Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diagnosis and management of polycystic liver disease

Abstract

Polycystic liver disease (PLD) is arbitrarily defined as a liver that contains >20 cysts. The condition is associated with two genetically distinct diseases: as a primary phenotype in isolated polycystic liver disease (PCLD) and as an extrarenal manifestation in autosomal dominant polycystic kidney disease (ADPKD). Processes involved in hepatic cystogenesis include ductal plate malformation with concomitant abnormal fluid secretion, altered cell–matrix interaction and cholangiocyte hyperproliferation. PLD is usually a benign disease, but can cause debilitating abdominal symptoms in some patients. The main risk factors for growth of liver cysts are female sex, exogenous oestrogen use and multiple pregnancies. Ultrasonography is very useful for achieving a correct diagnosis of a polycystic liver and to differentiate between ADPKD and PCLD. Current radiological and surgical therapies for symptomatic patients include aspiration–sclerotherapy, fenestration, segmental hepatic resection and liver transplantation. Medical therapies that interact with regulatory mechanisms controlling expansion and growth of liver cysts are under investigation. Somatostatin analogues are promising; several clinical trials have shown that these drugs can reduce the volume of polycystic livers. The purpose of this Review is to provide an update on the diagnosis and management of PLD with a focus on literature published in the past 4 years.

Key Points

  • Polycystic liver disease (PLD) is the primary presentation in isolated polycystic liver disease (PCLD) and can present as an extrarenal manifestation in autosomal dominant polycystic kidney disease

  • Female sex, exogenous oestrogens and multiple pregnancies are risk factors for the development of polycystic livers

  • Ultrasonography is the first step in diagnosing PLD

  • Screening for intracranial aneurysms is not recommended for patients with PCLD

  • Surgical treatment is indicated in symptomatic patients; the choice of treatment depends on total liver volume and the size and location of the liver cysts

  • Somatostatin analogues decrease the volume of polycystic livers, are well-tolerated and improve patients' perception of their health

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Embryonic development of the ductal plate.
Figure 2: Gigot type I–III livers.
Figure 3: Percentage changes in liver volume during somatostatin analogue therapy or after withdrawal, presented as medians (IQR) or means (SD).
Figure 4: Flow diagram for treatment strategy in patients with PLD.

Similar content being viewed by others

References

  1. Drenth, J. P., Chrispijn, M., Nagorney, D. M., Kamath, P. S. & Torres, V. E. Medical and surgical treatment options for polycystic liver disease. Hepatology 52, 2223–2230 (2010).

    Article  PubMed  Google Scholar 

  2. van Keimpema, L. et al. Patients with isolated polycystic liver disease referred to liver centres: clinical characterization of 137 cases. Liver Int. 31, 92–98 (2011).

    Article  PubMed  Google Scholar 

  3. van Gulick, J. J. M., Gevers, T. J., van Keimpema, L. & Drenth, J. P. Hepatic and renal manifestations in autosomal dominant polycystic kidney disease: dichotomy of a spectrum. Neth. J. Med. 69, 367–671 (2011).

    CAS  PubMed  Google Scholar 

  4. Waanders, E. et al. Secondary and tertiary structure modeling reveals effects of novel mutations in polycystic liver disease genes PRKCSH and SEC63. Clin. Genet. 78, 47–56 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Davila, S. et al. Mutations in SEC63 cause autosomal dominant polycystic liver disease. Nat. Genet. 36, 575–577 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Drenth, J. P., te Morsche, R. H., Smink, R., Bonifacino, J. S. & Jansen, J. B. Germline mutations in PRKCSH are associated with autosomal dominant polycystic liver disease. Nat. Genet. 33, 345–347 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Janssen, M. J., Waanders, E., Woudenberg, J., Lefeber, D. J. & Drenth, J. P. Congenital disorders of glycosylation in hepatology: the example of polycystic liver disease. J. Hepatol. 52, 432–440 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Everson, G. T., Taylor, M. R. & Doctor, R. B. Polycystic disease of the liver. Hepatology 40, 774–782 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Torres, V. E. & Harris, P. C. Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int. 76, 149–168 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Torres, V. E., Harris, P. C. & Pirson, Y. Autosomal dominant polycystic kidney disease. Lancet 369, 1287–1301 (2007).

    Article  PubMed  Google Scholar 

  11. Harris, P. C. & Torres, V. E. Polycystic kidney disease. Annu. Rev. Med. 60, 321–337 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yoder, B. K. Role of primary cilia in the pathogenesis of polycystic kidney disease. J. Am. Soc. Nephrol. 18, 1381–1388 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Johnson, A. M. & Gabow, P. A. Identification of patients with autosomal dominant polycystic kidney disease at highest risk for end-stage renal disease. J. Am. Soc. Nephrol. 8, 1560–1567 (1997).

    CAS  PubMed  Google Scholar 

  14. Robinson, C. et al. Clinical utility of PKD2 mutation testing in a polycystic kidney disease cohort attending a specialist nephrology out-patient clinic. BMC Nephrol. 13, 79 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Drenth, J. P., Martina, J. A., van de Kerkhof, R., Bonifacino, J. S. & Jansen, J. B. Polycystic liver disease is a disorder of cotranslational protein processing. Trends Mol. Med. 11, 37–42 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Fedeles, S. V. et al. A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin-1 as the central determinant of cyst formation. Nat. Genet. 43, 639–647 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bergmann, C. & Weiskirchen, R. It's not all in the cilium, but on the road to it: genetic interaction network in polycystic kidney and liver diseases and how trafficking and quality control matter. J. Hepatol. 56, 1201–1203 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Janssen, M. J. et al. Secondary, somatic mutations might promote cyst formation in patients with autosomal dominant polycystic liver disease. Gastroenterology 141, 2056–2063 e2 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Banales, J. M., Munoz-Garrido, P. & Bujanda, L. Somatic second-hit mutations leads to polycystic liver diseases. World J. Gastroenterol. (in press).

  20. Strazzabosco, M. & Fabris, L. Development of the bile ducts: essentials for the clinical hepatologist. J. Hepatol. 56, 1159–1170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Drenth, J. P., Chrispijn, M. & Bergmann, C. Congenital fibrocystic liver diseases. Best Pract. Res. Clin. Gastroenterol. 24, 573–584 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Strazzabosco, M. & Somlo, S. Polycystic liver diseases: congenital disorders of cholangiocyte signaling. Gastroenterology 140, 1855–1859 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Alvaro, D. et al. Morphological and functional features of hepatic cyst epithelium in autosomal dominant polycystic kidney disease. Am. J. Pathol. 172, 321–332 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gradilone, S. A. et al. Activation of Trpv4 reduces the hyperproliferative phenotype of cystic cholangiocytes from an animal model of ARPKD. Gastroenterology 139, 304–314 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Drummond, I. A. Polycystins, focal adhesions and extracellular matrix interactions. Biochim. Biophys. Acta 1812, 1322–1326 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Banales, J. M. et al. The cAMP effectors Epac and protein kinase a (PKA) are involved in the hepatic cystogenesis of an animal model of autosomal recessive polycystic kidney disease (ARPKD). Hepatology 49, 160–174 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Spirli, C. et al. Altered store operated calcium entry increases cyclic 3′, 5′-adenosine monophosphate production and extracellular signal-regulated kinases 1 and 2 phosphorylation in polycystin-2-defective cholangiocytes. Hepatology 55, 856–868 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Spirli, C. et al. Cyclic AMP/PKA-dependent paradoxical activation of Raf/MEK/ERK signaling in polycystin-2 defective mice treated with sorafenib. Hepatology 56, 2363–2374 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Masyuk, T. V., Masyuk, A. I., Torres, V. E., Harris, P. C. & LaRusso, N. F. Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3′, 5′-cyclic monophosphate. Gastroenterology 132, 1104–1116 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Spirli, C. et al. Mammalian target of rapamycin regulates vascular endothelial growth factor-dependent liver cyst growth in polycystin-2-defective mice. Hepatology 51, 1778–1788 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Amura, C. R. et al. VEGF receptor inhibition blocks liver cyst growth in pkd2(WS25/-) mice. Am. J. Physiol. Cell Physiol. 293, C419–C428 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Qian, Q. et al. Sirolimus reduces polycystic liver volume in ADPKD patients. J. Am. Soc. Nephrol. 19, 631–638 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Novalic, Z. et al. Dose-dependent effects of sirolimus on mTOR signaling and polycystic kidney disease. J. Am. Soc. Nephrol. 23, 842–853 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gevers, T. J. & Drenth, J. P. Somatostatin analogues for treatment of polycystic liver disease. Curr. Opin. Gastroenterol. 27, 294–300 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Perico, N. et al. Sirolimus therapy to halt the progression of ADPKD. J. Am. Soc. Nephrol. 21, 1031–1040 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Serra, A. L. et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 820–829 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Walz, G. et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 830–840 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Stallone, G. et al. Rapamycin for treatment of type I autosomal dominant polycystic kidney disease (RAPYD-study): a randomized, controlled study. Nephrol. Dial. Transplant. 27, 3560–3567 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Chrispijn, M. & Drenth, J. P. Everolimus and long acting octreotide as a volume reducing treatment of polycystic livers (ELATE): study protocol for a randomized controlled trial. Trials 12, 246 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bae, K. T. et al. Magnetic resonance imaging evaluation of hepatic cysts in early autosomal-dominant polycystic kidney disease: the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease cohort. Clin. J. Am. Soc. Nephrol. 1, 64–69 (2006).

    Article  PubMed  Google Scholar 

  41. Caroli, A. et al. Reducing polycystic liver volume in ADPKD: effects of somatostatin analogue octreotide. Clin. J. Am. Soc. Nephrol. 5, 783–789 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hogan, M. C. et al. Randomized clinical trial of long-acting somatostatin for autosomal dominant polycystic kidney and liver disease. J. Am. Soc. Nephrol. 21, 1052–1061 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. van Keimpema, L. et al. Lanreotide reduces the volume of polycystic liver: a randomized, double-blind, placebo-controlled trial. Gastroenterology 137, 1661–1668 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Hoevenaren, I. A. et al. Polycystic liver: clinical characteristics of patients with isolated polycystic liver disease compared with patients with polycystic liver and autosomal dominant polycystic kidney disease. Liver Int. 28, 264–270 (2008).

    Article  PubMed  Google Scholar 

  45. Waanders, E., te Morsche, R. H., de Man, R. A., Jansen, J. B. & Drenth, J. P. Extensive mutational analysis of PRKCSH and SEC63 broadens the spectrum of polycystic liver disease. Hum. Mutat. 27, 830 (2006).

    Article  PubMed  Google Scholar 

  46. Alvaro, D. et al. Estrogens and insulin-like growth factor 1 modulate neoplastic cell growth in human cholangiocarcinoma. Am. J. Pathol. 169, 877–888 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chapman, A. B. Cystic disease in women: clinical characteristics and medical management. Adv. Ren. Replace Ther. 10, 24–30 (2003).

    Article  PubMed  Google Scholar 

  48. Sherstha, R. et al. Postmenopausal estrogen therapy selectively stimulates hepatic enlargement in women with autosomal dominant polycystic kidney disease. Hepatology 26, 1282–1286 (1997).

    CAS  PubMed  Google Scholar 

  49. Qian, Q. et al. Clinical profile of autosomal dominant polycystic liver disease. Hepatology 37, 164–171 (2003).

    Article  PubMed  Google Scholar 

  50. Grantham, J. J. et al. Volume progression in polycystic kidney disease. N. Engl. J. Med. 354, 2122–2130 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Bleeker-Rovers, C. P., Vos, F. J., Corstens, F. H. & Oyen, W. J. Imaging of infectious diseases using [18F] fluorodeoxyglucose PET. Q. J. Nucl. Med. Mol. Imaging 52, 17–29 (2008).

    CAS  PubMed  Google Scholar 

  52. Piccoli, G. B. et al. Positron emission tomography in the diagnostic pathway for intracystic infection in adpkd and “cystic” kidneys. A case series. BMC Nephrol. 12, 48 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jouret, F. et al. Positron-emission computed tomography in cyst infection diagnosis in patients with autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 1644–1650 (2011).

    Article  PubMed  Google Scholar 

  54. Fick, G. M. & Gabow, P. A. Natural history of autosomal dominant polycystic kidney disease. Annu. Rev. Med. 45, 23–29 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Waanders, E. et al. Carbohydrate antigen 19–19 is extremely elevated in polycystic liver disease. Liver Int. 29, 1389–1395 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Kanaan, N., Goffin, E., Pirson, Y., Devuyst, O. & Hassoun, Z. Carbohydrate antigen 19–19 as a diagnostic marker for hepatic cyst infection in autosomal dominant polycystic kidney disease. Am. J. Kidney Dis. 55, 916–922 (2010).

    Article  PubMed  Google Scholar 

  57. Pei, Y. et al. Unified criteria for ultrasonographic diagnosis of ADPKD. J. Am. Soc. Nephrol. 20, 205–212 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Qian, Q. Isolated polycystic liver disease. Adv. Chronic Kidney Dis. 17, 181–189 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gigot, J. F. et al. Adult polycystic liver disease: is fenestration the most adequate operation for long-term management? Ann. Surg. 225, 286–294 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. van Keimpema, L., de Koning, D. B., Strijk, S. P. & Drenth, J. P. Aspiration-sclerotherapy results in effective control of liver volume in patients with liver cysts. Dig. Dis. Sci. 53, 2251–2257 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  61. van Keimpema, L., Ruurda, J. P., Ernst, M. F., van Geffen, H. J. & Drenth, J. P. Laparoscopic fenestration of liver cysts in polycystic liver disease results in a median volume reduction of 12.5%. J. Gastrointest. Surg. 12, 477–482 (2008).

    Article  PubMed  Google Scholar 

  62. Ecder, T. & Schrier, R. W. Cardiovascular abnormalities in autosomal-dominant polycystic kidney disease. Nat. Rev. Nephrol. 5, 221–228 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vlak, M. H., Algra, A., Brandenburg, R. & Rinkel, G. J. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol. 10, 626–636 (2011).

    Article  PubMed  Google Scholar 

  64. Xu, H. W., Yu, S. Q., Mei, C. L. & Li, M. H. Screening for intracranial aneurysm in 355 patients with autosomal-dominant polycystic kidney disease. Stroke 42, 204–206 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Gevers, T. J., de Koning, D. B., van Dijk, A. P. & Drenth, J. P. Low prevalence of cardiac valve abnormalities in patients with autosomal dominant polycystic liver disease. Liver Int. 32, 690–692 (2012).

    Article  PubMed  Google Scholar 

  66. Torra, R. et al. Prevalence of cysts in seminal tract and abnormal semen parameters in patients with autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 3, 790–793 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  67. van Keimpema, L. & Hockerstedt, K. Treatment of polycystic liver disease. Br. J. Surg. 96, 1379–1380 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Larssen, T. B., Rosendahl, K., Horn, A., Jensen, D. K. & Rorvik, J. Single-session alcohol sclerotherapy in symptomatic benign hepatic cysts performed with a time of exposure to alcohol of 10 min: initial results. Eur. Radiol. 13, 2627–2632 (2003).

    Article  PubMed  Google Scholar 

  69. Russell, R. T. & Pinson, C. W. Surgical management of polycystic liver disease. World J. Gastroenterol. 13, 5052–5059 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Martin, I. J., McKinley, A. J., Currie, E. J., Holmes, P. & Garden, O. J. Tailoring the management of nonparasitic liver cysts. Ann. Surg. 228, 167–172 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schnelldorfer, T., Torres, V. E., Zakaria, S., Rosen, C. B. & Nagorney, D. M. Polycystic liver disease: a critical appraisal of hepatic resection, cyst fenestration, and liver transplantation. Ann. Surg. 250, 112–118 (2009).

    Article  PubMed  Google Scholar 

  72. Pirenne, J. et al. Liver transplantation for polycystic liver disease. Liver Transpl. 7, 238–245 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Coelho-Prabhu, N., Nagorney, D. M. & Baron, T. H. ERCP for the treatment of bile leak after partial hepatectomy and fenestration for symptomatic polycystic liver disease. World J. Gastroenterol. 18, 3705–3709 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Temmerman, F. et al. Systematic review: the pathophysiology and management of polycystic liver disease. Aliment. Pharmacol. Ther. 34, 702–713 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Arrazola, L., Moonka, D., Gish, R. G. & Everson, G. T. Model for end-stage liver disease (MELD) exception for polycystic liver disease. Liver Transpl. 12 (Suppl. 3), S110–S111 (2006).

    Article  PubMed  Google Scholar 

  76. Freeman, R. B. Jr et al. Model for end-stage liver disease (MELD) exception guidelines: results and recommendations from the MELD Exception Study Group and Conference (MESSAGE) for the approval of patients who need liver transplantation with diseases not considered by the standard MELD formula. Liver Transpl. 12 (Suppl. 3), S128–S136 (2006).

    Article  PubMed  Google Scholar 

  77. Adam, R. & Hoti, E. Liver transplantation: the current situation. Semin. Liver Dis. 29, 3–18 (2009).

    Article  PubMed  Google Scholar 

  78. van Keimpema, L. et al. Excellent survival after liver transplantation for isolated polycystic liver disease: an European Liver Transplant Registry study. Transpl. Int. 24, 1239–1245 (2011).

    Article  PubMed  Google Scholar 

  79. Kirchner, G. I. et al. Outcome and quality of life in patients with polycystic liver disease after liver or combined liver-kidney transplantation. Liver Transpl. 12, 1268–1277 (2006).

    Article  PubMed  Google Scholar 

  80. Ubara, Y. et al. Intravascular embolization therapy in a patient with an enlarged polycystic liver. Am. J. Kidney Dis. 43, 733–738 (2004).

    Article  PubMed  Google Scholar 

  81. Bello-Reuss, E., Holubec, K. & Rajaraman, S. Angiogenesis in autosomal-dominant polycystic kidney disease. Kidney Int. 60, 37–45 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, M. Q., Duan, F., Liu, F. Y., Wang, Z. J. & Song, P. Treatment of symptomatic polycystic liver disease: transcatheter super-selective hepatic arterial embolization using a mixture of NBCA and iodized oil. Abdom. Imaging http://dx.doi.org/10.1007/s00261-012-9931-9931.

  83. Takei, R. et al. Percutaneous transcatheter hepatic artery embolization for liver cysts in autosomal dominant polycystic kidney disease. Am. J. Kidney Dis. 49, 744–752 (2007).

    Article  PubMed  Google Scholar 

  84. Patel, Y. C. Somatostatin and its receptor family. Front. Neuroendocrinol. 20, 157–198 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Temmerman, F. et al. The reduction in liver volume in polycystic liver disease with lanreotide is dose dependent and is most pronounced in patients with the highest liver volume. J. Hepatol. 56, S547 (2012).

    Article  Google Scholar 

  86. Chrispijn, M. et al. The long-term outcome of patients with polycystic liver disease treated with lanreotide. Aliment. Pharmacol. Ther. 35, 266–274 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Hogan, M. C. et al. Somatostatin analog therapy for severe polycystic liver disease: results after 2 years. Nephrol. Dial. Transplant. 27, 3532–3539 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Modlin, I. M., Pavel, M., Kidd, M. & Gustafsson, B. I. Review article: somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine (carcinoid) tumours. Aliment. Pharmacol. Ther. 31, 169–188 (2010).

    CAS  PubMed  Google Scholar 

  89. Weckbecker, G., Briner, U., Lewis, I. & Bruns, C. SOM230: a new somatostatin peptidomimetic with potent inhibitory effects on the growth hormone/insulin-like growth factor-I axis in rats, primates, and dogs. Endocrinology 143, 4123–4130 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Lesche, S., Lehmann, D., Nagel, F., Schmid, H. A. & Schulz, S. Differential effects of octreotide and pasireotide on somatostatin receptor internalization and trafficking in vitro. J. Clin. Endocrinol. Metab. 94, 654–661 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the Institute of Genetic and Metabolic Diseases of the Radboud University Nijmegen Medical Centre, The Netherlands. The authors thank the following persons from the Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Centre, The Netherlands: Frank Weimer for designing the structure of this paper and drafting the first version, Melissa Chrispijn for expert advice and Marten Lantinga for proofreading the article before submission.

Author information

Authors and Affiliations

Authors

Contributions

T. J. G. Gevers researched data for the article. Both authors contributed to discussion of the content and wrote the article. J. P. H. Drenth reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Joost P. H. Drenth.

Ethics declarations

Competing interests

J. P. H. Drenth has received grant support from Ipsen and Novartis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gevers, T., Drenth, J. Diagnosis and management of polycystic liver disease. Nat Rev Gastroenterol Hepatol 10, 101–108 (2013). https://doi.org/10.1038/nrgastro.2012.254

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2012.254

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing