Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New insights into the T cell synapse from single molecule techniques

Key Points

  • Single molecule methods are leading to advances in our understanding of immune cell activation, but different interpretations of the cutting-edge data can also trigger controversies.

  • Probing single T cell receptor (TCR)–peptide–MHC bonds at early time points has led to the discovery that the two-dimensional on-rate is a crucial parameter that amplifies apparently small chemical differences between different ligand–receptor interactions.

  • Measuring single TCR–peptide–MHC interactions using fluorescence resonance energy transfer reveals that cytoskeletal force increases the off-rate by approximately tenfold, further emphasizing the importance of efficient peptide–MHC capture.

  • Electron microscopy and super-resolution fluorescence microscopy reveal that the TCR and the adaptor protein linker for activation of T cells (LAT) are organized into protein islands in a protein-poor lipid sea and that collisions between TCR+ and LAT+ islands initiate signalling.

  • By contrast, time-lapse and super-resolution fluorescence microscopy suggest that TCR clusters in the plasma membrane interact in trans with LAT in sub-synaptic vesicles to initiate signalling.

  • Mutations in a putative TCR dimer interface impair central supramolecular activation cluster (cSMAC) formation, a TSG101-dependent process that might transfer nucleic acid messages from T cells to antigen-presenting cells.

Abstract

T cell activation depends on extracellular ligation of the T cell receptor (TCR) by peptide–MHC complexes in a synapse between the T cell and an antigen-presenting cell. The process then requires the assembly of signalling complexes between the TCR and the adaptor protein linker for activation of T cells (LAT), and subsequent filamentous actin (F-actin)-dependent TCR cluster formation. Recent progress in each of these areas, made possible by the emergence of new techniques, has forced us to rethink our assumptions and consider some radical new models. These describe the receptor interaction parameters that control T cell responses and the mechanism by which LAT is recruited to the TCR signalling machinery. This is an exciting time in T cell biology, and further innovation in imaging and genomics is likely to lead to a greater understanding of how T cells are activated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the immunological synapse.
Figure 2: TCR dimerization.
Figure 3: Two views of TCR+ and LAT+ clusters.
Figure 4: Model for how F-actin can promote a fast TCR on-rate.

Similar content being viewed by others

References

  1. Irvine, D. J., Purbhoo, M. A., Krogsgaard, M. & Davis, M. M. Direct observation of ligand recognition by T cells. Nature 419, 845–849 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Huang, J. et al. The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature 464, 932–936 (2010). This paper used micromanipulation of T cells and peptide–MHC-coated erythrocyte probes to determine 2D kinetic rates for the formation of initial TCR–peptide–MHC interactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huppa, J. B. et al. TCR–peptide–MHC interactions in situ show accelerated kinetics and increased affinity. Nature 463, 963–967 (2010). This paper used single molecule FRET to determine that an active mechanism increases the off-rate for the TCR–peptide–MHC interaction in an immunological synapse.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lillemeier, B. F. et al. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nature Immunol. 11, 90–96 (2010). This paper used electron microscopy, PALM and FCS measurements to support a model of TCR+ and LAT+ protein islands.

    Article  CAS  Google Scholar 

  5. Purbhoo, M. A. et al. Dynamics of subsynaptic vesicles and surface microclusters at the immunological synapse. Sci. Signal. 3, ra36 (2010). This study used confocal microscopy to support a model in which LAT-containing vesicles dock with TCR complexes to form signalling complexes required for early TCR signalling.

    Article  PubMed  CAS  Google Scholar 

  6. Williamson, D. J. et al. Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nature Immunol. 12, 655–662 (2011). This study used PALM to determine the location of LAT in T cells responding to antigen receptor stimulation. Novel data analysis allowed the differentiation of plasma membrane versus vesicular populations of LAT, supporting a role for vesicular LAT in signalling.

    Article  CAS  Google Scholar 

  7. Mittelbrunn, M. et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nature Commun. 2, 282 (2011). This study shows that T cell-derived exosomes contain microRNAs that modulate B cell gene and protein expression on transfer. Support was provided for exosome transfer through the immunological synapse.

    Article  CAS  Google Scholar 

  8. Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Dustin, M. L. et al. A novel adapter protein orchestrates receptor patterning and cytoskeletal polarity in T cell contacts. Cell 94, 667–677 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Fooksman, D. R. et al. Functional anatomy of T cell activation and synapse formation. Annu. Rev. Immunol. 28, 79–105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dustin, M. L. & Long, E. O. Cytotoxic immunological synapses. Immunol. Rev. 235, 24–34 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dustin, M. L. Hunter to gatherer and back: immunological synapses and kinapses as variations on the theme of amoeboid locomotion. Annu. Rev. Cell Dev. Biol. 24, 577–596 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Kanchanawong, P. et al. Nanoscale architecture of integrin-based cell adhesions. Nature 468, 580–584 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Krogsgaard, M. et al. Agonist/endogenous peptide–MHC heterodimers drive T cell activation and sensitivity. Nature 434, 238–243 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Daniels, M. A. et al. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444, 724–729 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Springer, T. A. Adhesion receptors of the immune system. Nature 346, 425–434 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Diehn, M. et al. Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation. Proc. Natl Acad. Sci. USA 99, 11796–11801 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krummel, M. F. & Allison, J. P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med. 182, 459–465 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Blackburn, S. D. et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nature Immunol. 10, 29–37 (2009).

    Article  CAS  Google Scholar 

  21. Sharpe, A. H. & Freeman, G. J. The B7–CD28 superfamily. Nature Rev. Immunol. 2, 116–126 (2002).

    Article  CAS  Google Scholar 

  22. Artyomov, M. N., Lis, M., Devadas, S., Davis, M. M. & Chakraborty, A. K. CD4 and CD8 binding to MHC molecules primarily acts to enhance Lck delivery. Proc. Natl Acad. Sci. USA 107, 16916–16921 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reth, M. Antigen receptor tail clue. Nature 338, 383–384 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Nika, K. et al. Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. Immunity 32, 766–777 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Deindl, S., Kadlecek, T. A., Cao, X., Kuriyan, J. & Weiss, A. Stability of an autoinhibitory interface in the structure of the tyrosine kinase ZAP-70 impacts T cell receptor response. Proc. Natl Acad. Sci. USA 106, 20699–20704 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Choudhuri, K., Wiseman, D., Brown, M. H., Gould, K. & van der Merwe, P. A. T-cell receptor triggering is critically dependent on the dimensions of its peptide–MHC ligand. Nature 436, 578–582 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Mingueneau, M. et al. Loss of the LAT adaptor converts antigen-responsive T cells into pathogenic effectors that function independently of the T cell receptor. Immunity 31, 197–208 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Varma, R., Campi, G., Yokosuka, T., Saito, T. & Dustin, M. L. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25, 117–127 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang, J. et al. CD28 plays a critical role in the segregation of PKCθ within the immunologic synapse. Proc. Natl Acad. Sci. USA 99, 9369–9373 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thome, M., Charton, J. E., Pelzer, C. & Hailfinger, S. Antigen receptor signaling to NF-κB via CARMA1, BCL10, and MALT1. Cold Spring Harb. Perspect. Biol. 2, a003004 (2010).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Vardhana, S., Choudhuri, K., Varma, R. & Dustin, M. L. Essential role of ubiquitin and TSG101 protein in formation and function of the central supramolecular activation cluster. Immunity 32, 531–540 (2010). This study demonstrates the role of TSG101 in signal termination in TCR microclusters and cSMAC formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Krummel, M. F. & Macara, I. Maintenance and modulation of T cell polarity. Nature Immunol. 7, 1143–1149 (2006).

    Article  CAS  Google Scholar 

  33. Burkhardt, J. K., Carrizosa, E. & Shaffer, M. H. The actin cytoskeleton in T cell activation. Annu. Rev. Immunol. 26, 233–259 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Ilani, T., Vasiliver-Shamis, G., Vardhana, S., Bretscher, A. & Dustin, M. L. T cell antigen receptor signaling and immunological synapse stability require myosin IIA. Nature Immunol. 10, 531–539 (2009).

    Article  CAS  Google Scholar 

  35. Smith, A. et al. A talin-dependent LFA-1 focal zone is formed by rapidly migrating T lymphocytes. J. Cell Biol. 170, 141–151 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nolz, J. C. et al. WAVE2 regulates high-affinity integrin binding by recruiting vinculin and talin to the immunological synapse. Mol. Cell. Biol. 27, 5986–6000 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cannon, J. L. & Burkhardt, J. K. Differential roles for Wiskott-Aldrich syndrome protein in immune synapse formation and IL-2 production. J. Immunol. 173, 1658–1662 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Husson, J., Chemin, K., Bohineust, A., Hivroz, C. & Henry, N. Force generation upon T cell receptor engagement. PLoS ONE 6, e19680 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stinchcombe, J. C., Majorovits, E., Bossi, G., Fuller, S. & Griffiths, G. M. Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443, 462–465 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Huse, M., Lillemeier, B. F., Kuhns, M. S., Chen, D. S. & Davis, M. M. T cells use two directionally distinct pathways for cytokine secretion. Nature Immunol. 7, 247–255 (2006).

    Article  CAS  Google Scholar 

  41. Hashimoto-Tane, A. et al. Dynein-driven transport of T cell receptor microclusters regulates immune synapse formation and T cell activation. Immunity 34, 919–931 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Schnyder, T. et al. B cell receptor-mediated antigen gathering requires ubiquitin ligase Cbl and adaptors Grb2 and Dok-3 to recruit dynein to the signaling microcluster. Immunity 34, 905–918 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Sawada, Y. et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127, 1015–1026 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. del Rio, A. et al. Stretching single talin rod molecules activates vinculin binding. Science 323, 638–641 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Kim, S. T. et al. The αβ T cell receptor is an anisotropic mechanosensor. J. Biol. Chem. 284, 31028–31037 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, Y. C. et al. Cutting edge: mechanical forces acting on T cells immobilized via the TCR complex can trigger TCR signaling. J. Immunol. 184, 5959–5963 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Beinke, S. et al. Proline-rich tyrosine kinase-2 is critical for CD8 T-cell short-lived effector fate. Proc. Natl Acad. Sci. USA 107, 16234–16239 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Freiberg, B. A. et al. Staging and resetting T cell activation in SMACs. Nature Immunol. 3, 911–917 (2002).

    Article  CAS  Google Scholar 

  49. Anikeeva, N. et al. Distinct role of lymphocyte function-associated antigen-1 in mediating effective cytolytic activity by cytotoxic T lymphocytes. Proc. Natl Acad. Sci. USA 102, 6437–6442 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zanin-Zhorov, A. et al. Protein kinase C-θ mediates negative feedback on regulatory T cell function. Science 328, 372–376 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McCarthy, C. et al. The length of lipids bound to human CD1d molecules modulates the affinity of NKT cell TCR and the threshold of NKT cell activation. J. Exp. Med. 204, 1131–1144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu, D. et al. Integrin-dependent organization and bidirectional vesicular traffic at cytotoxic immune synapses. Immunity 31, 99–109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brossard, C. et al. Multifocal structure of the T cell–dendritic cell synapse. Eur. J. Immunol. 35, 1741–1753 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Tseng, S. Y., Waite, J. C., Liu, M., Vardhana, S. & Dustin, M. L. T cell–dendritic cell immunological synapses contain TCR-dependent CD28–CD80 clusters that recruit protein kinase Cθ. J. Immunol. 181, 4852–4863 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Yokosuka, T. et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nature Immunol. 6, 1253–1262 (2005).

    Article  CAS  Google Scholar 

  56. Kaizuka, Y., Douglass, A. D., Varma, R., Dustin, M. L. & Vale, R. D. Mechanisms for segregating T cell receptor and adhesion molecules during immunological synapse formation in Jurkat T cells. Proc. Natl Acad. Sci. USA 104, 20296–20301 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Biggs, M. J., Milone, M. C., Santos, L. C., Gondarenko, A. & Wind, S. J. High-resolution imaging of the immunological synapse and T-cell receptor microclustering through microfabricated substrates. J. R. Soc. Interface 8, 1462–1471 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Call, M. E., Wucherpfennig, K. W. & Chou, J. J. The structural basis for intramembrane assembly of an activating immunoreceptor complex. Nature Immunol. 11, 1023–1029 (2010).

    Article  CAS  Google Scholar 

  59. Kuhns, M. S. et al. Evidence for a functional sidedness to the αβTCR. Proc. Natl Acad. Sci. USA 107, 5094–5099 (2010). This study used a screening method for dimerization to map dimer interfaces in the TCR–CD3 complex and define a putative dimerization interface on the TCR with a role in TCR centralization in the immunological synapse.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jorgensen, J. L., Reay, P. A., Ehrich, E. W. & Davis, M. M. Molecular components of T-cell recognition. Annu. Rev. Immunol. 10, 835–873 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Kuhns, M. S., Davis, M. M. & Garcia, K. C. Deconstructing the form and function of the TCR/CD3 complex. Immunity 24, 133–139 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Call, M. E., Pyrdol, J. & Wucherpfennig, K. W. Stoichiometry of the T-cell receptor–CD3 complex and key intermediates assembled in the endoplasmic reticulum. EMBO J. 23, 2348–2357 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Manz, B. N., Jackson, B. L., Petit, R. S., Dustin, M. L. & Groves, J. T-cell triggering thresholds are modulated by the number of antigen within individual T-cell receptor clusters. Proc. Natl Acad. Sci. USA 108, 9089–9094 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Call, M. E., Pyrdol, J., Wiedmann, M. & Wucherpfennig, K. W. The organizing principle in the formation of the T cell receptor–CD3 complex. Cell 111, 967–979 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Call, M. E. et al. The structure of the ζζ transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell 127, 355–368 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Qi, S., Krogsgaard, M., Davis, M. M. & Chakraborty, A. K. Molecular flexibility can influence the stimulatory ability of receptor–ligand interactions at cell–cell junctions. Proc. Natl Acad. Sci. USA 103, 4416–4421 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yokosuka, T. et al. Spatiotemporal regulation of T cell costimulation by TCR–CD28 microclusters and protein kinase Cθ translocation. Immunity 29, 589–601 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shaw, A. S. & Dustin, M. L. Making the T cell receptor go the distance: a topological view of T cell activation. Immunity 6, 361–369 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Yokosuka, T. et al. Spatiotemporal basis of CTLA-4 costimulatory molecule-mediated negative regulation of T cell activation. Immunity 33, 326–339 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Schneider, H. et al. Reversal of the TCR stop signal by CTLA-4. Science 313, 1972–1975 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Schafer, L. V. et al. Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes. Proc. Natl Acad. Sci. USA 108, 1343–1348 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kusumi, A. et al. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34, 351–378 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Andrews, N. L. et al. Actin restricts FcɛRI diffusion and facilitates antigen-induced receptor immobilization. Nature Cell Biol. 10, 955–963 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Treanor, B., Depoil, D., Bruckbauer, A. & Batista, F. D. Dynamic cortical actin remodeling by ERM proteins controls BCR microcluster organization and integrity. J. Exp. Med. 208, 1055–1068 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. James, J. R. et al. Single-molecule level analysis of the subunit composition of the T cell receptor on live T cells. Proc. Natl Acad. Sci. USA 104, 17662–17667 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Meilhac, N. & Destainville, N. Clusters of proteins in biomembranes: insights into the roles of interaction potential shapes and of protein diversity. J. Phys. Chem. B 115, 7190–7199 (2011). This study presents a general thermodynamic process for the sorting of membrane proteins into nanodomains and islands.

    Article  CAS  PubMed  Google Scholar 

  77. Fahmy, T. M., Bieler, J. G., Edidin, M. & Schneck, J. P. Increased TCR avidity after T cell activation: a mechanism for sensing low-density antigen. Immunity 14, 135–143 (2001).

    CAS  PubMed  Google Scholar 

  78. Schamel, W. W. et al. Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response. J. Exp. Med. 202, 493–503 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Anikeeva, N. et al. Quantum dot/peptide–MHC biosensors reveal strong CD8-dependent cooperation between self and viral antigens that augment the T cell response. Proc. Natl Acad. Sci. USA 103, 16846–16851 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jain, A. et al. Probing cellular protein complexes using single-molecule pull-down. Nature 473, 484–488 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wilson, B. S. et al. Markers for detergent-resistant lipid rafts occupy distinct and dynamic domains in native membranes. Mol. Biol. Cell 15, 2580–2592 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rajendran, L. & Simons, K. Lipid rafts and membrane dynamics. J. Cell Sci. 118, 1099–1102 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Varma, R. & Mayor, S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394, 798–801 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Prior, I. A., Muncke, C., Parton, R. G. & Hancock, J. F. Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J. Cell Biol. 160, 165–170 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Xavier, R., Brennan, T., Li, Q., McCormack, C. & Seed, B. Membrane compartmentation is required for efficient T cell activation. Immunity 8, 723–732 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Nguyen, K., Sylvain, N. R. & Bunnell, S. C. T cell costimulation via the integrin VLA-4 inhibits the actin-dependent centralization of signaling microclusters containing the adaptor SLP-76. Immunity 28, 810–821 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Aivazian, D. & Stern, L. J. Phosphorylation of T cell receptor ζ is regulated by a lipid dependent folding transition. Nature Struct. Biol. 7, 1023–1026 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Xu, C. et al. Regulation of T cell receptor activation by dynamic membrane binding of the CD3ɛ cytoplasmic tyrosine-based motif. Cell 135, 702–713 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tolar, P., Sohn, H. W. & Pierce, S. K. The initiation of antigen-induced B cell antigen receptor signaling viewed in living cells by fluorescence resonance energy transfer. Nature Immunol. 6, 1168–1176 (2005).

    Article  CAS  Google Scholar 

  90. Das, J. et al. Digital signaling and hysteresis characterize Ras activation in lymphoid cells. Cell 136, 337–351 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Carrasco, S. & Merida, I. Diacylglycerol-dependent binding recruits PKCθ and RasGRP1 C1 domains to specific subcellular localizations in living T lymphocytes. Mol. Biol. Cell 15, 2932–2942 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rincon, E. et al. Translocation dynamics of sorting nexin 27 in activated T cells. J. Cell Sci. 124, 776–788 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Mor, A. et al. The lymphocyte function-associated antigen-1 receptor costimulates plasma membrane Ras via phospholipase D2. Nature Cell Biol. 9, 713–719 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Aguado, R., Martin-Blanco, N., Caraballo, M. & Canelles, M. The endocytic adaptor Numb regulates thymus size by modulating pre-TCR signaling during asymmetric division. Blood 116, 1705–1714 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Shtengel, G. et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl Acad. Sci. USA 106, 3125–3130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bunnell, S. C., Kapoor, V., Trible, R. P., Zhang, W. & Samelson, L. E. Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT. Immunity 14, 315–329 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Bunnell, S. C. et al. T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J. Cell Biol. 158, 1263–1275 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Barda-Saad, M. et al. Dynamic molecular interactions linking the T cell antigen receptor to the actin cytoskeleton. Nature Immunol. 6, 80–89 (2005).

    Article  CAS  Google Scholar 

  99. Bell, G. I. Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978).

    Article  CAS  PubMed  Google Scholar 

  100. Dustin, M. L., Ferguson, L. M., Chan, P. Y., Springer, T. A. & Golan, D. E. Visualization of CD2 interaction with LFA-3 and determination of the two-dimensional dissociation constant for adhesion receptors in a contact area. J. Cell Biol. 132, 465–474 (1996).

    Article  CAS  PubMed  Google Scholar 

  101. Huse, M. et al. Spatial and temporal dynamics of T cell receptor signaling with a photoactivatable agonist. Immunity 27, 76–88 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Sims, T. N. et al. Opposing effects of PKCθ and WASp on symmetry breaking and relocation of the immunological synapse. Cell 129, 773–785 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Jacobelli, J., Chmura, S. A., Buxton, D. B., Davis, M. M. & Krummel, M. F. A single class II myosin modulates T cell motility and stopping, but not synapse formation. Nature Immunol. 5, 531–538 (2004).

    Article  CAS  Google Scholar 

  104. Jacobelli, J., Bennett, F. C., Pandurangi, P., Tooley, A. J. & Krummel, M. F. Myosin-IIA and ICAM-1 regulate the interchange between two distinct modes of T cell migration. J. Immunol. 182, 2041–2050 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Saito, T., Yokosuka, T. & Hashimoto-Tane, A. Dynamic regulation of T cell activation and co-stimulation through TCR-microclusters. FEBS Lett. 584, 4865–4871 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Lee, K. H. et al. The immunological synapse balances T cell receptor signaling and degradation. Science 302, 1218–1222 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Wollert, T., Wunder, C., Lippincott-Schwartz, J. & Hurley, J. H. Membrane scission by the ESCRT-III complex. Nature 458, 172–177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Qureshi, O. S. et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332, 600–603 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biol. 9, 654–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Peters, P. J., Geuze, H. J., van der Donk, H. A. & Borst, J. A new model for lethal hit delivery by cytotoxic T lymphocytes. Immunol. Today 11, 28–32 (1990).

    Article  CAS  PubMed  Google Scholar 

  111. Oddos, S. et al. High-speed high-resolution imaging of intercellular immune synapses using optical tweezers. Biophys. J. 95, L66–L68 (2008).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  112. Yang, J. & Reth, M. Oligomeric organization of the B-cell antigen receptor on resting cells. Nature 467, 465–469 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Shaffer, M. H. et al. Ezrin and moesin function together to promote T cell activation. J. Immunol. 182, 1021–1032 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Reichardt, P. et al. Naive B-cells generate regulatory T-cells in the presence of a mature immunological synapse. Blood 110, 1519–1529 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Carrasco, Y. R. & Batista, F. D. B-cell activation by membrane-bound antigens is facilitated by the interaction of VLA-4 with VCAM-1. EMBO J. 25, 889–899 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gross, C. C., Brzostowski, J. A., Liu, D. & Long, E. O. Tethering of intercellular adhesion molecule on target cells is required for LFA-1-dependent NK cell adhesion and granule polarization. J. Immunol. 185, 2918–2926 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Kohler, K. et al. Matched sizes of activating and inhibitory receptor/ligand pairs are required for optimal signal integration by human natural killer cells. PLoS ONE 5, e15374 (2010).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  118. Alakoskela, J. M. et al. Mechanisms for size-dependent protein segregation at immune synapses assessed with molecular rulers. Biophys. J. 100, 2865–2874 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Goodridge, H. S. et al. Activation of the innate immune receptor Dectin-1 upon formation of a 'phagocytic synapse'. Nature 472, 471–475 (2011). This study shows that dectin 1 signalling complexes that exclude CD45 induce phagocytosis in response to particulate β-glucans, but not soluble β-glucans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Varma, K. Choudhuri, S. Kumari and N. Destainville for helpful discussions. This work was supported by US National Institutes of Health grants R01 AI043549, P01 AI045757 and PN2 EY016586.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Dustin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Authors' homepage

Glossary

Supramolecular activation clusters

(SMACs). During T cell activation, TCRs accumulate into a central cluster termed the central SMAC (cSMAC) at the interface between the T cell and the antigen-presenting cell. The cSMAC is surrounded by an LFA1 ring termed the peripheral SMAC (pSMAC) in a bulls-eye manner, and this characteristic receptor organization (the cSMAC surrounded by the pSMAC) constitutes the mature immunological synapse. Large proteins are excluded from the mature immunological synapse and form the distal SMAC (dSMAC).

Immunoreceptor tyrosine-based activation motifs

(ITAMs). The ITAM is an amino acid sequence — Yxx(I/L)x6–12Yxx(I/L) — found in a large number of receptors and adaptor proteins. After phosphorylation, ITAMs function as docking sites for proteins that contain tandem SH2 domains, such as ZAP70.

ESCRT proteins

(Endosomal sorting complex required for transport proteins). The ESCRT proteins coordinate the degradation of ubiquitylated substrates through multivesicular bodies. There are four ESCRT complexes (0, I, II and III) with unique roles in signal termination and receptor degradation.

Polarity network

Evolutionarily conserved cytoplasmic proteins that have been defined using genetic screens for gene products that are required for cell polarity (for example, apical versus basal and front versus back).

Sub-synaptic vesicles

Endosomal membranes and other vesicular structures less than 200 nm below the plasma membrane in the immunological synapse.

Lipid rafts

Lipid domains that are enriched in cholesterol, sphingolipids and phospholipids with saturated acyl chains. The lipid phase of these regions is referred to as 'liquid ordered', in contrast to the liquid-disordered domains that characterize the bulk of biological membranes. Lipid rafts are small (70 nm across) and dynamic.

Cytoskeletal corrals

Membrane regions surrounded by barriers that are formed by proteins associated with the membrane cytoskeleton. These barriers limit the diffusion of proteins within the plasma membrane.

Cortical filament

A fibre composed of actin and other cytoskeletal proteins that is present in close proximity to the cell membrane. These filaments influence membrane geometry and the behaviour of proteins in the membrane.

Actin rocket

Actin polymerization induced by a particle such as a virus, bacterium or vesicle can propel the object in the cytoplasm with a tail of polymerized actin that is reminiscent of a rocket.

Glycocalyx

An extracellular polymer composed of glycoproteins that covers the outside of eukaryotic cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dustin, M., Depoil, D. New insights into the T cell synapse from single molecule techniques. Nat Rev Immunol 11, 672–684 (2011). https://doi.org/10.1038/nri3066

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3066

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing