Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards personalized care in IBD

Key Points

  • Basic science advances herald an era in which IBD will be subcategorized on the basis of the involvement of specific molecular pathways

  • Knowledge of variation in IBD-susceptibility genes has expanded our understanding of the biological pathways relevant to disease susceptibility and to clinical phenomena including disease location and therapeutic response

  • Multimodal algorithms that combine clinical and genetic information will show utility in diagnostic panels and for predicting disease course and therapeutic response

  • Gene expression signatures and composite models that reflect the influence of environmental factors, such as the microbiome, show promise as tools for individualized risk stratification and treatment selection

Abstract

The expanding knowledge of the role of genetic variants involved in the susceptibility to IBD heralds an era of disease categorization beyond Crohn's disease and ulcerative colitis. A more robust molecular definition of the spectrum of IBD subtypes is likely to be based on specific molecular pathways that determine not only disease susceptibility but also disease characteristics such as location, natural history and therapeutic response. Evolving diagnostic panels for IBD will include clinical variables and genetic markers as well as other indicators of gene function and interaction with environmental factors, such as the microbiome. Multimodal algorithms that combine clinical, serologic and genetic information are likely to be useful in predicting disease course. Variation in IBD-susceptibility and drug-related pathway genes seems to influence the response to anti-TNF therapy. Furthermore, gene expression signatures and composite models have both shown promise as predictors of therapeutic response. Ultimately, models based on combinations of genotype and gene expression data with clinical, biochemical, serological, and microbiome data for clinically meaningful subgroups of patients should permit the development of tools for individualized risk stratification and treatment selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Predicting outcomes in ulcerative colitis.
Figure 2: Response to infliximab therapy correlated with an apoptotic pharmacogenetic index (API) that was based on the number of SNPs in apoptosis-related genes.

Similar content being viewed by others

References

  1. Abraham, C. & Cho, J. H. Inflammatory bowel disease. N. Engl. J. Med. 361, 2066–2078 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Vora, P., Shih, D. Q., McGovern, D. P. & Targan, S. R. Current concepts on the immunopathogenesis of inflammatory bowel disease. Front. Biosci. (Elite Ed). 4, 1451–1477 (2012).

    PubMed  Google Scholar 

  3. Khor, B., Gardet, A. & Xavier, R. J. Genetics and pathogenesis of inflammatory bowel disease. Nature 474, 307–317 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Franke, A. et al. Genome-wide association study for ulcerative colitis identifies risk loci at 7q22 and 22q13 (IL17REL). Nat. Genet. 42, 292–294 (2010).

    CAS  PubMed  Google Scholar 

  5. Anderson, C. A. et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat. Genet. 43, 246–252 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lees, C. W., Barrett, J. C., Parkes, M. & Satsangi, J. New IBD genetics: common pathways with other diseases. Gut 60, 1739–1753 (2011).

    CAS  PubMed  Google Scholar 

  7. Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ng, P. C., Murray, S. S., Levy, S. & Venter, J. C. An agenda for personalized medicine. Nature 461, 724–726 (2009).

    CAS  PubMed  Google Scholar 

  9. Molodecky, N. A. et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142, 46–54.e42 (2012).

    PubMed  Google Scholar 

  10. McGovern, D. P. et al. TUCAN (CARD8) genetic variants and inflammatory bowel disease. Gastroenterology. 131, 1190–1196 (2006).

    CAS  PubMed  Google Scholar 

  11. Prideaux, L., De Cruz, P., Ng, S. C. & Kamm, M. A. Serological antibodies in inflammatory bowel disease: a systematic review. Inflamm. Bowel Dis. 18, 1340–1355 (2012).

    PubMed  Google Scholar 

  12. Zhang, Z. et al. Anti-Saccharomyces cerevisiae antibodies associate with phenotypes and higher risk for surgery in Crohn's disease: a meta-analysis. Dig. Dis. Sci. 57, 2944–2954 (2012).

    PubMed  Google Scholar 

  13. Kaul, A. et al. Serum anti-glycan antibody biomarkers for inflammatory bowel disease diagnosis and progression: a systematic review and meta-analysis. Inflamm. Bowel Dis. 18, 1872–1884 (2012).

    PubMed  Google Scholar 

  14. Lakatos, P. L., Papp, M. & Rieder, F. Serologic antiglycan antibodies in inflammatory bowel disease. Am. J. Gastroenterol. 106, 406–412 (2011).

    PubMed  Google Scholar 

  15. Main, J. et al. Antibody to Saccharomyces cerevisiae (bakers' yeast) in Crohn's disease. BMJ 297, 1105–1106 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rump, J. A. et al. A new type of perinuclear anti-neutrophil cytoplasmic antibody (p-ANCA) in active ulcerative colitis but not in Crohn's disease. Immunobiology. 181, 406–413 (1990).

    CAS  PubMed  Google Scholar 

  17. Duerr, R. H., Targan, S. R., Landers, C. J., Sutherland, L. R. & Shanahan, F. Anti-neutrophil cytoplasmic antibodies in ulcerative colitis. Comparison with other colitides/diarrheal illnesses. Gastroenterology 100, 1590–1596 (1991).

    CAS  PubMed  Google Scholar 

  18. Vasiliauskas, E. A. et al. Perinuclear antineutrophil cytoplasmic antibodies in patients with Crohn's disease define a clinical subgroup. Gastroenterology 110, 1810–1819 (1996).

    CAS  PubMed  Google Scholar 

  19. Cohavy, O. et al. Colonic bacteria express an ulcerative colitis pANCA-related protein epitope. Infect. Immun. 68, 1542–1548 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sutton, C. L. et al. Identification of a novel bacterial sequence associated with Crohn's disease. Gastroenterology 119, 23–31 (2000).

    CAS  PubMed  Google Scholar 

  21. Lodes, M. J. et al. Bacterial flagellin is a dominant antigen in Crohn disease. J. Clin. Invest. 113, 1296–1306 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Dotan, I. et al. Antibodies against laminaribioside and chitobioside are novel serologic markers in Crohn's disease. Gastroenterology 131, 366–378 (2006).

    CAS  PubMed  Google Scholar 

  23. Quinton, J. F. et al. Anti-Saccharomyces cerevisiae mannan antibodies combined with antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease: prevalence and diagnostic role. Gut 42, 788–791 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Panaccione, R. & Sandborn, W. J. Is antibody testing for inflammatory bowel disease clinically useful? Gastroenterology 116, 1001–1002 (1999).

    CAS  PubMed  Google Scholar 

  25. Zholudev, A., Zurakowski, D., Young, W., Leichtner, A. & Bousvaros, A. Serologic testing with ANCA, ASCA, and anti-OmpC in children and young adults with Crohn's disease and ulcerative colitis: diagnostic value and correlation with disease phenotype. Am. J. Gastroenterol. 99, 2235–2241 (2004).

    PubMed  Google Scholar 

  26. Joossens, S. et al. Anti-outer membrane of porin C and anti-I2 antibodies in indeterminate colitis. Gut 55, 1667–1669 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Plevy, S. et al. Combined serological, genetic, and inflammatory markers differentiate non-IBD, Crohn's disease, and ulcerative colitis patients. Inflamm. Bowel Dis. 19, 1139–1148 (2013).

    PubMed  Google Scholar 

  28. Halfvarson, J., Bodin, L., Tysk, C., Lindberg, E. & Jarnerot, G. Inflammatory bowel disease in a Swedish twin cohort: a long-term follow-up of concordance and clinical characteristics. Gastroenterology 124, 1767–1773 (2003).

    PubMed  Google Scholar 

  29. Willing, B. P. et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 139, 1844–1854.e1 (2010).

    PubMed  Google Scholar 

  30. Hansen, J., Gulati, A. & Sartor, R. B. The role of mucosal immunity and host genetics in defining intestinal commensal bacteria. Curr. Opin. Gastroenterol. 26, 564–571 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Manichanh, C. et al. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 55, 205–211 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA 104, 13780–13785 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Joossens, M. et al. Dysbiosis of the faecal microbiota in patients with Crohn's disease and their unaffected relatives. Gut 60, 631–637 (2011).

    PubMed  Google Scholar 

  35. Lepage, P. et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology 141, 227–236 (2011).

    PubMed  Google Scholar 

  36. Louis, E. et al. Behaviour of Crohn's disease according to the Vienna classification: changing pattern over the course of the disease. Gut 49, 777–782 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Satsangi, J. et al. Contribution of genes of the major histocompatibility complex to susceptibility and disease phenotype in inflammatory bowel disease. Lancet 347, 1212–1217 (1996).

    CAS  PubMed  Google Scholar 

  38. Roussomoustakaki, M. et al. Genetic markers may predict disease behavior in patients with ulcerative colitis. Gastroenterology 112, 1845–1853 (1997).

    CAS  PubMed  Google Scholar 

  39. Silverberg, M. S. et al. A population- and family-based study of Canadian families reveals association of HLA DRB1*0103 with colonic involvement in inflammatory bowel disease. Inflamm. Bowel Dis. 9, 1–9 (2003).

    PubMed  Google Scholar 

  40. Ahmad, T. et al. The contribution of human leucocyte antigen complex genes to disease phenotype in ulcerative colitis. Tissue Antigens 62, 527–535 (2003).

    CAS  PubMed  Google Scholar 

  41. Fernandez, L. et al. IBD1 and IBD3 determine location of Crohn's disease in the Spanish population. Inflamm. Bowel Dis. 10, 715–722 (2004).

    PubMed  Google Scholar 

  42. Newman, B. et al. CARD15 and HLA DRB1 alleles influence susceptibility and disease localization in Crohn's disease. Am. J. Gastroenterol. 99, 306–315 (2004).

    CAS  PubMed  Google Scholar 

  43. Fisher, S. A. et al. Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn's disease. Nat. Genet. 40, 710–712 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Loftus, E. V. Jr et al. PSC-IBD: a unique form of inflammatory bowel disease associated with primary sclerosing cholangitis. Gut 54, 91–96 (2005).

    PubMed  PubMed Central  Google Scholar 

  45. Cho, J. H. & Brant, S. R. Recent insights into the genetics of inflammatory bowel disease. Gastroenterology 140, 1704–1712 (2011).

    CAS  PubMed  Google Scholar 

  46. Janse, M. et al. Three ulcerative colitis susceptibility loci are associated with primary sclerosing cholangitis and indicate a role for IL2, REL, and CARD9. Hepatology 53, 1977–1985 (2011).

    CAS  PubMed  Google Scholar 

  47. Melum, E. et al. Genome-wide association analysis in primary sclerosing cholangitis identifies two non-HLA susceptibility loci. Nat. Genet. 43, 17–19 (2011).

    CAS  PubMed  Google Scholar 

  48. Wells, C. Ulcerative colitis and Crohn's disease. Ann. R. Coll. Surg. Engl. 11, 105–120 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Crohn, B. B., Ginzburg, L. & Oppenheimer, G. D. Regional ileitis: a pathologic and clinical entity. JAMA 99, 1323–1329 (1932).

    Google Scholar 

  50. Lesage, S. et al. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am. J. Hum. Genet. 70, 845–857 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Brant, S. R. et al. Defining complex contributions of NOD2/CARD15 gene mutations, age at onset, and tobacco use on Crohn's disease phenotypes. Inflamm. Bowel Dis. 9, 281–289 (2003).

    PubMed  Google Scholar 

  52. Radford-Smith, G. & Pandeya, N. Associations between NOD2/CARD15 genotype and phenotype in Crohn's disease—are we there yet? World J. Gastroenterol. 12, 7097–7103 (2006).

    PubMed  PubMed Central  Google Scholar 

  53. Economou, M., Trikalinos, T. A., Loizou, K. T., Tsianos, E. V. & Ioannidis, J. P. Differential effects of NOD2 variants on Crohn's disease risk and phenotype in diverse populations: a metaanalysis. Am. J. Gastroenterol. 99, 2393–2404 (2004).

    CAS  PubMed  Google Scholar 

  54. Prescott, N. J. et al. A nonsynonymous SNP in ATG16L1 predisposes to ileal Crohn's disease and is independent of CARD15 and IBD5. Gastroenterology 132, 1665–1671 (2007).

    CAS  PubMed  Google Scholar 

  55. Roberts, R. L. et al. IL23R R381Q and ATG16L1 T300A are strongly associated with Crohn's disease in a study of New Zealand Caucasians with inflammatory bowel disease. Am. J. Gastroenterol. 102, 2754–2761 (2007).

    CAS  PubMed  Google Scholar 

  56. Latiano, A. et al. Polymorphism of the IRGM gene might predispose to fistulizing behavior in Crohn's disease. Am. J. Gastroenterol. 104, 110–116 (2009).

    CAS  PubMed  Google Scholar 

  57. Weersma, R. K. et al. ATG16L1 and IL23R are associated with inflammatory bowel diseases but not with celiac disease in the Netherlands. Am. J. Gastroenterol. 103, 621–627 (2008).

    CAS  PubMed  Google Scholar 

  58. Tremelling, M. et al. IL23R variation determines susceptibility but not disease phenotype in inflammatory bowel disease. Gastroenterology 132, 1657–1664 (2007).

    CAS  PubMed  Google Scholar 

  59. Jung, C. et al. Genotype/phenotype analyses for 53 Crohn's disease associated genetic polymorphisms. PLoS ONE 7, e52223 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Cleynen, I. et al. Molecular reclassification of Crohn's disease by cluster analysis of genetic variants. PLoS ONE 5, e12952 (2010).

    PubMed  PubMed Central  Google Scholar 

  61. Colombel, J. F. et al. Infliximab, azathioprine, or combination therapy for Crohn's disease. N. Engl. J. Med. 362, 1383–1395 (2010).

    CAS  PubMed  Google Scholar 

  62. D'Haens, G. et al. Early combined immunosuppression or conventional management in patients with newly diagnosed Crohn's disease: an open randomised trial. Lancet 371, 660–667 (2008).

    CAS  PubMed  Google Scholar 

  63. Peyrin-Biroulet, L., Bigard, M. A., Malesci, A. & Danese, S. Step-up and top-down approaches to the treatment of Crohn's disease: early may already be too late. Gastroenterology 135, 1420–1422 (2008).

    PubMed  Google Scholar 

  64. Peyrin-Biroulet, L., Loftus, E. V. Jr, Colombel, J. F. & Sandborn, W. J. Early Crohn disease: a proposed definition for use in disease-modification trials. Gut 59, 141–147 (2010).

    CAS  PubMed  Google Scholar 

  65. Pariente, B. et al. Development of the Crohn's disease digestive damage score, the Lemann score. Inflamm. Bowel Dis. 17, 1415–1422 (2011).

    PubMed  Google Scholar 

  66. Peyrin-Biroulet, L. et al. Development of the first disability index for inflammatory bowel disease based on the international classification of functioning, disability and health. Gut 61, 241–247 (2012).

    PubMed  Google Scholar 

  67. Beaugerie, L., Seksik, P., Nion-Larmurier, I., Gendre, J. P. & Cosnes, J. Predictors of Crohn's disease. Gastroenterology 130, 650–656 (2006).

    PubMed  Google Scholar 

  68. Rutgeerts, P. et al. Natural history of recurrent Crohn's disease at the ileocolonic anastomosis after curative surgery. Gut 25, 665–672 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rutgeerts, P. et al. Predictability of the postoperative course of Crohn's disease. Gastroenterology 99, 956–963 (1990).

    CAS  PubMed  Google Scholar 

  70. Baert, F. et al. Mucosal healing predicts sustained clinical remission in patients with early-stage Crohn's disease. Gastroenterology 138, 463–468 (2010).

    PubMed  Google Scholar 

  71. Froslie, K. F., Jahnsen, J., Moum, B. A. & Vatn, M. H. Mucosal healing in inflammatory bowel disease: results from a Norwegian population-based cohort. Gastroenterology 133, 412–422 (2007).

    PubMed  Google Scholar 

  72. Pineton de Chambrun, G., Peyrin-Biroulet, L., Lemann, M. & Colombel, J. F. Clinical implications of mucosal healing for the management of IBD. Nat. Rev. Gastroenterol. Hepatol. 7, 15–29 (2010).

    PubMed  Google Scholar 

  73. Mekhjian, H. S., Switz, D. M., Melnyk, C. S., Rankin, G. B. & Brooks, R. K. Clinical features and natural history of Crohn's disease. Gastroenterology 77, 898–906 (1979).

    CAS  PubMed  Google Scholar 

  74. Bernell, O., Lapidus, A. & Hellers, G. Risk factors for surgery and postoperative recurrence in Crohn's disease. Ann. Surg. 231, 38–45 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Allez, M. et al. Long term outcome of patients with active Crohn's disease exhibiting extensive and deep ulcerations at colonoscopy. Am. J. Gastroenterol. 97, 947–953 (2002).

    PubMed  Google Scholar 

  76. Wolters, F. L. et al. Phenotype at diagnosis predicts recurrence rates in Crohn's disease. Gut 55, 1124–1130 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Solberg, I. C. et al. Clinical course in Crohn's disease: results of a Norwegian population-based ten-year follow-up study. Clin. Gastroenterol. Hepatol. 5, 1430–1438 (2007).

    PubMed  Google Scholar 

  78. Loly, C., Belaiche, J. & Louis, E. Predictors of severe Crohn's disease. Scand. J. Gastroenterol. 43, 948–954 (2008).

    CAS  PubMed  Google Scholar 

  79. Tarrant, K. M., Barclay, M. L., Frampton, C. M. & Gearry, R. B. Perianal disease predicts changes in Crohn's disease phenotype-results of a population-based study of inflammatory bowel disease phenotype. Am. J. Gastroenterol. 103, 3082–3093 (2008).

    PubMed  Google Scholar 

  80. Romberg-Camps, M. J. et al. Influence of phenotype at diagnosis and of other potential prognostic factors on the course of inflammatory bowel disease. Am. J. Gastroenterol. 104, 371–383 (2009).

    CAS  PubMed  Google Scholar 

  81. Thia, K. T., Sandborn, W. J., Harmsen, W. S., Zinsmeister, A. R. & Loftus, E. V. Jr. Risk factors associated with progression to intestinal complications of Crohn's disease in a population-based cohort. Gastroenterology 139, 1147–1155 (2010).

    PubMed  Google Scholar 

  82. Beaugerie, L. et al. Impact of cessation of smoking on the course of ulcerative colitis. Am. J. Gastroenterol. 96, 2113–2116 (2001).

    CAS  PubMed  Google Scholar 

  83. Cosnes, J., Carbonnel, F., Beaugerie, L., Le Quintrec, Y. & Gendre, J. P. Effects of cigarette smoking on the long-term course of Crohn's disease. Gastroenterology 110, 424–431 (1996).

    CAS  PubMed  Google Scholar 

  84. Carbonnel, F., Macaigne, G., Beaugerie, L., Gendre, J. P. & Cosnes, J. Crohn's disease severity in familial and sporadic cases. Gut 44, 91–95 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Farhi, D. et al. Significance of erythema nodosum and pyoderma gangrenosum in inflammatory bowel diseases: a cohort study of 2,402 patients. Medicine (Baltimore) 87, 281–293 (2008).

    Google Scholar 

  86. Henriksen, M., Jahnsen, J., Lygren, I., Vatn, M. H. & Moum, B. Are there any differences in phenotype or disease course between familial and sporadic cases of inflammatory bowel disease? Results of a population-based follow-up study. Am. J. Gastroenterol. 102, 1955–1963 (2007).

    PubMed  Google Scholar 

  87. Hoie, O. et al. Ulcerative colitis: patient characteristics may predict 10-yr disease recurrence in a European-wide population-based cohort. Am. J. Gastroenterol. 102, 1692–1701 (2007).

    PubMed  Google Scholar 

  88. Hoie, O. et al. Low colectomy rates in ulcerative colitis in an unselected European cohort followed for 10 years. Gastroenterology 132, 507–515 (2007).

    PubMed  Google Scholar 

  89. Gower-Rousseau, C. et al. The natural history of pediatric ulcerative colitis: a population-based cohort study. Am. J. Gastroenterol. 104, 2080–2088 (2009).

    PubMed  Google Scholar 

  90. Solberg, I. C. et al. Clinical course during the first 10 years of ulcerative colitis: results from a population-based inception cohort (IBSEN Study). Scand. J. Gastroenterol. 44, 431–440 (2009).

    PubMed  Google Scholar 

  91. Gisbert, J. P., McNicholl, A. G. & Gomollon, F. Questions and answers on the role of fecal lactoferrin as a biological marker in inflammatory bowel disease. Inflamm. Bowel Dis. 15, 1746–1754 (2009).

    PubMed  Google Scholar 

  92. Lewis, J. D. The utility of biomarkers in the diagnosis and therapy of inflammatory bowel disease. Gastroenterology 140, 1817–1826 e1812 (2011).

    CAS  PubMed  Google Scholar 

  93. Iskandar, H. N. & Ciorba, M. A. Biomarkers in inflammatory bowel disease: current practices and recent advances. Transl. Res. 159, 313–325 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Henriksen, M. et al. C-reactive protein: a predictive factor and marker of inflammation in inflammatory bowel disease. Results from a prospective population-based study. Gut 57, 1518–1523 (2008).

    CAS  PubMed  Google Scholar 

  95. Fagan, E. A. et al. Serum levels of C-reactive protein in Crohn's disease and ulcerative colitis. Eur. J. Clin. Invest. 12, 351–359 (1982).

    CAS  PubMed  Google Scholar 

  96. Solem, C. A. et al. Correlation of C-reactive protein with clinical, endoscopic, histologic, and radiographic activity in inflammatory bowel disease. Inflamm. Bowel Dis. 11, 707–712 (2005).

    PubMed  Google Scholar 

  97. Schoepfer, A. M. et al. Fecal calprotectin correlates more closely with the Simple Endoscopic Score for Crohn's disease (SES-CD) than CRP, blood leukocytes, and the CDAI. Am. J. Gastroenterol. 105, 162–169 (2010).

    CAS  PubMed  Google Scholar 

  98. Kolho, K. L., Raivio, T., Lindahl, H. & Savilahti, E. Fecal calprotectin remains high during glucocorticoid therapy in children with inflammatory bowel disease. Scand. J. Gastroenterol. 41, 720–725 (2006).

    CAS  PubMed  Google Scholar 

  99. Sipponen, T. et al. Fecal calprotectin, lactoferrin, and endoscopic disease activity in monitoring anti-TNF-alpha therapy for Crohn's disease. Inflamm. Bowel Dis. 14, 1392–1398 (2008).

    PubMed  Google Scholar 

  100. Sipponen, T. et al. Faecal calprotectin and lactoferrin are reliable surrogate markers of endoscopic response during Crohn's disease treatment. Scand. J. Gastroenterol. 45, 325–331 (2010).

    CAS  PubMed  Google Scholar 

  101. D'Haens, G. et al. Fecal calprotectin is a surrogate marker for endoscopic lesions in inflammatory bowel disease. Inflamm. Bowel Dis. 18, 2218–2224 (2012).

    PubMed  Google Scholar 

  102. Tibble, J. A., Sigthorsson, G., Bridger, S., Fagerhol, M. K. & Bjarnason, I. Surrogate markers of intestinal inflammation are predictive of relapse in patients with inflammatory bowel disease. Gastroenterology 119, 15–22 (2000).

    CAS  PubMed  Google Scholar 

  103. Costa, F. et al. Calprotectin is a stronger predictive marker of relapse in ulcerative colitis than in Crohn's disease. Gut 54, 364–368 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. D'Inca, R. et al. Can calprotectin predict relapse risk in inflammatory bowel disease? Am. J. Gastroenterol. 103, 2007–2014 (2008).

    CAS  PubMed  Google Scholar 

  105. Gisbert, J. P. et al. Fecal calprotectin and lactoferrin for the prediction of inflammatory bowel disease relapse. Inflamm. Bowel Dis. 15, 1190–1198 (2009).

    PubMed  Google Scholar 

  106. Garcia-Sanchez, V. et al. Does fecal calprotectin predict relapse in patients with Crohn's disease and ulcerative colitis? J. Crohns Colitis 4, 144–152 (2010).

    PubMed  Google Scholar 

  107. Kallel, L. et al. Fecal calprotectin is a predictive marker of relapse in Crohn's disease involving the colon: a prospective study. Eur. J. Gastroenterol. Hepatol. 22, 340–345 (2010).

    CAS  PubMed  Google Scholar 

  108. Laharie, D. et al. Prediction of Crohn's disease relapse with faecal calprotectin in infliximab responders: a prospective study. Aliment. Pharmacol. Ther. 34, 462–469 (2011).

    CAS  PubMed  Google Scholar 

  109. Dabritz, J. et al. Improving relapse prediction in inflammatory bowel disease by neutrophil-derived S100A12. Inflamm. Bowel Dis. 19, 1130–1138 (2013).

    PubMed  Google Scholar 

  110. Sandborn, W. J., Landers, C. J., Tremaine, W. J. & Targan, S. R. Association of antineutrophil cytoplasmic antibodies with resistance to treatment of left-sided ulcerative colitis: results of a pilot study. Mayo Clin. Proc. 71, 431–436 (1996).

    CAS  PubMed  Google Scholar 

  111. Fleshner, P. R. et al. High level perinuclear antineutrophil cytoplasmic antibody (pANCA) in ulcerative colitis patients before colectomy predicts the development of chronic pouchitis after ileal pouch-anal anastomosis. Gut 49, 671–677 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Solberg, I. C. Predictive value of serologic markers in a population-based Norwegian cohort with inflammatory bowel disease. Inflamm. Bowel Dis. 15, 406–414 (2009).

    PubMed  Google Scholar 

  113. Vasiliauskas, E. A. et al. Marker antibody expression stratifies Crohn's disease into immunologically homogeneous subgroups with distinct clinical characteristics. Gut 47, 487–496 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Mow, W. S. et al. Association of antibody responses to microbial antigens and complications of small bowel Crohn's disease. Gastroenterology 126, 414–424 (2004).

    CAS  PubMed  Google Scholar 

  115. Targan, S. R. et al. Antibodies to CBir1 flagellin define a unique response that is associated independently with complicated Crohn's disease. Gastroenterology 128, 2020–2028 (2005).

    CAS  PubMed  Google Scholar 

  116. Dubinsky, M. C. et al. Serum immune responses predict rapid disease progression among children with Crohn's disease: immune responses predict disease progression. Am. J. Gastroenterology. 101, 360–367 (2006).

    Google Scholar 

  117. Arnott, I. D. et al. Sero-reactivity to microbial components in Crohn's disease is associated with disease severity and progression, but not NOD2/CARD15 genotype. Am. J. Gastroenterol. 99, 2376–2384 (2004).

    PubMed  Google Scholar 

  118. Papp, M. et al. New serological markers for inflammatory bowel disease are associated with earlier age at onset, complicated disease behavior, risk for surgery, and NOD2/CARD15 genotype in a Hungarian IBD cohort. Am. J. Gastroenterol. 103, 665–681 (2008).

    CAS  PubMed  Google Scholar 

  119. Forcione, D. G., Rosen, M. J., Kisiel, J. B. & Sands, B. E. Anti-Saccharomyces cerevisiae antibody (ASCA) positivity is associated with increased risk for early surgery in Crohn's disease. Gut 53, 1117–1122 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Dendrinos, K. G. et al. Anti-Saccharomyces cerevisiae antibodies are associated with the development of postoperative fistulas following ileal pouch-anal anastomosis. J. Gastrointest. Surg. 10, 1060–1064 (2006).

    PubMed  Google Scholar 

  121. Melmed, G. Y. et al. Family history and serology predict Crohn's disease after ileal pouch-anal anastomosis for ulcerative colitis. Dis. Colon Rectum 51, 100–108 (2008).

    PubMed  Google Scholar 

  122. Papadakis, K. A. et al. Anti-flagellin (CBir1) phenotypic and genetic Crohn's disease associations. Inflamm. Bowel Dis. 13, 524–530 (2007).

    PubMed  Google Scholar 

  123. Ferrante, M. et al. New serological markers in inflammatory bowel disease are associated with complicated disease behaviour. Gut 56, 1394–1403 (2007).

    PubMed  PubMed Central  Google Scholar 

  124. Dubinsky, M. C. et al. Increased immune reactivity predicts aggressive complicating Crohn's disease in children. Clin. Gastroenterol. Hepatol. 6, 1105–1111 (2008).

    PubMed  PubMed Central  Google Scholar 

  125. Seow, C. H. et al. Novel anti-glycan antibodies related to inflammatory bowel disease diagnosis and phenotype. Am. J. Gastroenterol. 104, 1426–1434 (2009).

    CAS  PubMed  Google Scholar 

  126. Rieder, F. et al. Serum anti-glycan antibodies predict complicated Crohn's disease behavior: a cohort study. Inflamm. Bowel Dis. 16, 1367–1375 (2010).

    PubMed  Google Scholar 

  127. Vermeire, S. et al. Anti-Saccharomyces cerevisiae antibodies (ASCA), phenotypes of IBD, and intestinal permeability: a study in IBD families. Inflamm. Bowel Dis. 7, 8–15 (2001).

    CAS  PubMed  Google Scholar 

  128. Malickova, K., Lukas, M., Donoval, R., Sandova, P. & Janatkova, I. Novel anti-carbohydrate autoantibodies in patients with inflammatory bowel disease: are they useful for clinical practice? Clin. Lab. 52, 631–638 (2006).

    CAS  PubMed  Google Scholar 

  129. Bossuyt, X. Serologic markers in inflammatory bowel disease. Clin. Chem. 52, 171–181 (2006).

    CAS  PubMed  Google Scholar 

  130. Rieder, F. et al. Characterization of changes in serum anti-glycan antibodies in Crohn's disease—a longitudinal analysis. PLoS ONE 6, e18172 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Vermeire, S., Van Assche, G. & Rutgeerts, P. Genetic analysis to predict prognosis at the onset of Crohn's disease: not yet ready for prime time? Gut 58, 323–324 (2009).

    PubMed  Google Scholar 

  132. Hancock, L. et al. Clinical and molecular characteristics of isolated colonic Crohn's disease. Inflamm. Bowel Dis. 14, 1667–1677 (2008).

    PubMed  Google Scholar 

  133. Ho, G. T. et al. ABCB1/MDR1 gene determines susceptibility and phenotype in ulcerative colitis: discrimination of critical variants using a gene-wide haplotype tagging approach. Hum. Mol. Genet. 15, 797–805 (2006).

    CAS  PubMed  Google Scholar 

  134. Haritunians, T. et al. Genetic predictors of medically refractory ulcerative colitis. Inflamm. Bowel Dis. 16, 1830–1840 (2010).

    PubMed  Google Scholar 

  135. Abreu, M. T. et al. Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn's disease. Gastroenterology 123, 679–688 (2002).

    CAS  PubMed  Google Scholar 

  136. Vermeire, S. et al. CARD15 genetic variation in a Quebec population: prevalence, genotype-phenotype relationship, and haplotype structure. Am. J. Hum. Genet. 71, 74–83 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Hampe, J. et al. Association of NOD2 (CARD 15) genotype with clinical course of Crohn's disease: a cohort study. Lancet 359, 1661–1665 (2002).

    CAS  PubMed  Google Scholar 

  138. Cuthbert, A. P. et al. The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology 122, 867–874 (2002).

    CAS  PubMed  Google Scholar 

  139. Alvarez-Lobos, M. et al. Crohn's disease patients carrying Nod2/CARD15 gene variants have an increased and early need for first surgery due to stricturing disease and higher rate of surgical recurrence. Ann. Surg. 242, 693–700 (2005).

    PubMed  PubMed Central  Google Scholar 

  140. Seiderer, J. et al. Predictive value of the CARD15 variant 1007fs for the diagnosis of intestinal stenoses and the need for surgery in Crohn's disease in clinical practice: results of a prospective study. Inflamm. Bowel Dis. 12, 1114–1121 (2006).

    PubMed  Google Scholar 

  141. Nasir, B. F. et al. Perianal disease combined with NOD2 genotype predicts need for IBD-related surgery in Crohn's disease patients from a population-based cohort. J. Clin. Gastroenterol. 47, 242–245 (2013).

    CAS  PubMed  Google Scholar 

  142. Adler, J., Rangwalla, S. C., Dwamena, B. A. & Higgins, P. D. The prognostic power of the NOD2 genotype for complicated Crohn's disease: a meta-analysis. Am. J. Gastroenterol. 106, 699–712 (2011).

    CAS  PubMed  Google Scholar 

  143. Weersma, R. K. et al. Molecular prediction of disease risk and severity in a large Dutch Crohn's disease cohort. Gut 58, 388–395 (2009).

    CAS  PubMed  Google Scholar 

  144. Henckaerts, L. et al. Genetic risk profiling and prediction of disease course in Crohn's disease patients. Clin. Gastroenterol. Hepatol. 7, 972–980.e2 (2009).

    CAS  PubMed  Google Scholar 

  145. Cleynen, I. et al. Genetic factors conferring an increased susceptibility to develop Crohn's disease also influence disease phenotype: results from the IBDchip European Project. Gut 62, 1556–1565 (2012).

    PubMed  Google Scholar 

  146. Vermeire, S., Van Assche, G. & Rutgeerts, P. Classification of inflammatory bowel disease: the old and the new. Curr. Opin. Gastroenterol. 28, 321–326 (2012).

    PubMed  Google Scholar 

  147. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Michail, S. et al. Alterations in the gut microbiome of children with severe ulcerative colitis. Inflamm. Bowel Dis. 18, 1799–1808 (2012).

    PubMed  Google Scholar 

  149. Iliev, I. D. et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 336, 1314–1317 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Lee, J. C. et al. Gene expression profiling of CD8+ T cells predicts prognosis in patients with Crohn disease and ulcerative colitis. J. Clin. Invest. 121, 4170–4179 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Alex, P., Gucek, M. & Li, X. Applications of proteomics in the study of inflammatory bowel diseases: Current status and future directions with available technologies. Inflamm. Bowel Dis. 15, 616–629 (2009).

    PubMed  Google Scholar 

  152. Roda, G. et al. New proteomic approaches for biomarker discovery in inflammatory bowel disease. Inflamm. Bowel Dis. 16, 1239–1246 (2010).

    PubMed  Google Scholar 

  153. Meuwis, M. A. et al. Proteomics for prediction and characterization of response to infliximab in Crohn's disease: a pilot study. Clin. Biochem. 41, 960–967 (2008).

    CAS  PubMed  Google Scholar 

  154. Lin, H. M., Helsby, N. A., Rowan, D. D. & Ferguson, L. R. Using metabolomic analysis to understand inflammatory bowel diseases. Inflamm. Bowel Dis. 17, 1021–1029 (2011).

    PubMed  Google Scholar 

  155. Devlin, S. M. et al. NOD2 variants and antibody response to microbial antigens in Crohn's disease patients and their unaffected relatives. Gastroenterology 132, 576–586 (2007).

    CAS  PubMed  Google Scholar 

  156. Henckaerts, L. et al. Mutations in pattern recognition receptor genes modulate seroreactivity to microbial antigens in patients with inflammatory bowel disease. Gut 56, 1536–1542 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Lakatos, P. L. et al. Interaction between seroreactivity to microbial antigens and genetics in Crohn's disease: is there a role for defensins? Tissue Antigens 71, 552–559 (2008).

    CAS  PubMed  Google Scholar 

  158. Lakatos, P. L. et al. Pancreatic autoantibodies are associated with reactivity to microbial antibodies, penetrating disease behavior, perianal disease, and extraintestinal manifestations, but not with NOD2/CARD15 or TLR4 genotype in a Hungarian IBD cohort. Inflamm. Bowel Dis. 15, 365–374 (2009).

    PubMed  Google Scholar 

  159. Murdoch, T. B. et al. Pattern recognition receptor and autophagy gene variants are associated with development of antimicrobial antibodies in Crohn's disease. Inflamm. Bowel Dis. 18, 1743–1748 (2012).

    PubMed  Google Scholar 

  160. Ippoliti, A. et al. Combination of innate and adaptive immune alterations increased the likelihood of fibrostenosis in Crohn's disease. Inflamm. Bowel Dis. 16, 1279–1285 (2010).

    PubMed  Google Scholar 

  161. Lichtenstein, G. R. et al. Combination of genetic and quantitative serological immune markers are associated with complicated Crohn's disease behavior. Inflamm. Bowel Dis. 17, 2488–2496 (2011).

    PubMed  Google Scholar 

  162. Dubinsky, M. C. et al. Multidimensional Prognostic Risk Assessment Identifies Association Between IL12B Variation and Surgery in Crohn's Disease. Inflamm. Bowel Dis. 19, 1662–1670 (2013).

    PubMed  Google Scholar 

  163. Kohane, I. S., Drazen, J. M. & Campion, E. W. A glimpse of the next 100 years in medicine. N. Engl. J. Med. 367, 2538–2539 (2012).

    CAS  PubMed  Google Scholar 

  164. Lichtenstein, G. R., Abreu, M. T., Cohen, R., Tremaine, W. & American Gastroenterological Association. American Gastroenterological Association Institute medical position statement on corticosteroids, immunomodulators, and infliximab in inflammatory bowel disease. Gastroenterology 130, 935–939 (2006).

    PubMed  Google Scholar 

  165. Winter, J. et al. Cost-effectiveness of thiopurine methyltransferase genotype screening in patients about to commence azathioprine therapy for treatment of inflammatory bowel disease. Aliment. Pharmacol. Ther. 20, 593–599 (2004).

    CAS  PubMed  Google Scholar 

  166. Dubinsky, M. C. et al. A cost-effectiveness analysis of alternative disease management strategies in patients with Crohn's disease treated with azathioprine or 6-mercaptopurine. Am. J. Gastroenterol. 100, 2239–2247 (2005).

    CAS  PubMed  Google Scholar 

  167. Ordas, I., Mould, D. R., Feagan, B. G. & Sandborn, W. J. Anti-TNF monoclonal antibodies in inflammatory bowel disease: pharmacokinetics-based dosing paradigms. Clin. Pharmacol. Ther. 91, 635–646 (2012).

    CAS  PubMed  Google Scholar 

  168. Vande Casteele, N. et al. Early serial trough and antidrug antibody level measurements predict clinical outcome of infliximab and adalimumab treatment. Gut 61, 321 (2012).

    CAS  PubMed  Google Scholar 

  169. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  170. Afif, W. et al. Clinical utility of measuring infliximab and human anti-chimeric antibody concentrations in patients with inflammatory bowel disease. Am. J. Gastroenterol. 105, 1133–1139 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Velayos, F. S., Kahn, J. G., Sandborn, W. J. & Feagan, B. G. A test-based strategy is more cost effective than empiric dose escalation for patients with Crohn's disease who lose responsiveness to infliximab. Clin. Gastroenterol. Hepatol. 11, 654–666 (2013).

    PubMed  Google Scholar 

  172. Hanauer, S. B. et al. Maintenance infliximab for Crohn's disease: the ACCENT I randomised trial. Lancet 359, 1541–1549 (2002).

    CAS  PubMed  Google Scholar 

  173. Rutgeerts, P. et al. Infliximab for induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 353, 2462–2476 (2005).

    CAS  PubMed  Google Scholar 

  174. Colombel, J. F. et al. Adalimumab for maintenance of clinical response and remission in patients with Crohn's disease: the CHARM trial. Gastroenterology 132, 52–65 (2007).

    CAS  PubMed  Google Scholar 

  175. Schreiber, S. et al. Maintenance therapy with certolizumab pegol for Crohn's disease. N. Engl. J. Med. 357, 239–250 (2007).

    CAS  PubMed  Google Scholar 

  176. Schnitzler, F. et al. Long-term outcome of treatment with infliximab in 614 patients with Crohn's disease: results from a single-centre cohort. Gut 58, 492–500 (2009).

    CAS  PubMed  Google Scholar 

  177. Peyrin-Biroulet, L. & Lemann, M. Review article: remission rates achievable by current therapies for inflammatory bowel disease. Aliment. Pharmacol. Ther. 33, 870–879 (2011).

    CAS  PubMed  Google Scholar 

  178. Louis, E. et al. A positive response to infliximab in Crohn disease: association with a higher systemic inflammation before treatment but not with −308 TNF gene polymorphism. Scand. J. Gastroenterol. 37, 818–824 (2002).

    CAS  PubMed  Google Scholar 

  179. Parsi, M. A. S. et al. Predictors of response to infliximab in patients with Crohn's disease. Gastroenterology 123, 707–713 (2002).

    CAS  PubMed  Google Scholar 

  180. Vermeire, S. et al. Demographic and clinical parameters influencing the short-term outcome of anti-tumor necrosis factor (infliximab) treatment in Crohn's disease. Am. J. Gastroenterol. 97, 2357–2363 (2002).

    CAS  PubMed  Google Scholar 

  181. Arnott, I. D., McNeill, G. & Satsangi, J. An analysis of factors influencing short-term and sustained response to infliximab treatment for Crohn's disease. Aliment. Pharmacol. Ther. 17, 1451–1457 (2003).

    CAS  PubMed  Google Scholar 

  182. Jurgens, M. et al. Levels of C-reactive protein are associated with response to infliximab therapy in patients with Crohn's disease. Clin. Gastroenterol. Hepatol. 9, 421–427.e1 (2011).

    PubMed  Google Scholar 

  183. Taylor, K. D. et al. ANCA pattern and LTA haplotype relationship to clinical responses to anti-TNF antibody treatment in Crohn's disease. Gastroenterology 120, 1347–1355 (2001).

    CAS  PubMed  Google Scholar 

  184. Esters, N. et al. Serological markers for prediction of response to anti-tumor necrosis factor treatment in Crohn's disease. Am. J. Gastroenterol. 97, 1458–1462 (2002).

    CAS  PubMed  Google Scholar 

  185. Ferrante, M. et al. Predictors of early response to infliximab in patients with ulcerative colitis. Inflamm. Bowel Dis. 13, 123–128 (2007).

    PubMed  Google Scholar 

  186. Jurgens, M. et al. Disease activity, ANCA, and IL23R genotype status determine early response to infliximab in patients with ulcerative colitis. Am. J. Gastroenterol. 105, 1811–1819 (2010).

    PubMed  Google Scholar 

  187. Dubinsky, M. C. et al. Genome wide association (GWA) predictors of anti-TNFalpha therapeutic responsiveness in pediatric inflammatory bowel disease. Inflamm. Bowel Dis. 16, 1357–1366 (2010).

    PubMed  Google Scholar 

  188. Mascheretti, S. et al. Pharmacogenetic investigation of the TNF/TNF-receptor system in patients with chronic active Crohn's disease treated with infliximab. Pharmacogenomics J. 2, 127–136 (2002).

    CAS  PubMed  Google Scholar 

  189. Pierik, M. et al. Tumour necrosis factor-alpha receptor 1 and 2 polymorphisms in inflammatory bowel disease and their association with response to infliximab. Aliment. Pharmacol. Ther. 20, 303–310 (2004).

    CAS  PubMed  Google Scholar 

  190. Vermeire, S. et al. NOD2/CARD15 does not influence response to infliximab in Crohn's disease. Gastroenterology 123, 106–111 (2002).

    CAS  PubMed  Google Scholar 

  191. Hlavaty, T. et al. Polymorphisms in apoptosis genes predict response to infliximab therapy in luminal and fistulizing Crohn's disease. Aliment. Pharmacol. Ther. 22, 613–626 (2005).

    CAS  PubMed  Google Scholar 

  192. Hlavaty, T. et al. Predictive model for the outcome of infliximab therapy in Crohn's disease based on apoptotic pharmacogenetic index and clinical predictors. Inflamm. Bowel Dis. 13, 372–379 (2007).

    PubMed  Google Scholar 

  193. Arijs, I. et al. Mucosal gene signatures to predict response to infliximab in patients with ulcerative colitis. Gut 58, 1612–1619 (2009).

    CAS  PubMed  Google Scholar 

  194. Arijs, I. et al. Predictive value of epithelial gene expression profiles for response to infliximab in Crohn's disease. Inflamm. Bowel Dis. 16, 2090–2098 (2010).

    PubMed  Google Scholar 

  195. Vermeire, S. Towards a novel molecular classification of IBD. Dig. Dis. 30, 425–427 (2012).

    PubMed  Google Scholar 

  196. Siegel, C. A. et al. Real-time tool to display the predicted disease course and treatment response for children with Crohn's disease. Inflamm. Bowel Dis. 17, 30–38 (2011).

    PubMed  Google Scholar 

  197. Glocker, E. O. et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361, 2033–2045 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. E. Gerich researched data, discussed content, wrote and reviewed/edited the manuscript. D. P. B. McGovern discussed the content and reviewed/edited the manuscript.

Corresponding author

Correspondence to Mark E. Gerich.

Ethics declarations

Competing interests

D. P. B. McGovern is on the advisory board for UCB and acts as an advisor for 23andMe. M. E. Gerich declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerich, M., McGovern, D. Towards personalized care in IBD. Nat Rev Gastroenterol Hepatol 11, 287–299 (2014). https://doi.org/10.1038/nrgastro.2013.242

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2013.242

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing