Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

T follicular helper cells in space-time

Key Points

  • T follicular helper (TFH) cells are a phenotypically distinct subset of activated T cells that specializes in promoting germinal centre reactions that support B cell proliferation, somatic hypermutation and class-switch recombination.

  • TFH cell development is regulated by a suite of transcriptional factors in conjunction with the master controller B cell lymphoma 6 (BCL-6).

  • The classical cytokine-centric 'instructional' paradigm of T helper cell differentiation cannot fully explain how TFH cells develop and function.

  • Key features of TFH cells are dictated by their dynamic interactions with cognate and bystander B cells and shaped by the tissue environment they traverse during distinct spatiotemporal stages of T cell-dependent B cell responses.

  • Chance escape from an inhibitory tissue milieu and chance encounter with a conducive environment underlies the development of TFH cells.

  • TFH cells contribute to the development of memory CD4+ T cell populations, and progression through an intermediate TFH cell stage may even be the predominant pathway for the formation of central memory T cell populations.

  • A model of default TFH cell development with inherent spatiotemporal stochasticity is proposed.

Abstract

T follicular helper (TFH) cells play a crucial part in the development of humoral immunity by controlling the formation of, and the cellular reactions that occur in, germinal centres. Within these organized lymphoid tissue microstructures, B cells proliferate and somatically mutate to produce long-lived, high-affinity plasma cells and memory B cells. TFH cells exhibit unique molecular, cellular and tissue-dynamic features that are integral to their development and function but that are not necessarily compatible with the classical paradigm of effector CD4+ T cell differentiation. Here, I discuss recent advances in TFH cell biology and their implications for our understanding of T cell differentiation and memory in humoral immunity from spatiotemporal and functional perspectives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three phases of a T cell-dependent B cell response.
Figure 2: Germinal centre T cell–B cell interactions and intercellular positive feedback.
Figure 3: The follicular niche for TFH cell conditioning.
Figure 4: Default TFH cell development with spatiotemporal stochasticity.

Similar content being viewed by others

References

  1. Corti, D. & Lanzavecchia, A. Broadly neutralizing antiviral antibodies. Annu. Rev. Immunol. 31, 705–742 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Amanna, I. J., Carlson, N. E. & Slifka, M. K. Duration of humoral immunity to common viral and vaccine antigens. N. Engl. J. Med. 357, 1903–1915 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Jacobson, E. B., Caporale, L. H. & Thorbecke, G. J. Effect of thymus cell injections on germinal center formation in lymphoid tissues of nude (thymusless) mice. Cell. Immunol. 13, 416–430 (1974).

    Article  CAS  PubMed  Google Scholar 

  4. Mitchison, N. A. T-Cell–B-cell cooperation. Nat. Rev. Immunol. 4, 308–312 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Forster, R., Emrich, T., Kremmer, E. & Lipp, M. Expression of the G-protein–coupled receptor BLR1 defines mature, recirculating B cells and a subset of T-helper memory cells. Blood 84, 830–840 (1994).

    CAS  PubMed  Google Scholar 

  6. Forster, R. et al. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87, 1037–1047 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1552 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schaerli, P. et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192, 1553–1562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Campbell, D. J., Kim, C. H. & Butcher, E. C. Separable effector T cell populations specialized for B cell help or tissue inflammation. Nat. Immunol. 2, 876–881 (2001). The first in vivo characterization of helper T cells specialized in promoting the B cell response.

    Article  CAS  PubMed  Google Scholar 

  10. Chtanova, T. et al. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J. Immunol. 173, 68–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Kim, C. H. et al. Unique gene expression program of human germinal center T helper cells. Blood 104, 1952–1960 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Haynes, N. M. et al. Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. J. Immunol. 179, 5099–5108 (2007). The first study to correlate a PD1hi phenotype of activated T H cells with GC localization in the lymphoid tissue during a primary response.

    Article  CAS  PubMed  Google Scholar 

  13. Akiba, H. et al. The role of ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo. J. Immunol. 175, 2340–2348 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Dorfman, D. M., Brown, J. A., Shahsafaei, A. & Freeman, G. J. Programmed death-1 (PD-1) is a marker of germinal center-associated T cells and angioimmunoblastic T-cell lymphoma. Am. J. Surg. Pathol. 30, 802–810 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nurieva, R. I. et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29, 138–149 (2008). The first study to probe a genetic requirement for T FH cell development using a large suite of mutant mice, providing the initial evidence that T FH cells are independent of T H 1, T H 2, or T H 17 cell development and require ICOSL expression by the B cell compartment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nurieva, R. I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009). This study, together with references 17 and 18, establish that BCL-6 is required for T FH cell development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Johnston, R. J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009). See note to reference 16. In addition, this study reveals a striking antagonism between BCL-6 and BLIMP1 in regulating T FH cell development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yu, D. et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31, 457–468 (2009). See note to reference 16. In addition, this study provides the most rigorous evidence that BCL-6 is required for T FH cell development in a T cell-intrinsic and gene dose-dependent manner.

    Article  CAS  PubMed  Google Scholar 

  19. Crotty, S. Follicular Helper CD4 T Cells (TFH). Annu. Rev. Immunol. 29, 621–663 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Dodge, I. L., Carr, M. W., Cernadas, M. & Brenner, M. B. IL-6 production by pulmonary dendritic cells impedes Th1 immune responses. J. Immunol. 170, 4457–4464 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Suto, A. et al. Development and characterization of IL-21-producing CD4+ T cells. J. Exp. Med. 205, 1369–1379 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vogelzang, A. et al. A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity 29, 127–137 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Eddahri, F. et al. Interleukin-6/STAT3 signaling regulates the ability of naive T cells to acquire B-cell help capacities. Blood 113, 2426–2433 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Linterman, M. A. et al. IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J. Exp. Med. 207, 353–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zotos, D. et al. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J. Exp. Med. 207, 365–378 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Eto, D. et al. IL-21 and IL-6 are critical for different aspects of B cell immunity and redundantly induce optimal follicular helper CD4 T cell (Tfh) differentiation. PLoS ONE 6, e17739 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deenick, E. K. et al. Follicular helper T cell differentiation requires continuous antigen presentation that is independent of unique B cell signaling. Immunity 33, 241–253 (2010). The study provides strong evidence that development of T FH cells (that is, defined as CXCR5+PD1+ cells) requires continuous exposure to antigen and does not involve unique inductional signals from the cognate B cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goenka, R. et al. Cutting edge: dendritic cell-restricted antigen presentation initiates the follicular helper T cell program but cannot complete ultimate effector differentiation. J. Immunol. 187, 1091–1095 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Choi, Y. S. et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34, 1–15 (2011). This study proposes the first cellular model that can coherently explain how ICOS is required for the GC response by promoting T FH cell development, although experimental evidence taken to support an ICOS→BCL-6→CXCR5 instructional pathway is open to alternative interpretations.

    Article  CAS  Google Scholar 

  30. Bauquet, A. T. et al. The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat. Immunol. 10, 167–175 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Laurence, A. et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26, 371–381 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Ballesteros-Tato, A. et al. Interleukin-2 inhibits germinal center formation by limiting T follicular helper cell differentiation. Immunity 36, 847–856 (2012). This study demonstrates that IL-2 signalling suppresses the development of T FH cells in a manner that does not require T reg cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Johnston, R. J., Choi, Y., Diamond, J. A., Yang, J. A. & Crotty, S. STAT5 is a potent negative regulator of TFH cell differentiation. J. Exp. Med. 209, 243–250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nurieva, R. I. et al. STAT5 negatively regulates T follicular helper (Tfh) cell generation and function. J. Biol. Chem. 287, 11234–11239 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McDonald, P. W. et al. IL-7 signalling represses Bcl-6 and the TFH gene program. Nat. Commun. 7, 10285 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu, X., Nurieva, R. I. & Dong, C. Transcriptional regulation of follicular T-helper (Tfh) cells. Immunol. Rev. 252, 139–145 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ise, W. et al. The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells. Nat. Immunol. 12, 536–543 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bollig, N. et al. Transcription factor IRF4 determines germinal center formation through follicular T-helper cell differentiation. Proc. Natl Acad. Sci. USA 109, 8664–8669 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Choi, Y. S., Eto, D., Yang, J. A., Lao, C. & Crotty, S. Cutting edge: STAT1 is required for IL-6-mediated Bcl6 induction for early follicular helper cell differentiation. J. Immunol. 190, 3049–3053 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ray, J. P. et al. Transcription factor STAT3 and type I interferons are corepressive insulators for differentiation of follicular helper and T helper 1 cells. Immunity 40, 367–377 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ma, C. S. et al. Functional STAT3 deficiency compromises the generation of human T follicular helper cells. Blood 119, 3997–4008 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schmitt, N. et al. IL-12 receptor β1 deficiency alters in vivo T follicular helper cell response in humans. Blood 121, 3375–3385 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu, L. et al. The transcription factor TCF-1 initiates the differentiation of T(FH) cells during acute viral infection. Nat. Immunol. 16, 991–999 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Choi, Y. S. et al. LEF-1 and TCF-1 orchestrate TFH differentiation by regulating differentiation circuits upstream of the transcriptional repressor Bcl6. Nat. Immunol. 16, 980–990 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu, T. et al. TCF1 is required for the T follicular helper cell response to viral infection. Cell Rep. 12, 2099–2110 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xiao, N. et al. The E3 ubiquitin ligase Itch is required for the differentiation of follicular helper T cells. Nat. Immunol. 15, 657–666 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stone, E. L. et al. ICOS coreceptor signaling inactivates the transcription factor FOXO1 to promote Tfh cell differentiation. Immunity 42, 239–251 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, H. et al. The transcription factor Foxp1 is a critical negative regulator of the differentiation of follicular helper T cells. Nat. Immunol. 15, 667–675 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, X. et al. Transcription factor achaete-scute homologue 2 initiates follicular T-helper-cell development. Nature 507, 513–518 (2014). This study identifies ASCL2 as a specific transcription factor that directly binds to and upregulates expression of Cxcr5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Weber, J. P. et al. ICOS maintains the T follicular helper cell phenotype by down-regulating Kruppel-like factor 2. J. Exp. Med. 212, 217–233 (2015). An extensive study of the role of ICOS in T FH cell development and maintenance, showing that continuous ICOS signalling in the follicle is important for inactivating FOXO1 and KLF2, which induces T FH cell-incompatible localization properties.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee, J. Y. et al. The transcription factor KLF2 restrains CD4+ T follicular helper cell differentiation. Immunity 42, 252–264 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hatzi, K. et al. BCL6 orchestrates Tfh cell differentiation via multiple distinct mechanisms. J. Exp. Med. 212, 539–553 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vinuesa, C. G. & Cyster, J. G. How T cells earn the follicular rite of passage. Immunity 35, 671–680 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Arnold, C. N., Campbell, D. J., Lipp, M. & Butcher, E. C. The germinal center response is impaired in the absence of T cell-expressed CXCR5. Eur. J. Immunol. 37, 100–109 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Liu, X. et al. Genome-wide analysis identifies Bcl6-controlled regulatory networks during T follicular helper cell differentiation. Cell Rep. 14, 1735–1747 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kusam, S., Toney, L. M., Sato, H. & Dent, A. L. Inhibition of Th2 differentiation and GATA-3 expression by BCL-6. J. Immunol. 170, 2435–2441 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Mondal, A., Sawant, D. & Dent, A. L. Transcriptional repressor BCL6 controls Th17 responses by controlling gene expression in both T cells and macrophages. J. Immunol. 184, 4123–4132 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Reinhardt, R. L., Liang, H. E. & Locksley, R. M. Cytokine-secreting follicular T cells shape the antibody repertoire. Nat. Immunol. 10, 385–393 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zaretsky, A. G. et al. T follicular helper cells differentiate from Th2 cells in response to helminth antigens. J. Exp. Med. 206, 991–999 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  60. Yusuf, I. et al. Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150). J. Immunol. 185, 190–202 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hirota, K. et al. Plasticity of Th17 cells in Peyer's patches is responsible for the induction of T cell-dependent IgA responses. Nat. Immunol. 14, 372–379 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ballesteros-Tato, A. et al. T follicular helper cell plasticity shapes pathogenic T helper 2 cell-mediated immunity to inhaled house dust mite. Immunity 44, 259–273 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Morita, R. et al. Human blood CXCR5+CD4+ T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 34, 108–121 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee, S. K. et al. Interferon-γ excess leads to pathogenic accumulation of follicular helper T cells and germinal centers. Immunity 37, 880–892 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Ozaki, K. et al. A critical role for IL-21 in regulating immunoglobulin production. Science 298, 1630–1634 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Mitsdoerffer, M. et al. Proinflammatory T helper type 17 cells are effective B-cell helpers. Proc. Natl Acad. Sci. USA 107, 14292–14297 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Oestreich, K. J. et al. Bcl-6 directly represses the gene program of the glycolysis pathway. Nat. Immunol. 15, 957–964 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, R. & Green, D. R. Metabolic checkpoints in activated T cells. Nat. Immunol. 13, 907–915 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Ray, J. P. et al. The Interleukin-2-mTORc1 kinase axis defines the signaling, differentiation, and metabolism of T helper 1 and follicular B helper T cells. Immunity 43, 690–702 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Crotty, S., Johnston, R. J. & Schoenberger, S. P. Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation. Nat. Immunol. 11, 114–120 (2010). An excellent review of the antagonism between BCL-6 and BLIMP1 in the context of memory formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pepper, M., Pagan, A. J., Igyarto, B. Z., Taylor, J. J. & Jenkins, M. K. Opposing signals from the Bcl6 transcription factor and the interleukin-2 receptor generate T helper 1 central and effector memory cells. Immunity 35, 583–595 (2011). This study shows that, during Listeria monocytogenes infection, cells of central memory features express both CCR7 and CXCR5 and develop in a Bcl-6 and ICOSL-dependent manner, implying there is an intimate relationship between memory T cells and T FH cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Qi, H., Liu, D., Ma, W., Wang, Y. & Yan, H. Bcl-6 controlled TFH polarization and memory: the known unknowns. Curr. Opin. Immunol. 28, 34–41 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Zhu, J., Yamane, H. & Paul, W. E. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28, 445–489 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. O'Shea, J. J. & Paul, W. E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327, 1098–1102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Crotty, S. T follicular helper cell differentiation, function, and roles in disease. Immunity 41, 529–542 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lu, K. T. et al. Functional and epigenetic studies reveal multistep differentiation and plasticity of in vitro-generated and in vivo-derived follicular T helper cells. Immunity 35, 622–632 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. MacLennan, I. C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. MacLennan, I. C. et al. The changing preference of T and B cells for partners as T-dependent antibody responses develop. Immunol. Rev. 156, 53–66 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Victora, G. D. & Nussenzweig, M. C. Germinal centers. Annu. Rev. Immunol. 30, 429–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. van Kooten, C. & Banchereau, J. CD40-CD40 ligand. J. Leukoc. Biol. 67, 2–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Dong, C. et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409, 97–101 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. McAdam, A. J. et al. ICOS is critical for CD40-mediated antibody class switching. Nature 409, 102–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Tafuri, A. et al. ICOS is essential for effective T-helper-cell responses. Nature 409, 105–109 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Crotty, S., Kersh, E. N., Cannons, J., Schwartzberg, P. L. & Ahmed, R. SAP is required for generating long-term humoral immunity. Nature 421, 282–287 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Garside, P. et al. Visualization of specific B and T lymphocyte interactions in the lymph node. Science 281, 96–99 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Cunningham, A. F., Serre, K., Mohr, E., Khan, M. & Toellner, K. M. Loss of CD154 impairs the Th2 extrafollicular plasma cell response but not early T cell proliferation and interleukin-4 induction. Immunology 113, 187–193 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lesley, R., Kelly, L. M., Xu, Y. & Cyster, J. G. Naive CD4 T cells constitutively express CD40L and augment autoreactive B cell survival. Proc. Natl Acad. Sci. USA 103, 10717–10722 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Smith, K. M. et al. Th1 and Th2 CD4+ T cells provide help for B cell clonal expansion and antibody synthesis in a similar manner in vivo. J. Immunol. 165, 3136–3144 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Okada, T. et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. 3, e150 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chan, T. D. et al. Antigen affinity controls rapid T-dependent antibody production by driving the expansion rather than the differentiation or extrafollicular migration of early plasmablasts. J. Immunol. 183, 3139–3149 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Schwickert, T. A. et al. A dynamic T cell-limited checkpoint regulates affinity-dependent B cell entry into the germinal center. J. Exp. Med. 208, 1243–1252 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Qi, H., Cannons, J. L., Klauschen, F., Schwartzberg, P. L. & Germain, R. N. SAP-controlled T-B cell interactions underlie germinal centre formation. Nature 455, 764–769 (2008). This study demonstrates that long-lasting cognate T cell–B cell interactions at the T cell zone–follicle border are promoted by a SAP-dependent signalling process and indicates that GC localization of T FH cells requires such signalling and/or antigen-specific T cell–B cell adhesion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chu, C. et al. SAP-regulated T cell-APC adhesion and ligation-dependent and -independent Ly108-CD3ζ interactions. J. Immunol. 193, 3860–3871 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Chen, Q. et al. A novel ICOS-independent, but CD28- and SAP-dependent, pathway of T cell-dependent, polysaccharide-specific humoral immunity in response to intact Streptococcus pneumoniae versus pneumococcal conjugate vaccine. J. Immunol. 181, 8258–8266 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lee, S. K. et al. B cell priming for extrafollicular antibody responses requires Bcl-6 expression by T cells. J. Exp. Med. 208, 1377–1388 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Allen, C. D., Okada, T., Tang, H. L. & Cyster, J. G. Imaging of germinal center selection events during affinity maturation. Science 315, 528–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Kerfoot, S. M. et al. Germinal center B cell and T follicular helper cell development initiates in the interfollicular zone. Immunity 34, 947–960 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shulman, Z. et al. Dynamic signaling by T follicular helper cells during germinal center B cell selection. Science 345, 1058–1062 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu, D. et al. T-B-cell entanglement and ICOSL-driven feed-forward regulation of germinal centre reaction. Nature 517, 214–218 (2015). This study shows that GC B cells acquire help signals from T FH cells through short, reiterative 'entangled' contacts and that an ICOSL-driven intercellular positive feedback is essential for normal affinity maturation.

    Article  CAS  PubMed  Google Scholar 

  100. Victora, G. D. et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143, 592–605 (2010). By a fate-mapping strategy based on photoactivatable GFP, this study analyses GC B cell dynamics in detail, identifies light zone and dark zonemarkers and provides the strongest evidence for cyclic re-entry model of affinity maturation that obligately depends on T FH cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tarlinton, D. & Good-Jacobson, K. Diversity among memory B cells: origin, consequences, and utility. Science 341, 1205–1211 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Casamayor-Palleja, M., Khan, M. & MacLennan, I. C. A subset of CD4+ memory T cells contains preformed CD40 ligand that is rapidly but transiently expressed on their surface after activation through the T cell receptor complex. J. Exp. Med. 181, 1293–1301 (1995).

    Article  CAS  PubMed  Google Scholar 

  103. Gitlin, A. D., Shulman, Z. & Nussenzweig, M. C. Clonal selection in the germinal centre by regulated proliferation and hypermutation. Nature 509, 637–640 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. MacLennan, I. C. et al. Extrafollicular antibody responses. Immunol. Rev. 194, 8–18 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Ettinger, R., Kuchen, S. & Lipsky, P. E. The role of IL-21 in regulating B-cell function in health and disease. Immunol. Rev. 223, 60–86 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Victora, G. D. et al. Identification of human germinal center light and dark zone cells and their relationship to human B-cell lymphomas. Blood 120, 2240–2248 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Luthje, K. et al. The development and fate of follicular helper T cells defined by an IL-21 reporter mouse. Nat. Immunol. 13, 491–498 (2012). A comprehensive study of T FH cells using the first reporter strain for IL-21.

    Article  CAS  PubMed  Google Scholar 

  108. Suan, D. et al. T follicular helper cells have distinct modes of migration and molecular signatures in naive and memory immune responses. Immunity 42, 704–718 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Chen, G. et al. Regulation of the IL-21 gene by the NF-κB transcription factor c-Rel. J. Immunol. 185, 2350–2359 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Toellner, K. M. et al. T helper 1 (Th1) and Th2 characteristics start to develop during T cell priming and are associated with an immediate ability to induce immunoglobulin class switching. J. Exp. Med. 187, 1193–1204 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Huse, M., Lillemeier, B. F., Kuhns, M. S., Chen, D. S. & Davis, M. M. T cells use two directionally distinct pathways for cytokine secretion. Nat. Immunol. 7, 247–255 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Kupfer, A., Mosmann, T. R. & Kupfer, H. Polarized expression of cytokines in cell conjugates of helper T cells and splenic B cells. Proc. Natl Acad. Sci. USA 88, 775–779 (1991).

    Article  CAS  PubMed  Google Scholar 

  113. Maldonado, R. A., Irvine, D. J., Schreiber, R. & Glimcher, L. H. A role for the immunological synapse in lineage commitment of CD4 lymphocytes. Nature 431, 527–532 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Dustin, M. L., Chakraborty, A. K. & Shaw, A. S. Understanding the structure and function of the immunological synapse. Cold Spring Harb Perspect Biol 2, a002311 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Depoil, D. et al. Immunological synapses are versatile structures enabling selective T cell polarization. Immunity 22, 185–194 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Qi, H. et al. Follicular T-helper cells: controlled localization and cellular interactions. Immunol. Cell Biol. 92, 28–33 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Katz, D. H., Hamaoka, T. & Benacerraf, B. Cell interactions between histoincompatible T and B lymphocytes. II. Failure of physiologic cooperative interactions between T and B lymphocytes from allogeneic donor strains in humoral response to hapten-protein conjugates. J. Exp. Med. 137, 1405–1418 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Katz, D. H., Hamaoka, T., Dorf, M. E. & Benacerraf, B. Cell interactions between histoincompatible T and B lymphocytes. The H-2 gene complex determines successful physiologic lymphocyte interactions. Proc. Natl Acad. Sci. USA 70, 2624–2628 (1973).

    Article  CAS  PubMed  Google Scholar 

  119. Singer, A., Hathcock, K. S. & Hodes, R. J. Cellular and genetic control of antibody responses. V. Helper T-cell recognition of H-2 determinants on accessory cells but not B cells. J. Exp. Med. 149, 1208–1226 (1979).

    Article  CAS  PubMed  Google Scholar 

  120. Singer, A., Hathcock, K. S. & Hodes, R. J. Cellular and genetic control of antibody responses. VIII. MHC restricted recognition of accessory cells, not B cells, by parent-specific subpopulations of normal F1 T helper cells. J. Immunol. 124, 1079–1085 (1980).

    CAS  PubMed  Google Scholar 

  121. Honda, T. et al. Tuning of antigen sensitivity by T cell receptor-dependent negative feedback controls T cell effector function in inflamed tissues. Immunity 40, 235–247 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Faroudi, M., Zaru, R., Paulet, P., Muller, S. & Valitutti, S. Cutting edge: T lymphocyte activation by repeated immunological synapse formation and intermittent signaling. J. Immunol. 171, 1128–1132 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Clark, C. E., Hasan, M. & Bousso, P. A role for the immediate early gene product c-fos in imprinting T cells with short-term memory for signal summation. PLoS ONE 6, e18916 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Marangoni, F. et al. The transcription factor NFAT exhibits signal memory during serial T cell interactions with antigen-presenting cells. Immunity 38, 237–249 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Xiao, G., Deng, A., Liu, H., Ge, G. & Liu, X. Activator protein 1 suppresses antitumor T-cell function via the induction of programmed death 1. Proc. Natl Acad. Sci. USA 109, 15419–15424 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Chen, X., Ma, W., Zhang, T., Wu, L. & Qi, H. Phenotypic Tfh development promoted by CXCR5-controlled re-localization and IL-6 from radiation-resistant cells. Protein Cell 6, 825–832 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Baumjohann, D. et al. Persistent antigen and germinal center B cells sustain T follicular helper cell responses and phenotype. Immunity 38, 596–605 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Kageyama, R. et al. The receptor Ly108 functions as a SAP adaptor-dependent on-off switch for T cell help to B cells and NKT cell development. Immunity 36, 986–1002 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Pedros, C. et al. A TRAF-like motif of the inducible costimulator ICOS controls development of germinal center T cells via the kinase TBK1. Nat. Immunol, http://dx.doi.org/10.1038/ni.3463 (2016).

  131. Qi, H. From SAP-less T cells to helpless B cells and back: dynamic T-B cell interactions underlie germinal center development and function. Immunol. Rev. 247, 24–35 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Xu, H. et al. Follicular T-helper cell recruitment governed by bystander B cells and ICOS-driven motility. Nature 496, 523–527 (2013). This study reveals a costimulation-independent function of ICOS in promoting T cell motility and an essential role for bystander B cells in controlling T FH cell development and localization in an ICOSL-dependent manner.

    Article  CAS  PubMed  Google Scholar 

  133. Calnan, D. R. & Brunet, A. The FoxO code. Oncogene 27, 2276–2288 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Kerdiles, Y. M. et al. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat. Immunol. 10, 176–184 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Leavenworth, J. W., Verbinnen, B., Yin, J., Huang, H. & Cantor, H. A p85α-osteopontin axis couples the receptor ICOS to sustained Bcl-6 expression by follicular helper and regulatory T cells. Nat. Immunol. 16, 96–106 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Gigoux, M. et al. Inducible costimulator promotes helper T-cell differentiation through phosphoinositide 3-kinase. Proc. Natl Acad. Sci. USA 106, 20371–20376 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Kang, S. G. et al. MicroRNAs of the miR-1792 family are critical regulators of TFH differentiation. Nat. Immunol. 14, 849–857 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Baumjohann, D. et al. The microRNA cluster miR-1792 promotes TFH cell differentiation and represses subset-inappropriate gene expression. Nat. Immunol. 14, 840–848 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Xiao, C. et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat. Immunol. 9, 405–414 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Vogel, K. U. et al. Roquin paralogs 1 and 2 redundantly repress the Icos and Ox40 costimulator mRNAs and control follicular helper T cell differentiation. Immunity 38, 655–668 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Pratama, A. et al. Roquin-2 shares functions with its paralog Roquin-1 in the repression of mRNAs controlling T follicular helper cells and systemic inflammation. Immunity 38, 669–680 (2013).

    Article  CAS  PubMed  Google Scholar 

  142. Pratama, A. et al. MicroRNA-146a regulates ICOS-ICOSL signalling to limit accumulation of T follicular helper cells and germinal centres. Nat. Commun. 6, 6436 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tan, A. H., Wong, S. C. & Lam, K. P. Regulation of mouse inducible costimulator (ICOS) expression by Fyn-NFATc2 and ERK signaling in T cells. J. Biol. Chem. 281, 28666–28678 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Qi, H., Kastenmuller, W. & Germain, R. N. Spatiotemporal basis of innate and adaptive immunity in secondary lymphoid tissue. Ann. Rev. Cell Dev. Biol. 30, 141–167 (2014).

    Article  CAS  Google Scholar 

  145. Tubo, N. J. et al. Single naive CD4+ T cells from a diverse repertoire produce different effector cell types during infection. Cell 153, 785–796 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Fukuda, T. et al. The murine BCL6 gene is induced in activated lymphocytes as an immediate early gene. Oncogene 11, 1657–1663 (1995).

    CAS  PubMed  Google Scholar 

  147. Baumjohann, D., Okada, T. & Ansel, K. M. Cutting edge: distinct waves of BCL6 expression during T follicular helper cell development. J. Immunol. 187, 2089–2092 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Mempel, T. R., Henrickson, S. E. & Von Andrian, U. H. T-Cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Miller, M. J., Safrina, O., Parker, I. & Cahalan, M. D. Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J. Exp. Med. 200, 847–856 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Stoll, S., Delon, J., Brotz, T. M. & Germain, R. N. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296, 1873–1876 (2002).

    Article  PubMed  Google Scholar 

  151. Harker, J. A., Lewis, G. M., Mack, L. & Zuniga, E. I. Late interleukin-6 escalates T follicular helper cell responses and controls a chronic viral infection. Science 334, 825–829 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Leon, B., Bradley, J. E., Lund, F. E., Randall, T. D. & Ballesteros-Tato, A. FoxP3+ regulatory T cells promote influenza-specific Tfh responses by controlling IL-2 availability. Nat. Commun. 5, 3495 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Marshall, H. D. et al. The transforming growth factor beta signaling pathway is critical for the formation of CD4 T follicular helper cells and isotype-switched antibody responses in the lung mucosa. Elife 4, e04851 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hardtke, S., Ohl, L. & Forster, R. Balanced expression of CXCR5 and CCR7 on follicular T helper cells determines their transient positioning to lymph node follicles and is essential for efficient B-cell help. Blood 106, 1924–1931 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Li, J., Lu, E., Yi, T. & Cyster, J. G. EBI2 augments Tfh cell fate by promoting interaction with IL-2- quenching dendritic cells. Nature 533, 110–114 (2016). This study reveals a crucial role for CD4+CD25+ DCs in facilitating T FH cell development by quenching IL-2 locally at the T cell zone–follicle border.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Shapiro-Shelef, M. et al. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity 19, 607–620 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Martins, G. & Calame, K. Regulation and functions of Blimp-1 in T and B lymphocytes. Annu. Rev. Immunol. 26, 133–169 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Moriyama, S. et al. Sphingosine-1-phosphate receptor 2 is critical for follicular helper T cell retention in germinal centers. J. Exp. Med. 211, 1297–1305 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Shulman, Z. et al. T follicular helper cell dynamics in germinal centers. Science 341, 673–677 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kitano, M. et al. Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity. Immunity 34, 961–972 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. He, J. et al. Circulating precursor CCR7loPD-1hi CXCR5+ CD4+ T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure. Immunity 39, 770–781 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Locci, M. et al. Human circulating PD-1+CXCR3CXCR5+ memory Tfh cells are highly functional and correlate with broadly neutralizing HIV antibody responses. Immunity 39, 758–769 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Bentebibel, S. E. et al. Induction of ICOS+CXCR3+CXCR5+ TH cells correlates with antibody responses to influenza vaccination. Sci. Transl Med. 5, 176ra132 (2013).

    Article  CAS  Google Scholar 

  164. Weber, J. P., Fuhrmann, F. & Hutloff, A. T-Follicular helper cells survive as long-term memory cells. Eur. J. Immunol. 42, 1981–1988 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Fazilleau, N. et al. Lymphoid reservoirs of antigen-specific memory T helper cells. Nat. Immunol. 8, 753–761 (2007).

    Article  CAS  PubMed  Google Scholar 

  166. Fazilleau, N., McHeyzer-Williams, L. J., Rosen, H. & McHeyzer-Williams, M. G. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat. Immunol. 10, 375–384 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Liu, X. et al. Bcl6 expression specifies the T follicular helper cell program in vivo. J. Exp. Med. 209, 1841–1852 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Choi, Y. S. et al. Bcl6 expressing follicular helper CD4 T cells are fate committed early and have the capacity to form memory. J. Immunol. 190, 4014–4026 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hale, J. S. et al. Distinct memory CD4+ T cells with commitment to T follicular helper- and T helper 1-cell lineages are generated after acute viral infection. Immunity 38, 805–817 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ma, C. S. et al. Early commitment of naive human CD4+ T cells to the T follicular helper (TFH) cell lineage is induced by IL-12. Immunol. Cell Biol. 87, 590–600 (2009).

    Article  CAS  PubMed  Google Scholar 

  171. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

    Article  CAS  PubMed  Google Scholar 

  172. Maciolek, J. A., Pasternak, J. A. & Wilson, H. L. Metabolism of activated T lymphocytes. Curr. Opin. Immunol. 27, 60–74 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Nakayamada, S. et al. Early Th1 cell differentiation is marked by a Tfh cell-like transition. Immunity 35, 919–931 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wilson, C. B., Rowell, E. & Sekimata, M. Epigenetic control of T-helper-cell differentiation. Nat. Rev. Immunol. 9, 91–105 (2009).

    Article  CAS  PubMed  Google Scholar 

  175. Kanno, Y., Vahedi, G., Hirahara, K., Singleton, K. & O'Shea, J. J. Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu. Rev. Immunol. 30, 707–731 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Natural Science Foundation of China grant (81330070) and by National Natural Science Funds for Distinguished Young Scholar (81425011). The author apologizes to investigators whose contributions were not cited more extensively because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Qi.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, H. T follicular helper cells in space-time. Nat Rev Immunol 16, 612–625 (2016). https://doi.org/10.1038/nri.2016.94

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2016.94

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing