ubiquitin ligase MARCH1 by immature APCs promotes rapid turnover of peptide–MHC class II complexes. DC activation terminates MARCH1 expression and ubiquitylation of peptide–MHC class II complexes, thus increasing the half-life of peptide–MHC class II complexes.

Abstract

Antigenic peptide-loaded MHC class II molecules (peptide–MHC class II) are constitutively expressed on the surface of professional antigen-presenting cells (APCs), including dendritic cells, B cells, macrophages and thymic epithelial cells, and are presented to antigen-specific CD4+ T cells. The mechanisms of antigen uptake, the nature of the antigen processing compartments and the lifetime of cell surface peptide–MHC class II complexes can vary depending on the type of APC. It is likely that these differences are important for the function of each distinct APC subset in the generation of effective adaptive immune responses. In this Review, we describe our current knowledge of the mechanisms of uptake and processing of antigens, the intracellular formation of peptide–MHC class II complexes, the intracellular trafficking of peptide–MHC class II complexes to the APC plasma membrane and their ultimate degradation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of peptide–MHC class II complexes in antigen-presenting cells.
Figure 2: Pathways of antigen endocytosis in antigen-presenting cells.
Figure 3: Activation of antigen-presenting cells redistributes intracellular MHC class II molecules.
Figure 4: Degradation of peptide–MHC class II complexes in antigen-presenting cells.

Similar content being viewed by others

References

  1. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Harwood, N. E. & Batista, F. D. Early events in B cell activation. Annu. Rev. Immunol. 28, 185–210 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Trombetta, E. S. & Mellman, I. Cell biology of antigen processing in vitro and in vivo. Annu. Rev. Immunol. 23, 975–1028 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Blum, J. S., Wearsch, P. A. & Cresswell, P. Pathways of antigen processing. Annu. Rev. Immunol. 31, 443–473 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bozzacco, L. et al. Mass spectrometry analysis and quantitation of peptides presented on the MHC II molecules of mouse spleen dendritic cells. J. Proteome Res. 10, 5016–5030 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cresswell, P. Invariant chain structure and MHC class II function. Cell 84, 505–507 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Dugast, M., Toussaint, H., Dousset, C. & Benaroch, P. AP2 clathrin adaptor complex, but not AP1, controls the access of the major histocompatibility complex (MHC) class II to endosomes. J. Biol. Chem. 280, 19656–19664 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. McCormick, P. J., Martina, J. A. & Bonifacino, J. S. Involvement of clathrin and AP-2 in the trafficking of MHC class II molecules to antigen-processing compartments. Proc. Natl Acad. Sci. USA 102, 7910–7915 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Roche, P. A., Teletski, C. L., Stang, E., Bakke, O. & Long, E. O. Cell surface HLA-DR-invariant chain complexes are targeted to endosomes by rapid internalization. Proc. Natl Acad. Sci. USA 90, 8581–8585 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Roche, P. A. & Cresswell, P. Invariant chain association with HLA-DR molecules inhibits immunogenic peptide binding. Nature 345, 615–618 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Castellino, F. & Germain, R. N. Extensive trafficking of MHC class II-invariant chain complexes in the endocytic pathway and appearance of peptide-loaded class II in multiple compartments. Immunity. 2, 73–88 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Neefjes, J. CIIV, MIIC and other compartments for MHC class II loading. Eur. J. Immunol. 29, 1421–1425 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Busch, R. et al. Achieving stability through editing and chaperoning: regulation of MHC class II peptide binding and expression. Immunol. Rev. 207, 242–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Denzin, L. K., Fallas, J. L., Prendes, M. & Yi, W. Right place, right time, right peptide: DO keeps DM focused. Immunol. Rev. 207, 279–292 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Lim, J. P. & Gleeson, P. A. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol. Cell Biol. 89, 836–843 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Mercer, J. & Helenius, A. Virus entry by macropinocytosis. Nature Cell Biol. 11, 510–520 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Clement, C. C., Rotzschke, O. & Santambrogio, L. The lymph as a pool of self-antigens. Trends Immunol. 32, 6–11 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Sallusto, F., Cella, M., Danieli, C. & Lanzavecchia, A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 182, 389–400 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. West, M. A. et al. Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science 305, 1153–1157 (2004). This study shows that acute activation of DCs leads to a transient burst of macropinocytosis, which enables DCs to internalize a large 'gulp' of exogenous antigens.

    Article  CAS  PubMed  Google Scholar 

  20. Garrett, W. S. et al. Developmental control of endocytosis in dendritic cells by Cdc42. Cell 102, 325–334 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Reis e Sousa, C., Stahl, P. D. & Austyn, J. M. Phagocytosis of antigens by Langerhans cells in vitro. J. Exp. Med. 178, 509–519 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Platt, C. D. et al. Mature dendritic cells use endocytic receptors to capture and present antigens. Proc. Natl Acad. Sci. USA 107, 4287–4292 (2010). In this study, the authors show that mature DCs maintain the ability to capture exogenous antigens if the antigen binds to endocytic receptors that are present on the mature DC surface.

    Article  PubMed  Google Scholar 

  23. Young, L. J. et al. Dendritic cell preactivation impairs MHC class II presentation of vaccines and endogenous viral antigens. Proc. Natl Acad. Sci. USA 104, 17753–17758 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Drutman, S. B. & Trombetta, E. S. Dendritic cells continue to capture and present antigens after maturation in vivo. J. Immunol. 185, 2140–2146 (2010). This intriguing study challenges the dogma that mature DCs are incapable of nonspecific endocytosis by showing that in vivo -matured DCs are capable of internalizing, processing and presenting various 'soluble' antigens to CD4+ T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rock, K. L., Benacerraf, B. & Abbas, A. K. Antigen presentation by hapten-specific B lymphocytes. I. Role of surface immunoglobulin receptors. J. Exp. Med. 160, 1102–1113 (1984).

    Article  CAS  PubMed  Google Scholar 

  26. Fearon, D. T. & Carroll, M. C. Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu. Rev. Immunol. 18, 393–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Antoniou, A. N. & Watts, C. Antibody modulation of antigen presentation: positive and negative effects on presentation of the tetanus toxin antigen via the murine B cell isoform of FcγRII. Eur. J. Immunol. 32, 530–540 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Bonifaz, L. C. et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J. Exp. Med. 199, 815–824 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leung, C. S. et al. Robust T-cell stimulation by Epstein–Barr virus-transformed B cells after antigen targeting to DEC-205. Blood 121, 1584–1594 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stuart, L. M. & Ezekowitz, R. A. Phagocytosis: elegant complexity. Immunity 22, 539–550 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Bonaccorsi, I. et al. Membrane transfer from tumor cells overcomes deficient phagocytic ability of plasmacytoid dendritic cells for the acquisition and presentation of tumor antigens. J. Immunol. 192, 824–832 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Steinman, R. M., Turley, S., Mellman, I. & Inaba, K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J. Exp. Med. 191, 411–416 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tse, S. M. et al. Differential role of actin, clathrin, and dynamin in Fcγ receptor-mediated endocytosis and phagocytosis. J. Biol. Chem. 278, 3331–3338 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Guermonprez, P. et al. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature 425, 397–402 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Houde, M. et al. Phagosomes are competent organelles for antigen cross-presentation. Nature 425, 402–406 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Joffre, O. P., Segura, E., Savina, A. & Amigorena, S. Cross-presentation by dendritic cells. Nature Rev. Immunol. 12, 557–569 (2012).

    Article  CAS  Google Scholar 

  37. Blander, J. M. & Medzhitov, R. Regulation of phagosome maturation by signals from toll-like receptors. Science 304, 1014–1018 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Blander, J. M. & Medzhitov, R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440, 808–812 (2006). This study shows that individual phagosomes in a single DC behave autonomously, and that only phagosomes containing TLR ligands process and present their antigens to CD4+ T cells.

    Article  CAS  PubMed  Google Scholar 

  39. Russell, D. G. & Yates, R. M. TLR signalling and phagosome maturation: an alternative viewpoint. Cell. Microbiol. 9, 849–850 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Mantegazza, A. R. et al. Adaptor protein-3 in dendritic cells facilitates phagosomal toll-like receptor signaling and antigen presentation to CD4+ T cells. Immunity 36, 782–794 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hoffmann, E. et al. Autonomous phagosomal degradation and antigen presentation in dendritic cells. Proc. Natl Acad. Sci. USA 109, 14556–14561 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Mantegazza, A. R. et al. TLR-dependent phagosome tubulation in dendritic cells promotes phagosome cross-talk to optimize MHC-II antigen presentation. Proc. Natl Acad. Sci. USA 111, 15508–15513 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Adamopoulou, E. et al. Exploring the MHC-peptide matrix of central tolerance in the human thymus. Nature Commun. 4, 2039 (2013).

    Article  CAS  Google Scholar 

  44. Crotzer, V. L. & Blum, J. S. Autophagy and adaptive immunity. Immunology 131, 9–17 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schmid, D., Pypaert, M. & Munz, C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 26, 79–92 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Paludan, C. et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307, 593–596 (2005).

    Article  CAS  Google Scholar 

  47. Ireland, J. M. & Unanue, E. R. Autophagy in antigen-presenting cells results in presentation of citrullinated peptides to CD4 T cells. J. Exp. Med. 208, 2625–2632 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wegner, N. et al. Autoimmunity to specific citrullinated proteins gives the first clues to the etiology of rheumatoid arthritis. Immunol. Rev. 233, 34–54 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Nedjic, J., Aichinger, M., Emmerich, J., Mizushima, N. & Klein, L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455, 396–400 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Aichinger, M., Wu, C., Nedjic, J. & Klein, L. Macroautophagy substrates are loaded onto MHC class II of medullary thymic epithelial cells for central tolerance. J. Exp. Med. 210, 287–300 (2013). References 49 and 50 reveal an important role for macroautophagy in the generation of peptides required for both the positive and the negative selection of the CD4+ T cell repertoire.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee, H. K. et al. In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity 32, 227–239 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Manoury, B. et al. Asparagine endopeptidase can initiate the removal of the MHC class II invariant chain chaperone. Immunity 18, 489–498 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Shi, G. P. et al. Cathepsin S required for normal MHC class II peptide loading and germinal center development. Immunity 10, 197–206 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Nakagawa, T. Y. et al. Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity 10, 207–217 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Lautwein, A. et al. Inflammatory stimuli recruit cathepsin activity to late endosomal compartments in human dendritic cells. Eur. J. Immunol. 32, 3348–3357 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Trombetta, E. S., Ebersold, M., Garrett, W., Pypaert, M. & Mellman, I. Activation of lysosomal function during dendritic cell maturation. Science 299, 1400–1403 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Inaba, K. et al. The formation of immunogenic major histocompatibility complex class II-peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli. J. Exp. Med. 191, 927–936 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Turley, S. J. et al. Transport of peptide-MHC class II complexes in developing dendritic cells. Science 288, 522–527 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Manoury, B. et al. Destructive processing by asparagine endopeptidase limits presentation of a dominant T cell epitope in MBP. Nature Immunol. 3, 169–174 (2002).

    Article  CAS  Google Scholar 

  60. Delamarre, L., Pack, M., Chang, H., Mellman, I. & Trombetta, E. S. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 307, 1630–1634 (2005). This important study shows that DCs are better APCs than macrophages, partly because their late endosomal–lysosomal compartments are less proteolytic, thereby limiting the complete destruction of internalized antigens and promoting antigenic peptide generation.

    Article  CAS  PubMed  Google Scholar 

  61. Chatterjee, B. et al. Internalization and endosomal degradation of receptor-bound antigens regulate the efficiency of cross presentation by human dendritic cells. Blood 120, 2011–2020 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Savina, A. et al. The small GTPase Rac2 controls phagosomal alkalinization and antigen crosspresentation selectively in CD8+ dendritic cells. Immunity 30, 544–555 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Romao, S. et al. Autophagy proteins stabilize pathogen-containing phagosomes for prolonged MHC II antigen processing. J. Cell Biol. 203, 757–766 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Reith, W., LeibundGut-Landmann, S. & Waldburger, J. M. Regulation of MHC class II gene expression by the class II transactivator. Nature Rev. Immunol. 5, 793–806 (2005).

    Article  CAS  Google Scholar 

  65. Steimle, V., Siegrist, C. A., Mottet, A., Lisowska-Grospierre, B. & Mach, B. Regulation of MHC class II expression by interferon-γ mediated by the transactivator gene CIITA. Science 265, 106–109 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Wilson, N. S., El-Sukkari, D. & Villadangos, J. A. Dendritic cells constitutively present self antigens in their immature state in vivo and regulate antigen presentation by controlling the rates of MHC class II synthesis and endocytosis. Blood 103, 2187–2195 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Young, L. J. et al. Differential MHC class II synthesis and ubiquitination confers distinct antigen-presenting properties on conventional and plasmacytoid dendritic cells. Nature Immunol. 9, 1244–1252 (2008).

    Article  CAS  Google Scholar 

  68. LeibundGut-Landmann, S., Waldburger, J. M., Reis e Sousa, C., Acha-Orbea, H. & Reith, W. MHC class II expression is differentially regulated in plasmacytoid and conventional dendritic cells. Nature Immunol. 5, 899–908 (2004).

    Article  CAS  Google Scholar 

  69. Villadangos, J. A. & Young, L. Antigen-presentation properties of plasmacytoid dendritic cells. Immunity 29, 352–361 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Villadangos, J. A., Schnorrer, P. & Wilson, N. S. Control of MHC class II antigen presentation in dendritic cells: a balance between creative and destructive forces. Immunol. Rev. 207, 191–205 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Kleijmeer, M. J. et al. MHC class II compartments and the kinetics of antigen presentation in activated mouse spleen dendritic cells. J. Immunol. 154, 5715–5724 (1995).

    CAS  PubMed  Google Scholar 

  72. Harding, C. V. & Geuze, H. J. Class II MHC molecules are present in macrophage lysosomes and phagolysosomes that function in the phagocytic processing of Listeria monocytogenes for presentation to T cells. J. Cell Biol. 119, 531–542 (1992).

    Article  CAS  PubMed  Google Scholar 

  73. Kleijmeer, M. J., Oorschot, V. M. & Geuze, H. J. Human resident langerhans cells display a lysosomal compartment enriched in MHC class II. J. Invest. Dermatol. 103, 516–523 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Pierre, P. et al. Developmental regulation of MHC class II transport in mouse dendritic cells. Nature 388, 787–792 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. ten Broeke, T., van Niel, G., Wauben, M. H., Wubbolts, R. & Stoorvogel, W. Endosomally stored MHC class II does not contribute to antigen presentation by dendritic cells at inflammatory conditions. Traffic 12, 1025–1036 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Cella, M., Engering, A., Pinet, V., Pieters, J. & Lanzavecchia, A. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 388, 782–787 (1997). This seminal study shows that activation of DCs with LPS or tumour necrosis factor transiently increases MHC class II biosynthesis, enhances cell surface MHC class II stability and enables DCs to maintain functional memory of acquired antigens.

    Article  CAS  PubMed  Google Scholar 

  77. Kleijmeer, M. et al. Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells. J. Cell Biol. 155, 53–63 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Boes, M. et al. T-cell engagement of dendritic cells rapidly rearranges MHC class II transport. Nature 418, 983–988 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Chow, A., Toomre, D., Garrett, W. & Mellman, I. Dendritic cell maturation triggers retrograde MHC class II transport from lysosomes to the plasma membrane. Nature 418, 988–994 (2002). References 77–79 show that maturation of DCs promotes tubulation of antigen-processing compartments, which results in the delivery of peptide–MHC class II to the plasma membrane.

    Article  CAS  PubMed  Google Scholar 

  80. Lankar, D. et al. Dynamics of major histocompatibility complex class II compartments during B cell receptor-mediated cell activation. J. Exp. Med. 195, 461–472 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Siemasko, K., Eisfelder, B. J., Williamson, E., Kabak, S. & Clark, M. R. Signals from the B lymphocyte antigen receptor regulate MHC class II containing late endosomes. J. Immunol. 160, 5203–5208 (1998).

    CAS  PubMed  Google Scholar 

  82. Vascotto, F. et al. The actin-based motor protein myosin II regulates MHC class II trafficking and BCR-driven antigen presentation. J. Cell Biol. 176, 1007–1019 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Le Roux, D. et al. Syk-dependent actin dynamics regulate endocytic trafficking and processing of antigens internalized through the B-cell receptor. Mol. Biol. Cell 18, 3451–3462 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nashar, T. O. & Drake, J. R. The pathway of antigen uptake and processing dictates MHC class II-mediated B cell survival and activation. J. Immunol. 174, 1306–1316 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Mohan, J. F., Calderon, B., Anderson, M. S. & Unanue, E. R. Pathogenic CD4+ T cells recognizing an unstable peptide of insulin are directly recruited into islets bypassing local lymph nodes. J. Exp. Med. 210, 2403–2414 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Amigorena, S., Drake, J. R., Webster, P. & Mellman, I. Transient accumulation of new class II MHC molecules in a novel endocytic compartment in B lymphocytes. Nature 369, 113–120 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. Yuseff, M. I. et al. Polarized secretion of lysosomes at the B cell synapse couples antigen extraction to processing and presentation. Immunity 35, 361–374 (2011). This study shows that the engagement of B cells with an immobilized antigen leads to polarized lysosome exocytosis, delivery of lysosomal enzymes into the B cell–antigen interface and allows antigen extraction from the immobilized surface into the B cell.

    Article  CAS  PubMed  Google Scholar 

  88. Rocha, N. & Neefjes, J. MHC class II molecules on the move for successful antigen presentation. EMBO J. 27, 1–5 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Kamon, H. et al. TRIF–GEFH1–RhoB pathway is involved in MHCII expression on dendritic cells that is critical for CD4 T-cell activation. EMBO J. 25, 4108–4119 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ocana-Morgner, C., Wahren, C. & Jessberger, R. SWAP-70 regulates RhoA/RhoB-dependent MHCII surface localization in dendritic cells. Blood 113, 1474–1482 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Paul, P. et al. A genome-wide multidimensional RNAi screen reveals pathways controlling MHC class II antigen presentation. Cell 145, 268–283 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Thery, C. et al. Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nature Immunol. 3, 1156–1162 (2002).

    Article  CAS  Google Scholar 

  93. Segura, E. et al. ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood 106, 216–223 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Muntasell, A., Berger, A. C. & Roche, P. A. T cell-induced secretion of MHC class II-peptide complexes on B cell exosomes. EMBO J. 26, 4263–4272 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Buschow, S. I. et al. MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic 10, 1528–1542 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Bastos-Amador, P. et al. Capture of cell-derived microvesicles (exosomes and apoptotic bodies) by human plasmacytoid dendritic cells. J. Leukocyte Biol. 91, 751–758 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Denzer, K. et al. Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J. Immunol. 165, 1259–1265 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Viaud, S. et al. Dendritic cell-derived exosomes for cancer immunotherapy: what's next? Cancer Res. 70, 1281–1285 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Zitvogel, L. et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nature Med. 4, 594–600 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Mahaweni, N. M., Kaijen-Lambers, M. E., Dekkers, J., Aerts, J. G. & Hegmans, J. P. Tumour-derived exosomes as antigen delivery carriers in dendritic cell-based immunotherapy for malignant mesothelioma. J. Extracell. Vesicles 2, 22492 (2013).

    Article  CAS  Google Scholar 

  101. Anderson, H. A. & Roche, P. A. MHC class II association with lipid rafts on the antigen presenting cell surface. Biochim. Biophys. Acta http://dx.doi.org/10.1016/j.bbamcr.2014.09.019 (2014).

  102. Kropshofer, H. et al. Tetraspan microdomains distinct from lipid rafts enrich select peptide- MHC class II complexes. Nature Immunol. 3, 61–68 (2002).

    Article  CAS  Google Scholar 

  103. Anderson, H. A., Hiltbold, E. M. & Roche, P. A. Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation. Nature Immunol. 1, 156–162 (2000). In this study, we show that MHC class II molecules are constitutive residents of lipid raft membrane microdomains and that raft association is important for CD4+ T cell activation under conditions of limiting antigen dose.

    Article  CAS  Google Scholar 

  104. Eren, E. et al. Location of major histocompatibility complex class II molecules in rafts on dendritic cells enhances the efficiency of T-cell activation and proliferation. Scand. J. Immunol. 63, 7–16 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Bosch, B., Heipertz, E. L., Drake, J. R. & Roche, P. A. Major histocompatibility complex (MHC) class II-peptide complexes arrive at the plasma membrane in cholesterol-rich microclusters. J. Biol. Chem. 288, 13236–13242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Poloso, N. J., Muntasell, A. & Roche, P. A. MHC class II molecules traffic into lipid rafts during intracellular transport. J. Immunol. 173, 4539–4546 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Karacsonyi, C., Knorr, R., Fulbier, A. & Lindner, R. Association of major histocompatibility complex II with cholesterol- and sphingolipid-rich membranes precedes peptide loading. J. Biol. Chem. 279, 34818–34826 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Poloso, N. J. & Roche, P. A. Association of MHC class II-peptide complexes with plasma membrane lipid microdomains. Curr. Opin. Immunol. 16, 103–107 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Steinman, R. M., Mellman, I. S., Muller, W. A. & Cohn, Z. A. Endocytosis and the recycling of plasma membrane. J. Cell Biol. 96, 1–27 (1983).

    Article  CAS  PubMed  Google Scholar 

  110. Momburg, F. et al. Epitope-specific enhancement of antigen presentation by invariant chain. J. Exp. Med. 178, 1453–1458 (1993).

    Article  CAS  PubMed  Google Scholar 

  111. Tewari, M. K., Sinnathamby, G., Rajagopal, D. & Eisenlohr, L. C. A cytosolic pathway for MHC class II-restricted antigen processing that is proteasome and TAP dependent. Nature Immunol. 6, 287–294 (2005).

    Article  CAS  Google Scholar 

  112. Pinet, V., Malnati, M. S. & Long, E. O. Two processing pathways for the MHC class II-restricted presentation of exogenous influenza virus antigen. J. Immunol. 152, 4852–4860 (1994).

    CAS  PubMed  Google Scholar 

  113. Griffin, J. P., Chu, R. & Harding, C. V. Early endosomes and a late endocytic compartment generate different peptide-class II MHC complexes via distinct processing mechanisms. J. Immunol. 158, 1523–1532 (1997).

    CAS  PubMed  Google Scholar 

  114. Ohmura-Hoshino, M. et al. Inhibition of MHC class II expression and immune responses by c-MIR. J. Immunol. 177, 341–354 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Shin, J. S. et al. Surface expression of MHC class II in dendritic cells is controlled by regulated ubiquitination. Nature 444, 115–118 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. van Niel, G. et al. Dendritic cells regulate exposure of MHC class II at their plasma membrane by oligoubiquitination. Immunity 25, 885–894 (2006). References 115 and 116 show that selective ubiquitylation of MHC class II in immature DCs regulates intracellular MHC class II localization.

    Article  CAS  PubMed  Google Scholar 

  117. Matsuki, Y. et al. Novel regulation of MHC class II function in B cells. EMBO J. 26, 846–854 (2007). This study confirms that MARCH1 is the main E3 ubiquitin ligase that is responsible for MHC class II ubiquitylation and that it regulates MHC class II expression in B cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. De Gassart, A. et al. MHC class II stabilization at the surface of human dendritic cells is the result of maturation-dependent MARCH I down-regulation. Proc. Natl Acad. Sci. USA 105, 3491–3496 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Walseng, E. et al. Ubiquitination regulates MHC class II-peptide complex retention and degradation in dendritic cells. Proc. Natl Acad. Sci. USA 107, 20465–20470 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Gauvreau, M. E. et al. Sorting of MHC class II molecules into exosomes through a ubiquitin-independent pathway. Traffic 10, 1518–1527 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Furuta, K., Ishido, S. & Roche, P. A. Encounter with antigen-specific primed CD4 T cells promotes MHC class II degradation in dendritic cells. Proc. Natl Acad. Sci. USA 109, 19380–19385 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Bartee, E., Mansouri, M., Hovey Nerenberg, B. T., Gouveia, K. & Fruh, K. Downregulation of major histocompatibility complex class I by human ubiquitin ligases related to viral immune evasion proteins. J. Virol. 78, 1109–1120 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Oh, J. et al. MARCH1-mediated MHCII ubiquitination promotes dendritic cell selection of natural regulatory T cells. J. Exp. Med. 210, 1069–1077 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Baravalle, G. et al. Ubiquitination of CD86 is a key mechanism in regulating antigen presentation by dendritic cells. J. Immunol. 187, 2966–2973 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Corcoran, K. et al. Ubiquitin-mediated regulation of CD86 protein expression by the ubiquitin ligase membrane-associated RING-CH-1 (MARCH1). J. Biol. Chem. 286, 37168–37180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Thibodeau, J. et al. Interleukin-10-induced MARCH1 mediates intracellular sequestration of MHC class II in monocytes. Eur. J. Immunol. 38, 1225–1230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Koppelman, B., Neefjes, J. J., de Vries, J. E. & de Waal Malefyt, R. Interleukin-10 down-regulates MHC class II αβ-peptide complexes at the plasma membrane of monocytes by affecting arrival and recycling. Immunity. 7, 861–871 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. Walseng, E. et al. Dendritic cell activation prevents MHC class II ubiquitination and promotes MHC class II survival regardless of the activation stimulus. J. Biol. Chem. 285, 41749–41754 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jabbour, M., Campbell, E. M., Fares, H. & Lybarger, L. Discrete domains of MARCH1 mediate its localization, functional interactions, and posttranscriptional control of expression. J. Immunol. 183, 6500–6512 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bourgeois-Daigneault, M. C. & Thibodeau, J. Autoregulation of MARCH1 expression by dimerization and autoubiquitination. J. Immunol. 188, 4959–4970 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Furuta, K., Walseng, E. & Roche, P. A. Internalizing MHC class II-peptide complexes are ubiquitinated in early endosomes and targeted for lysosomal degradation. Proc. Natl Acad. Sci. USA 110, 20188–20193 (2013). In this study, we show that peptide–MHC class II molecules that are being internalized from the plasma membrane are targets of MARCH1-mediated ubiquitylation and lysosomal degradation.

    Article  CAS  PubMed  Google Scholar 

  132. Tze, L. E. et al. CD83 increases MHC II and CD86 on dendritic cells by opposing IL-10-driven MARCH1-mediated ubiquitination and degradation. J. Exp. Med. 208, 149–165 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Klein, E. et al. CD83 localization in a recycling compartment of immature human monocyte-derived dendritic cells. Int. Immunol. 17, 477–487 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Bourgeois-Daigneault, M. C. & Thibodeau, J. Identification of a novel motif that affects the conformation and activity of the MARCH1 E3 ubiquitin ligase. J. Cell Sci. 126, 989–998 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Ma, J. K., Platt, M. Y., Eastham-Anderson, J., Shin, J. S. & Mellman, I. MHC class II distribution in dendritic cells and B cells is determined by ubiquitin chain length. Proc. Natl Acad. Sci. USA 109, 8820–8827 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. MacGurn, J. A., Hsu, P. C. & Emr, S. D. Ubiquitin and membrane protein turnover: from cradle to grave. Annu. Rev. Biochem. 81, 231–259 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Tortorella, D., Gewurz, B. E., Furman, M. H., Schust, D. J. & Ploegh, H. L. Viral subversion of the immune system. Annu. Rev. Immunol. 18, 861–926 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Lapaque, N. et al. Salmonella regulates polyubiquitination and surface expression of MHC class II antigens. Proc. Natl Acad. Sci. USA 106, 14052–14057 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Wilson, J. E., Katkere, B. & Drake, J. R. Francisella tularensis induces ubiquitin-dependent major histocompatibility complex class II degradation in activated macrophages. Infect. Immun. 77, 4953–4965 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hunt, D. et al. Francisella tularensis elicits IL-10 via a PGE2-inducible factor, to drive macrophage MARCH1 expression and class II down-regulation. PLoS ONE 7, e37330 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ferrari, G., Langen, H., Naito, M. & Pieters, J. A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 97, 435–447 (1999).

    Article  CAS  PubMed  Google Scholar 

  142. Ramachandra, L., Noss, E., Boom, W. H. & Harding, C. V. Processing of Mycobacterium tuberculosis antigen 85B involves intraphagosomal formation of peptide-major histocompatibility complex II complexes and is inhibited by live bacilli that decrease phagosome maturation. J. Exp. Med. 194, 1421–1432 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gutierrez, M. G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004).

    Article  CAS  Google Scholar 

  144. Lilley, B. N. & Ploegh, H. L. Viral modulation of antigen presentation: manipulation of cellular targets in the ER and beyond. Immunol. Rev. 207, 126–144 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Tomazin, R. et al. Cytomegalovirus US2 destroys two components of the MHC class II pathway, preventing recognition by CD4+ T cells. Nature Med. 5, 1039–1043 (1999).

    Article  CAS  PubMed  Google Scholar 

  146. Hegde, N. R. et al. Inhibition of HLA-DR assembly, transport, and loading by human cytomegalovirus glycoprotein US3: a novel mechanism for evading major histocompatibility complex class II antigen presentation. J. Virol. 76, 10929–10941 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Odeberg, J., Plachter, B., Branden, L. & Soderberg-Naucler, C. Human cytomegalovirus protein pp65 mediates accumulation of HLA-DR in lysosomes and destruction of the HLA-DR α-chain. Blood 101, 4870–4877 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Temme, S., Eis-Hubinger, A. M., McLellan, A. D. & Koch, N. The herpes simplex virus-1 encoded glycoprotein B diverts HLA-DR into the exosome pathway. J. Immunol. 184, 236–243 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Toussaint, H. et al. Human immunodeficiency virus type 1 nef expression prevents AP-2-mediated internalization of the major histocompatibility complex class II-associated invariant chain. J. Virol. 82, 8373–8382 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Stumptner-Cuvelette, P. et al. Human immunodeficiency virus-1 Nef expression induces intracellular accumulation of multivesicular bodies and major histocompatibility complex class II complexes: potential role of phosphatidylinositol 3-kinase. Mol. Biol. Cell 14, 4857–4870 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zuo, J. et al. Epstein–Barr virus evades CD4+ T cell responses in lytic cycle through BZLF1-mediated downregulation of CD74 and the cooperation of vBcl-2. PLoS Pathog. 7, e1002455 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ressing, M. E. et al. Epstein–Barr virus gp42 is posttranslationally modified to produce soluble gp42 that mediates HLA class II immune evasion. J. Virol. 79, 841–852 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the many investigators in the field whose primary data could not be cited in this Review owing to space limitations. The authors also thank the anonymous referees who provided excellent advice in the preparation of this manuscript. This work was supported by the Japan Society for the Promotion of Science (to K.F.) and by the Intramural Research Program of the US National Institutes of Health (to P.A.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Roche.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Central tolerance

Self-tolerance that is created at the level of the central lymphoid organs. Developing T cells in the thymus and B cells in the bone marrow that strongly recognize self antigen undergo deletion or marked suppression.

Peripheral tolerance

Refers to mechanisms that control the reactivity of self antigen-specific lymphocytes that have escaped central tolerance. These mechanisms include 'active' suppression by cells that have immunomodulatory functions (such as regulatory T cells), as well as the induction of anergy or deletion, for example, through antigen presentation to T cells in the absence of co-stimulation.

Invariant chain

(Ii). A protein that binds to newly synthesized MHC class II molecules and promotes their egress from the endoplasmic reticulum. It blocks the peptide-binding site on nascent MHC class II molecules and targets Ii–MHC class II complexes to late endosomal and lysosomal antigen-processing compartments.

Multivesicular bodies

(MVBs). Forms of late endosomes that contain numerous intraluminal vesicles. MVBs can either fuse with lysosomes (degrading the intraluminal vesicles and associated cargo proteins) or with the plasma membrane (releasing the intracellular vesicles from the cell in the form of exosomes).

Macropinocytosis

A nonspecific endocytosis pathway that facilitates the uptake of extracellular material that can vary in size from small molecules to intact cells. Plasma membrane ruffles entrap extracellular material and the resulting macropinosomes internalize and deliver their cargo to the endosomal–lysosomal pathway.

Clathrin-mediated endocytosis

The specific uptake of extracellular material that binds to membrane receptors and enters the cell through clathrin-coated vesicles. Integral membrane proteins directly bind to clathrin-associated adaptor molecules to facilitate their uptake.

Plasmacytoid DCs

Immature dendritic cells (DCs) with a morphology that resembles that of plasma cells. Plasmacytoid DCs produce large amounts of type I interferons in response to viral infection.

Cross-presentation

The process by which antigen-presenting cells (APCs) load peptides that are derived from extracellular antigens onto MHC class I molecules. Cross-presentation is essential for the initiation of immune responses to pathogens that do not infect APCs.

Macroautophagy

A process by which intracellular proteins, organelles and invading microorganisms are encapsulated in cytosolic vacuoles. These vacuoles (known as autophagosomes) fuse with lysosomes and degrade encapsulated cargo for antigen presentation. Bulk cytoplasmic autophagy occurs as a starvation response.

Immunological synapse

A junctional structure that is formed at the interface between T cells and target cells (including antigen-presenting cells). The molecular organization within this structure concentrates signalling molecules and directs the release of cytokines and lytic granules towards the target cell.

Follicular DCs

Specialized non-haematopoietic stromal cells that reside in the lymphoid follicles and germinal centres. These dendritic cells (DCs) have long dendrites and carry intact antigens on their surface. They are crucial for the optimal selection of B cells that produce antigen-binding antibodies.

Lipid rafts

Structures that arise from phase separation of different plasma membrane lipids as a result of their physical properties. This results in the formation of distinct and stable lipid domains in membranes, which might provide a platform for membrane-associated protein organization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roche, P., Furuta, K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol 15, 203–216 (2015). https://doi.org/10.1038/nri3818

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3818

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing