Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organogenesis

Coordinating early kidney development: lessons from gene targeting

Key Points

  • The kidney is an excellent model in which to study the mechanisms of organogenesis.

  • During kidney development, the epithelial ureteric buds branch and induce the surrounding mesenchymal cells to transform into epithelium, which goes on to form the functional unit of the kidney, the nephron.

  • The generation of mouse mutants has lead to the discovery of several genetic cascades that regulate early kidney organogenesis in the mouse.

  • Transcription factors such as Wt1, Pax2, Eya1, Sall1 and Foxc1 contribute to the initiation of organogenesis, and Gdnf signals through the Ret receptor to induce ureteric budding and the regulation of its branching, together with other factors, such as pleiotrophin.

  • Cell-surface proteoglycans, such as glypican-3, and enzymes that regulate the synthesis of the proteoglycans side chains, such as Hs2st, are also important in early kidney development.

  • Wnt signalling is essential for tubulogenesis in the kidney and triggers nephrogenesis in vitro. The bone morphogenetic proteins might regulate the proliferation of nephrogenic cells.

  • The stromal compartment of the kidney is also a significant player in coordinating kidney development. Forkhead box D1 and nuclear retinoic acid receptors are expressed in the stroma and are required for proper kidney development.

  • Gene knockouts in the mouse indicate that signalling from the ureteric bud, kidney mesenchyme and stroma regulate kidney development. However, many of the signals that are involved have yet to be discovered.

Abstract

The kidney is widely used to study the mechanisms of organogenesis. Its development involves fundamental processes, such as epithelial branching, induced morphogenesis and cytodifferentiation, which are common to the development of many other organs. Gene-targeting experiments have greatly improved our understanding of kidney development, and have revealed many important genes that regulate early kidney organogenesis, some of which have a role in inherited human kidney disorders. Although our understanding of how the kidney is assembled is still limited, these studies are beginning to provide insights into the genetic and cellular interactions that regulate early organogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphological stages of early kidney development and some of the genes involved in its development.
Figure 2: Model of genetic interactions during early kidney development.
Figure 3: Marker-gene expression during early kidney development.
Figure 4: Cell-surface heparan sulphate proteoglycans.

Similar content being viewed by others

References

  1. Saxén, L. Organogenesis of the kidney 1–173 (Cambridge Univ. Press, Cambridge, UK, 1987).

    Book  Google Scholar 

  2. Sariola, H. Nephron induction revisited: from caps to condensates. Curr. Opin. Nephrol. Hypertens. 11, 17–21 (2002).

    Article  PubMed  Google Scholar 

  3. Woolf, A. S. & Loughna, S. Origin of glomerular capillaries: is the verdict in? Exp. Nephrol. 6, 17–21 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Hammes, A. et al. Two splice variants of the Wilms' tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 106, 319–329 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Davies, R. et al. Multiple roles for the Wilms' tumor suppressor, WT1. Cancer Res. 59, 1747s–1750s (1999).

    CAS  PubMed  Google Scholar 

  6. Vilain, E. & McCabe, E. R. Mammalian sex determination: from gonads to brain. Mol. Genet. Metab. 65, 74–84 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Parker, K. L., Schedl, A. & Schimmer, B. P. Gene interactions in gonadal development. Annu. Rev. Physiol. 61, 417–433 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Kreidberg, J. A. et al. WT1 is required for early kidney development. Cell 74, 679–691 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Lee, S. B. et al. The Wilms tumor suppressor WT1 encodes a transcriptional activator of amphiregulin. Cell 98, 663–673 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Ryan, G., Steele-Perkins, V., Morris, J. F., Rauscher, F. J. & Dressler, G. R. Repression of Pax-2 by WT1 during normal kidney development. Development 121, 867–875 (1995).

    CAS  PubMed  Google Scholar 

  11. Donovan, M, et al. Initial differentiation of the metanephric mesenchyme is independent of WT1 and the ureteric bud. Dev. Genet. 24, 252–262 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Brophy, P. D., Ostrom, L., Lang, K. M. & Dressler, G. R. Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128, 4747–4756 (2001).Shows that Pax2 might participate in the initiation of kidney development by controlling ureteric-bud formation by Gdnf.

    CAS  PubMed  Google Scholar 

  13. Moore, M. W. et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature 382, 76–79 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Sanchez, M. P. et al. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382, 70–73 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Pichel, J. G. et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382, 73–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Pepicelli, C. V., Kispert, A., Rowitch, D. H. & McMahon, A. P. GDNF induces branching and increased cell proliferation in the ureter of the mouse. Dev. Biol. 192, 193–198 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Sainio, K. et al. Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development 124, 4077–4087 (1997).

    CAS  PubMed  Google Scholar 

  18. Xu, P. X. et al. Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nature Genet. 23, 113–117 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Abdelhak, S. et al. A human homologue of the Drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family. Nature Genet. 15, 157–614 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Nishinakamura, R. et al. Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development 128, 3105–3115 (2001).

    CAS  PubMed  Google Scholar 

  21. Kume, T., Deng, K. & Hogan, B. L. Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 127, 1387–1395 (2000).Reports that the Foxc genes are important in controlling where kidney development occurs, possibly by controlling Gdnf expression.

    CAS  PubMed  Google Scholar 

  22. Airaksinen, M. S. & Saarma, M. The GDNF family: signalling, biological functions and therapeutic value. Nature Rev. Neurosci. 3, 383–394 (2002).

    Article  CAS  Google Scholar 

  23. Pachnis, V., Mankoo, B. & Costantini, F. Expression of the c-ret proto-oncogene during mouse embryogenesis. Development 119, 1005–1017 (1993).

    CAS  PubMed  Google Scholar 

  24. Schuchardt, A., D'Agati, V., Larsson-Blomberg, L., Costantini, F. & Pachnis, V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367, 380–383 (1994).In this study, the inactivation of Ret revealed its essential role in early kidney development.

    Article  CAS  PubMed  Google Scholar 

  25. Durbec, P. et al. GDNF signalling through the Ret receptor tyrosine kinase. Nature 381, 789–793 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Vega, Q. C., Worby, C. A., Lechner, M. S., Dixon, J. E. & Dressler, G. R. Glial cell line-derived neurotrophic factor activates the receptor tyrosine kinase RET and promotes kidney morphogenesis. Proc. Natl Acad. Sci. USA 93, 10657–10661 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Enomoto, H. et al. GFR α1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron 21, 317–324 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. de Graaff, E. et al. Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Dev. 15, 2433–2444 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tang, M. J., Worley, D., Sanicola, M. & Dressler, G. R. The RET-glial cell-derived neurotrophic factor (GDNF) pathway stimulates migration and chemoattraction of epithelial cells. J. Cell Biol. 142, 1337–1345 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tang, M. J., Cai, Y., Tsai, S. J., Wang, Y. K. & Dressler, G. R. Ureteric bud outgrowth in response to RET activation is mediated by phosphatidylinositol 3-kinase. Dev. Biol. 243, 128–136 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Sakurai, H., Bush, K. T. & Nigam, S. K. Identification of pleiotrophin as a mesenchymal factor involved in ureteric bud branching morphogenesis. Development 128, 3283–3293 (2001).

    CAS  PubMed  Google Scholar 

  32. Miyazaki, Y., Oshima, K., Fogo, A., Hogan, B. L. & Ichikawa, I. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J. Clin. Invest. 105, 863–873 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Raatikainen-Ahokas, A., Hytonen, M., Tenhunen, A., Sainio, K. & Sariola, H. BMP-4 affects the differentiation of metanephric mesenchyme and reveals an early anterior-posterior axis of the embryonic kidney. Dev. Dyn. 217, 146–158 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Perrimon, N. & Bernfield, M. Cellular functions of proteoglycans – an overview. Semin. Cell Dev. Biol. 12, 65–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Selleck, S. B. Proteoglycans and pattern formation: sugar biochemistry meets developmental genetics. Trends Genet. 16, 206–212 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Davies, J., Lyon, M., Gallagher, J. & Garrod, D. Sulphated proteoglycan is required for collecting duct growth and branching but not nephron formation during kidney development. Development 121, 1507–1517 (1995).

    CAS  PubMed  Google Scholar 

  37. Bullock, S. L., Fletcher, J. M., Beddington, R. S. & Wilson, V. A. Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev. 12, 1894–1906 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kobayashi, M., Habuchi, H., Yoneda, M., Habuchi, O. & Kimata, K. Molecular cloning and expression of Chinese hamster ovary cell heparan-sulfate 2-sulfotransferase. J. Biol. Chem. 272, 13980–13985 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Kispert, A., Vainio, S., Shen, L., Rowitch, D. H. & McMahon, A. P. Proteoglycans are required for maintenance of Wnt-11 expression in the ureter tips. Development 122, 3627–3637 (1996).

    CAS  PubMed  Google Scholar 

  40. Merry, C. L. et al. The molecular phenotype of heparan sulfate in the Hs2st−/− mutant mouse. J. Biol. Chem. 276, 35429–35434 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Cano-Gauci, D. F. et al. Glypican-3-deficient mice exhibit developmental overgrowth and some of the abnormalities typical of Simpson-Golabi-Behmel syndrome. J. Cell Biol. 146, 255–264 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Grisaru, S. & Rosenblum, N. D. Glypicans and the biology of renal malformations. Pediatr. Nephrol. 16, 302–306 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Grisaru, S., Cano-Gauci, D., Tee, J., Filmus, J. & Rosenblum, N. D. Glypican-3 modulates BMP- and FGF-mediated effects during renal branching morphogenesis. Dev. Biol. 231, 31–46 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Bernfield, M. et al. Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68, 729–777 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Karumanchi, S. A. et al. Cell surface glypicans are low-affinity endostatin receptors. Mol. Cell 7, 811–822 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. O'Reilly, M. S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Lin, Y. et al. Induced repatterning of type XVIII collagen expression in ureter bud from kidney to lung type: association with sonic hedgehog and ectopic surfactant protein C. Development 128, 1573–1585 (2001).

    CAS  PubMed  Google Scholar 

  48. Karihaloo, A. et al. Endostatin regulates branching morphogenesis of renal epithelial cells and ureteric bud. Proc. Natl Acad. Sci. USA 98, 12509–12514 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Clark, A. T. & Bertram, J. F. Molecular regulation of nephron endowment. Am. J. Physiol. 276, F485–F497 (1999).

    CAS  PubMed  Google Scholar 

  50. Miyamoto, N., Yoshida, M., Kuratani, S., Matsuo, I. & Aizawa, S. Defects of urogenital development in mice lacking Emx2. Development 124, 1653–1664 (1997).

    CAS  PubMed  Google Scholar 

  51. Huelsken, J. & Birchmeier, W. New aspects of Wnt signaling pathways in higher vertebrates. Curr. Opin. Genet. Dev. 11, 547–553 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Yamaguchi, T. P. Heads or tails: Wnts and anterior-posterior patterning. Curr. Biol. 11, R713–R724 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Herzlinger, D., Qiao, J., Cohen, D., Ramakrishna, N. & Brown, A. M. Induction of kidney epithelial morphogenesis by cells expressing Wnt-1. Dev. Biol. 166, 815–818 (1994).The first demonstration that Wnt signalling might be important in kidney-tubule induction and is sufficient to induce kidney tubules in vitro.

    Article  CAS  PubMed  Google Scholar 

  54. Stark, K., Vainio, S., Vassileva, G. & McMahon, A. P. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372, 679–683 (1994).The first paper to demonstrate the essential role of Wnt signals in nephrogenesis.

    Article  CAS  PubMed  Google Scholar 

  55. Vainio, S. J. & Uusitalo, M. S. A road to kidney tubules via the Wnt pathway. Pediatr. Nephrol. 15, 151–156 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. De Strooper, B. & Annaert, W. Where Notch and Wnt signaling meet. The presenilin hub. J. Cell Biol. 152, F17–F20 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McCright, B. et al. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development 128, 491–502 (2001).

    CAS  PubMed  Google Scholar 

  58. Kispert, A., Vainio, S. & McMahon, A. P. Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 125, 4225–4234 (1998).This study demonstrated that Wnt4 signalling is important in inducing nephrogenesis in vitro.

    CAS  PubMed  Google Scholar 

  59. Itäranta, P. et al. Wnt-6 is expressed in the ureter bud and induces kidney tubule development in vitro. Genesis 32, 259–268 (2002).

    Article  PubMed  CAS  Google Scholar 

  60. Stark, M. R. et al. Frizzled-4 expression during chick kidney development. Mech. Dev. 98, 121–125 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Leyns, L., Bouwmeester, T., Kim, S. H., Piccolo, S. & De Robertis, E. M. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88, 747–756 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lescher, B., Haenig, B. & Kispert, A. sFRP-2 is a target of the Wnt-4 signaling pathway in the developing metanephric kidney. Dev. Dyn. 213, 440–451 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Yoshino, K. et al. Secreted Frizzled-related proteins can regulate metanephric development. Mech. Dev. 102, 45–55 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Montesano, R., Matsumoto, K., Nakamura, T. & Orci, L. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67, 901–908 (1991).

    Article  CAS  PubMed  Google Scholar 

  65. Sudarsan, V., Pasalodos-Sanchez, S., Wan, S., Gampel, A. & Skaer, H. A genetic hierarchy establishes mitogenic signalling and mitotic competence in the renal tubules of Drosophila. Development 129, 935–944 (2002).

    CAS  PubMed  Google Scholar 

  66. Ainsworth, C., Wan, S. & Skaer, H. Coordinating cell fate and morphogenesis in Drosophila renal tubules. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 931–937 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hogan, B. L. Bone morphogenetic proteins in development. Curr. Opin. Genet. Dev. 6, 432–438 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Dudley, A. T. & Robertson, E. J. Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Dev. Dyn. 208, 349–362 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Dudley, A. T., Lyons, K. M. & Robertson, E. J. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev. 9, 2795–2807 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Luo, G. et al. BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev. 9, 2808–2820 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Reddi, A. H. Bone morphogenetic proteins and skeletal development: the kidney–bone connection. Pediatr. Nephrol. 14, 598–601 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Al-Awqati, Q. & Oliver, J. A. Stem cells in the kidney. Kidney Int. 61, 387–395 (2002).

    Article  PubMed  Google Scholar 

  73. Dudley, A. T., Godin, R. E. & Robertson, E. J. Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev. 13, 1601–1613 (1999).Reports that the nephrogenic zone and stromal zone might exchange signals and regulate kidney development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hatini, V., Huh, S. O., Herzlinger, D., Soares, V. C. & Lai, E. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev. 10, 1467–1478 (1996).This knockout of Bf2 indicates that the stromal cells are essential for kidney development.

    Article  CAS  PubMed  Google Scholar 

  75. Mendelsohn, C., Batourina, E., Fung, S., Gilbert, T. & Dodd, J. Stromal cells mediate retinoid-dependent functions essential for renal development. Development 126, 1139–1148 (1999).

    CAS  PubMed  Google Scholar 

  76. Batourina, E. et al. Vitamin A controls epithelial/mesenchymal interactions through Ret expression. Nature Genet. 27, 74–78 (2001).Reports that Ret can rescue the kidney defect in Rar α/ Rar β double-knockout embryos, indicating that stromal cells might signal to regulate ureteric-bud activity.

    Article  CAS  PubMed  Google Scholar 

  77. Qiao, J. et al. FGF-7 modulates ureteric bud growth and nephron number in the developing kidney. Development 126, 547–554 (1999).

    CAS  PubMed  Google Scholar 

  78. Kawakami, Y. et al. WNT signals control FGF-dependent limb initiation and AER induction in the chick embryo. Cell 104, 891–900 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Lin, Y. et al. Induction of ureter branching as a response to Wnt-2b signaling during early kidney organogenesis. Dev. Dyn. 222, 26–39 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Serluca, F. C. & Fishman, M. C. Pre-pattern in the pronephric kidney field of zebrafish. Development 128, 2233–2241 (2001).

    CAS  PubMed  Google Scholar 

  81. Drummond, I. A. et al. Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development 125, 4655–4667 (1998).

    CAS  PubMed  Google Scholar 

  82. Lammert, E., Cleaver, O. & Melton, D. Induction of pancreatic differentiation by signals from blood vessels. Science 294, 564–567 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Matsumoto, K., Yoshitomi, H., Rossant, J. & Zaret, K. S. Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294, 559–563 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Stuart, R. O., Bush, K. T. & Nigam, S. K. Changes in global gene expression patterns during development and maturation of the rat kidney. Proc. Natl Acad. Sci. USA 98, 5649–5654 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Valerius, M. T., Patterson, L. T., Witte, D. P. & Potter, S. S. Microarray analysis of novel cell lines representing two stages of metanephric mesenchyme differentiation. Mech. Dev. 112, 219–232 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Kuure (Department of Biomedicine, Biomedicum, University of Helsinki, Finland) and P. Itäranta (Biocenter Oulu and Department of Biochemistry, Linnanmaa, University of Oulu, Oulu, Finland) for the images in figure 3. We acknowledge support from the Academy of Finland, Sigrid Jusélius Foundation and EU programme. We apologize for the failure to cite many important contributions to the field owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seppo Vainio.

Related links

Related links

DATABASES

Flybase

dally

frizzled

spalt

LocusLink

Amphiregulin

Bmp2

Bmp4

Bmp7

Egf

Emx2

endostatin

Eya1

EYA1

Fgf1

Fgf2

Fgf7

Foxc1

Foxd1

Frizzled-4

Gdnf

Gfra1

Gpc3

Hgf

Hs2st

Met

Notch

Pax2

pleiotrophin

Rara

Rarb

Ret

Sall1

SALL1

sFrp1

sFrp2

Tgf-β

Wg

Wnt2b

Wnt4

Wnt6

Wnt11

Wt1

WT1

OMIM

branchio-oto-renal syndrome

Frasier syndrome

renal dysplasia

Simpson–Golabi–Behmel syndrome

Townes–Brocks syndrome

WAGR syndrome

FURTHER INFORMATION

Encyclopedia of Life Sciences

kidney and renal tract: developmental disorders

The Kidney Development Database

National Institute of Diabetes & Digestive & Kidney Diseases

Glossary

WOLFFIAN DUCT

A duct that originates from the mesonephros, which gives rise to the ureteric bud of the metanephric kidney. The duct persists in males to contribute to parts of the gonad, but regresses in females.

CHORIOALLANTOIC MEMBRANE

A membrane that surrounds bird embryos, which lies adjacent to the egg shell and contributes to gas exchange.

INTERMEDIATE MESODERM

A specific region of embryonic mesoderm that forms the kidney and the sex organs.

METANEPHRIC BLASTEMA

Loosely organized mesenchymal cells that form nephrons in the kidney.

NEPHROGENIC MESENCHYME

Mesenchymal cells adjacent to the tips of the branching ureteric bud that will form the nephrons.

STROMA

Connective tissue that is made up of cells, such as fibroblasts, and matrix, such as collagen.

NEPHRON

The functional unit of the adult kidney that contains the organ's secretory and excretory parts.

GLOMERULUS

The network of blood capillaries in the cup-like end (Bowman's capsule) of the nephron, where waste products are filtered from the blood into the kidney tubule.

COLLECTING DUCT

Structures of the collecting-duct system that drain the nephrons of urine and that derive from the branched ureteric bud.

RENAL PELVIS

A funnel-shaped structure that is formed at one end by the expanded upper portion of the ureter and at the other by the union of the calyxes of the kidney, which receive urine from the collecting ducts. Urine collected here is funnelled through to the ureter, to be collected in the bladder and then excreted.

ENDOTHELIAL CELLS

Flattened cells that grow in a single layer and line blood vessels.

HOMEOBOX

A 180-base-pair sequence that is present in many developmental genes of animals and plants. It encodes a DNA-binding helix–turn–helix motif, indicating that homeobox-containing gene products function as transcription factors.

GLYCOSAMINOGLYCANS

(GAGs). Polysaccharides that comprise repeating disaccharide units of amino-sugar derivatives that are covalently bonded to proteins to function as proteoglycans. Four types of GAG exist according to their sugar residues, and sulphate group numbers and location: chondroitan sulphate and dermatan sulphate; heparin sulphate and heparin; keratan sulphate and hyaluronan.

HEPARAN SULPHATE

A sulphated polysaccharide that is found in cell-surface proteoglycans and is structurally similar to heparin. Heparan sulphates are highly heterogeneous, with different lengths of saccharide chain, levels of sulphation and core carbohydrate sequences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vainio, S., Lin, Y. Coordinating early kidney development: lessons from gene targeting. Nat Rev Genet 3, 533–543 (2002). https://doi.org/10.1038/nrg842

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg842

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing