Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The genetics of familial combined hyperlipidaemia

Abstract

Almost 40 years after the first description of familial combined hyperlipidaemia (FCHL) as a discrete entity, the genetic and metabolic basis of this prevalent disease has yet to be fully unveiled. In general, two strategies have been applied to elucidate its complex genetic background, the candidate-gene and the linkage approach, which have yielded an extensive list of genes associated with FCHL or its related traits, with a variable degree of scientific evidence. Some genes influence the FCHL phenotype in many pedigrees, whereas others are responsible for the affected state in only one kindred, thereby adding to the genetic and phenotypic heterogeneity of FCHL. This Review outlines the individual genes that have been described in FCHL and how these genes can be incorporated into the current concept of metabolic pathways resulting in FCHL: adipose tissue dysfunction, hepatic fat accumulation and overproduction, disturbed metabolism and delayed clearance of apolipoprotein-B-containing particles. Genes that affect metabolism and clearance of plasma lipoprotein particles have been most thoroughly studied. The adoption of new traits, in addition to the classic plasma lipid traits, could aid in the identification of new genes implicated in other pathways in FCHL. Moreover, systems genetic analysis, which integrates genetic polymorphisms with data on gene expression levels, lipidomics or metabolomics, will attribute functions to genetic variants in addition to revealing new genes.

Key Points

  • The list of familial combined hyperlipidaemia (FCHL) susceptibility genes is expanding and now comprises approximately 35 genes, each with a different level of scientific evidence

  • Genes that affect the metabolism and clearance of plasma lipoprotein particles have been studied in most detail in patients with FCHL

  • The adoption of new metabolic traits will aid in the identification of genes that are more proximal in the metabolic processes that eventually result in elevated plasma lipoprotein levels

  • The FCHL gene pool consists of a mix of genes, ranging from very rare with substantial effect sizes to more common with only a moderate effect on lipid phenotype

  • Linkage and genome-wide association studies are both hypothesis-free, complementary strategies, but not sufficient to unravel the complex genetic background of FCHL

  • Systems genetic analysis, which integrates genetic polymorphisms with the wealth of information emerging from new genomic and proteomic technologies, should reveal new genes and attribute functions to genetic variants

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key processes in the pathogenesis of familial combined hyperlipidaemia.

Similar content being viewed by others

References

  1. Goldstein, J. L., Schrott, H. G., Hazzard, W. R., Bierman, E. L. & Motulsky, A. G. Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J. Clin. Invest. 52, 1544–1568 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sniderman, A. D., Ribalta, J. & Castro Cabezas, M. How should FCHL be defined and how should we think about its metabolic bases? Nutr. Metab. Cardiovasc. Dis. 11, 259–273 (2001).

    CAS  PubMed  Google Scholar 

  3. Ayyobi, A. F. et al. Small, dense LDL and elevated apolipoprotein B are the common characteristics for the three major lipid phenotypes of familial combined hyperlipidemia. Arterioscler. Thromb. Vasc. Biol. 23, 1289–1294 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Veerkamp, M. J. et al. Diagnosis of familial combined hyperlipidemia based on lipid phenotype expression in 32 families: results of a 5-year follow-up study. Arterioscler. Thromb. Vasc. Biol. 22, 274–282 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Jarvik, G. P. et al. Genetic predictors of FCHL in four large pedigrees. Influence of ApoB level major locus predicted genotype and LDL subclass phenotype. Arterioscler. Thromb. Vasc. Biol. 14, 1687–1694 (1994).

    Article  CAS  Google Scholar 

  6. Brouwers, M. C. et al. Novel drugs in familial combined hyperlipidemia: lessons from type 2 diabetes mellitus. Curr. Opin. Lipidol. 21, 530–538 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Pollex, R. L. & Hegele, R. A. Complex trait locus linkage mapping in atherosclerosis: time to take a step back before moving forward? Arterioscler Thromb. Vasc Biol. 25, 1541–1544 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Bodnar, J. S. et al. Positional cloning of the combined hyperlipidemia gene Hyplip1. Nat. Genet. 30, 110–116 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Nohara, A. et al. High frequency of a retinoid X receptor gamma gene variant in familial combined hyperlipidemia that associates with atherogenic dyslipidemia. Arterioscler. Thromb. Vasc. Biol. 27, 923–928 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Salazar, J. et al. Two novel single nucleotide polymorphisms in the promoter of the cellular retinoic acid binding protein II gene (CRABP-II). Mol. Cell Probes. 17, 21–23 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Meex, S. J. et al. The ATF6-Met[67]Val substitution is associated with increased plasma cholesterol levels. Arterioscler. Thromb. Vasc. Biol. 29, 1322–1327 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pajukanta, P. et al. Familial combined hyperlipidemia is associated with upstream transcription factor 1 (USF1). Nat. Genet. 36, 371–376 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Coon, H. et al. Upstream stimulatory factor 1 associated with familial combined hyperlipidemia, LDL cholesterol, and triglycerides. Hum. Genet. 117, 444–451 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Huertas-Vazquez, A. et al. Familial combined hyperlipidemia in Mexicans: association with upstream transcription factor 1 and linkage on chromosome 16q24.1. Arterioscler. Thromb. Vasc. Biol. 25, 1985–1991 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Coon, H. et al. TXNIP gene not associated with familial combined hyperlipidemia in the NHLBI Family Heart Study. Atherosclerosis 174, 357–362 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. van der Vleuten, G. M. et al. Can we exclude the TXNIP gene as a candidate gene for familial combined hyperlipidemia? Am. J. Med. Genet. A 140, 1010–1012 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. van der Vleuten, G. M. et al. Thioredoxin interacting protein in Dutch families with familial combined hyperlipidemia. Am. J. Med. Genet. A 130A, 73–75 (2004).

    Article  PubMed  Google Scholar 

  18. Aulchenko, Y. S. et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat. Genet. 41, 47–55 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Kathiresan, S. et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat. Genet. 41, 56–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weissglas-Volkov, D. et al. Investigation of variants identified in caucasian genome-wide association studies for plasma high-density lipoprotein cholesterol and triglycerides levels in Mexican dyslipidemic study samples. Circ. Cardiovasc. Genet. 3, 31–38 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Reynisdottir, S., Eriksson, M., Angelin, B. & Arner, P. Impaired activation of adipocyte lipolysis in familial combined hyperlipidemia. J. Clin. Invest. 95, 2161–2169 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Arner, P. et al. Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 478, 110–113 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pihlajamäki, J. et al. The hormone sensitive lipase gene in familial combined hyperlipidemia and insulin resistance. Eur. J. Clin. Invest. 31, 302–308 (2001).

    Article  PubMed  Google Scholar 

  25. Ylitalo, K. et al. Reduced hormone-sensitive lipase activity is not a major metabolic defect in Finnish FCHL families. Atherosclerosis 153, 373–381 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Pajukanta, P. et al. No evidence of linkage between familial combined hyperlipidemia and genes encoding lipolytic enzymes in Finnish families. Arterioscler. Thromb. Vasc. Biol. 17, 841–850 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Zimmermann, R. et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 1383–1386 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Nanni, L. et al. Genetic variants in adipose triglyceride lipase influence lipid levels in familial combined hyperlipidemia. Atherosclerosis 213, 206–211 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Hoffstedt, J., Rydén, M., Wahrenberg, H., van Harmelen, V. & Arner, P. Upstream transcription factor-1 gene polymorphism is associated with increased adipocyte lipolysis. J. Clin. Endocrinol. Metab. 90, 5356–5360 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Marcil, M. et al. Identification of a novel C5L2 variant (S323I) in a French Canadian family with familial combined hyperlipemia. Arterioscler. Thromb. Vasc. Biol. 26, 1619–1625 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Brouwers, M. C. et al. Heritability and genetic loci of fatty liver in familial combined hyperlipidemia. J. Lipid Res. 47, 2799–2807 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Venkatesan, S., Cullen, P., Pacy, P., Halliday, D. & Scott, J. Stable isotopes show a direct relation between VLDL apoB overproduction and serum triglyceride levels and indicate a metabolically and biochemically coherent basis for familial combined hyperlipidemia. Arterioscler. Thromb. 13, 1110–1118 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Adiels, M. et al. Overproduction of large VLDL particles is driven by increased liver fat content in man. Diabetologia 49, 755–765 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Fabbrini, E. et al. Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology 134, 424–431 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Donnelly, K. L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343–1351 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Beer, N. L. et al. The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum. Mol. Genet. 18, 4081–4088 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Orho-Melander, M. et al. Common missense variant in the glucokinase regulatory protein gene is associated with increased plasma triglyceride and C-reactive protein but lower fasting glucose concentrations. Diabetes 57, 3112–3121 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ng, M. C. et al. The linkage and association of the gene encoding upstream stimulatory factor 1 with type 2 diabetes and metabolic syndrome in the Chinese population. Diabetologia 48, 2018–2024 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Zeggini, E. et al. Variation within the gene encoding the upstream stimulatory factor 1 does not influence susceptibility to type 2 diabetes in samples from populations with replicated evidence of linkage to chromosome 1q. Diabetes 55, 2541–2548 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Meex, S. J. et al. Upstream transcription factor 1 (USF1) in risk of type 2 diabetes: association study in 2000 Dutch Caucasians. Mol. Genet. Metab. 94, 352–355 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Casado, M., Vallet, V. S., Kahn, A. & Vaulont, S. Essential role in vivo of upstream stimulatory factors for a normal dietary response of the fatty acid synthase gene in the liver. J. Biol. Chem. 274, 2009–2013 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Iynedjian, P. B. Identification of upstream stimulatory factor as transcriptional activator of the liver promoter of the glucokinase gene. Biochem. J. 333 (Pt 3), 705–712 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Packard, C. J. & Shepherd, J. Lipoprotein heterogeneity and apolipoprotein B metabolism. Arterioscler. Thromb. Vasc. Biol. 17, 3542–3556 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Verseyden, C., Meijssen, S. & Castro Cabezas, M. Postprandial changes of apoB-100 and apoB-48 in TG rich lipoproteins in familial combined hyperlipidemia. J. Lipid Res. 43, 274–280 (2002).

    CAS  PubMed  Google Scholar 

  45. Babirak, S. P., Brown, B. G. & Brunzell, J. D. Familial combined hyperlipidemia and abnormal lipoprotein lipase. Arterioscler. Thromb. 12, 1176–1183 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. López-Ruiz, A. et al. Small and dense LDL in familial combined hyperlipidemia and N291S polymorphism of the lipoprotein lipase gene. Lipids Health Dis. 8, 12 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Campagna, F. et al. Common variants in the lipoprotein lipase gene, but not those in the insulin receptor substrate-1, the β3-adrenergic receptor, and the intestinal fatty acid binding protein-2 genes, influence the lipid phenotypic expression in familial combined hyperlipidemia. Metabolism 51, 1298–1305 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Yang, W. S. et al. Regulatory mutations in the human lipoprotein lipase gene in patients with familial combined hyperlipidemia and coronary artery disease. J. Lipid Res. 37, 2627–2637 (1996).

    CAS  PubMed  Google Scholar 

  49. Reymer, P. W. et al. A frequently occurring mutation in the lipoprotein lipase gene (Asn291Ser) contributes to the expression of familial combined hyperlipidemia. Hum. Mol. Genet. 4, 1543–1549 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Yang, W. S., Nevin, D. N., Peng, R., Brunzell, J. D. & Deeb, S. S. A mutation in the promoter of the lipoprotein lipase (LPL) gene in a patient with familial combined hyperlipidemia and low LPL activity. Proc. Natl Acad. Sci. USA 92, 4462–4466 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nevin, D. N., Brunzell, J. D. & Deeb, S. S. The LPL gene in individuals with familial combined hyperlipidemia and decreased LPL activity. Arterioscler. Thromb. 14, 869–873 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Gagne, E., Genest, J. Jr, Zhang, H., Clarke, L. A. & Hayden, M. R. Analysis of DNA changes in the LPL gene in patients with familial combined hyperlipidemia. Arterioscler. Thromb. 14, 1250–1257 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Hoffer, M. J. et al. Gender-related association between the −93T-->G/D9N haplotype of the lipoprotein lipase gene and elevated lipid levels in familial combined hyperlipidemia. Atherosclerosis 138, 91–99 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. de Bruin, T. W. et al. Lipoprotein lipase gene mutations D9N and N291S in four pedigrees with familial combined hyperlipidaemia. Eur. J. Clin. Invest. 26, 631–639 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Reiber, I. et al. Postprandial triglyceride levels in familial combined hyperlipidemia. The role of apolipoprotein E and lipoprotein lipase polymorphisms. J. Nutr. Biochem. 14, 394–400 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Hoffer, M. J. et al. The V73M mutation in the hepatic lipase gene is associated with elevated cholesterol levels in four Dutch pedigrees with familial combined hyperlipidemia. Atherosclerosis 151, 443–450 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Gehrisch, S. et al. Mutations of the human hepatic lipase gene in patients with combined hypertriglyceridemia/hyperalphalipoproteinemia and in patients with familial combined hyperlipidemia. J. Mol. Med. (Berl.) 77, 728–734 (1999).

    Article  CAS  Google Scholar 

  58. Eichenbaum-Voline, S. et al. Linkage and association between distinct variants of the APOA1/C3/A4/A5 gene cluster and familial combined hyperlipidemia. Arterioscler. Thromb. Vasc. Biol. 24, 167–174 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Groenendijk, M., Cantor, R. M., Funke, H. & Dallinga-Thie, G. M. Two newly identified SNPs in the APO AI-CIII intergenic region are strongly associated with familial combined hyperlipidaemia. Eur. J. Clin. Invest. 31, 852–859 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Groenendijk, M., De Bruin, T. W. & Dallinga-Thie, G. M. Two polymorphisms in the apo A-IV gene and familial combined hyperlipidemia. Atherosclerosis 158, 369–376 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Groenendijk, M., Cantor, R. M., De Bruin, T. W. & Dallinga-Thie, G. M. New genetic variants in the apoA-I and apoC-III genes and familial combined hyperlipidemia. J. Lipid Res. 42, 188–194 (2001).

    CAS  PubMed  Google Scholar 

  62. Aouizerat, B. E. et al. Linkage of a candidate gene locus to familial combined hyperlipidemia: lecithin:cholesterol acyltransferase on 16q. Arterioscler. Thromb. Vasc. Biol. 19, 2730–2736 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Hayden, M. R. et al. DNA polymorphisms in and around the Apo-A1-CIII genes and genetic hyperlipidemias. Am. J. Hum. Genet. 40, 421–430 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ribalta, J. et al. A variation in the apolipoprotein C-III gene is associated with an increased number of circulating VLDL and IDL particles in familial combined hyperlipidemia. J. Lipid Res. 38, 1061–1069 (1997).

    CAS  PubMed  Google Scholar 

  65. Wojciechowski, A. P. et al. Familial combined hyperlipidaemia linked to the apolipoprotein AI-CII-AIV gene cluster on chromosome 11q23-q24. Nature 349, 161–164 (1991).

    Article  CAS  PubMed  Google Scholar 

  66. Huertas-Vázquez, A. et al. Contribution of chromosome 1q21-q23 to familial combined hyperlipidemia in Mexican families. Ann. Hum. Genet. 68, 419–427 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Wijsman, E. M. et al. Evidence against linkage of familial combined hyperlipidemia to the apolipoprotein AI-CIII-AIV gene complex. Arterioscler. Thromb. Vasc. Biol. 18, 215–226 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Marcil, M. et al. Lack of association of the apolipoprotein A-I-C-III-A-IV gene XmnI and SstI polymorphisms and of the lipoprotein lipase gene mutations in familial combined hyperlipoproteinemia in French Canadian subjects. J. Lipid Res. 37, 309–319 (1996).

    CAS  PubMed  Google Scholar 

  69. Xu, C. F. et al. Association between genetic variation at the APO AI-CIII-AIV gene cluster and familial combined hyperlipidaemia. Clin. Genet. 46, 385–397 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Rubin, E. M., Krauss, R. M., Spangler, E. A., Verstuyft, J. G. & Clift, S. M. Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI. Nature 353, 265–267 (1991).

    Article  CAS  PubMed  Google Scholar 

  71. Ebara, T., Ramakrishnan, R., Steiner, G. & Shachter, N. S. Chylomicronemia due to apolipoprotein CIII overexpression in apolipoprotein E-null mice. Apolipoprotein CIII-induced hypertriglyceridemia is not mediated by effects on apolipoprotein E. J. Clin. Invest. 99, 2672–2681 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cohen, R. D. et al. Reduced aortic lesions and elevated high density lipoprotein levels in transgenic mice overexpressing mouse apolipoprotein A-IV. J. Clin. Invest. 99, 1906–1916 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pennacchio, L. A. et al. An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 294, 169–173 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Nowak, M. et al. Insulin-mediated down-regulation of apolipoprotein A5 gene expression through the phosphatidylinositol 3-kinase pathway: role of upstream stimulatory factor. Mol. Cell Biol. 25, 1537–1548 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Laurila, P. P. et al. Genetic association and interaction analysis of USF1 and APOA5 on lipid levels and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 30, 346–352 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Mar, R. et al. Association of the apolipoprotein A1/C3/A4/A5 gene cluster with triglyceride levels and LDL particle size in familial combined hyperlipidemia. Circ. Res. 94, 993–999 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Rothblat, G. H. & Phillips, M. C. High-density lipoprotein heterogeneity and function in reverse cholesterol transport. Curr. Opin. Lipidol. 21, 229–238 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Allayee, H., Castellani, L. W., Cantor, R. M., de Bruin, T. W. & Lusis, A. J. Biochemical and genetic association of plasma apolipoprotein A-II levels with familial combined hyperlipidemia. Circ. Res. 92, 1262–1267 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 43, 333–338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Samani, N. J. et al. Genomewide association analysis of coronary artery disease. N. Engl. J. Med. 357, 443–453 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Civeira, F. et al. Frequency of low-density lipoprotein receptor gene mutations in patients with a clinical diagnosis of familial combined hyperlipidemia in a clinical setting. J. Am. Coll. Cardiol. 52, 1546–1553 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Rauh, G. et al. Genetic evidence from 7 families that the apolipoprotein B gene is not involved in familial combined hyperlipidemia. Atherosclerosis 83, 81–87 (1990).

    Article  CAS  PubMed  Google Scholar 

  83. Austin, M. A. et al. Lack of evidence for linkage between low-density lipoprotein subclass phenotypes and the apolipoprotein B locus in familial combined hyperlipidemia. Genet. Epidemiol. 8, 287–297 (1991).

    Article  CAS  PubMed  Google Scholar 

  84. Houlston, R., Lewis, B. & Humphries, S. E. Polymorphisms of the apolipoprotein B and E genes and their possible roles in familial and non-familial combined hyperlipidaemia. Dis. Markers 9, 319–325 (1991).

    CAS  PubMed  Google Scholar 

  85. Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154–156 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Abifadel, M. et al. A PCSK9 variant and familial combined hyperlipidaemia. J. Med. Genet. 45, 780–786 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Brouwers, M. C. et al. Plasma proprotein convertase subtilisin kexin type 9 is a heritable trait of familial combined hyperlipidaemia. Clin. Sci. (Lond.) 121, 397–403 (2011).

    Article  CAS  Google Scholar 

  88. Zeng, L. et al. ATF6 modulates SREBP2-mediated lipogenesis. EMBO J. 23, 950–958 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ericsson, S., Eriksson, M., Berglund, L. & Angelin, B. Metabolism of plasma low density lipoproteins in familial combined hyperlipidaemia: effect of acipimox therapy. J. Intern. Med. 232, 313–320 (1992).

    Article  CAS  PubMed  Google Scholar 

  90. Hicks, A. A. et al. Genetic determinants of circulating sphingolipid concentrations in European populations. PLoS Genet. 5, e1000672 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Horswell, S. D., Ringham, H. E. & Shoulders, C. C. New technologies for delineating and characterizing the lipid exome: prospects for understanding familial combined hyperlipidemia. J. Lipid Res. 50 (Suppl.), S370–S375 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Naukkarinen, J. et al. Use of genome-wide expression data to mine the “Gray Zone” of GWA studies leads to novel candidate obesity genes. PLoS Genet. 6, e1000976 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Weissglas-Volkov, D. et al. Common hepatic nuclear factor-4α variants are associated with high serum lipid levels and the metabolic syndrome. Diabetes 55, 1970–1977 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Plaisier, C. L. et al. A systems genetics approach implicates USF1, FADS3, and other causal candidate genes for familial combined hyperlipidemia. PLoS Genet. 5, e1000642 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Glazier, A. M., Nadeau, J. H. & Aitman, T. J. Finding genes that underlie complex traits. Science 298, 2345–2349 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Wijsman, E. M. et al. Linkage and association analyses identify a candidate region for apoB level on chromosome 4q32.3 in FCHL families. Hum. Genet. 127, 705–719 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sanna, S. et al. Fine mapping of five loci associated with low-density lipoprotein cholesterol detects variants that double the explained heritability. PLoS Genet. 7, e1002198 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. van der Vleuten, G. M. et al. The Gln223Arg polymorphism in the leptin receptor is associated with familial combined hyperlipidemia. Int. J. Obes. (Lond.) 30, 892–898 (2006).

    Article  CAS  Google Scholar 

  100. van der Kallen, C. J. et al. Genome scan for adiposity in Dutch dyslipidemic families reveals novel quantitative trait loci for leptin, body mass index and soluble tumor necrosis factor receptor superfamily 1A. Int. J. Obes. Relat. Metab. Disord. 24, 1381–1391 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Brouwers, M. C. et al. Longitudinal differences in familial combined hyperlipidemia quantitative trait loci. Arterioscler. Thromb. Vasc. Biol. 26, e118–e119 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Allayee, H. et al. Locus for elevated apolipoprotein B levels on chromosome 1p31 in families with familial combined hyperlipidemia. Circ. Res. 90, 926–931 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Lass, A., Zimmermann, R., Oberer, M. & Zechner, R. Lipolysis - a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog. Lipid Res. 50, 14–27 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Eurlings, P. M., van der Kallen, C. J., Vermeulen, V. M. & de Bruin, T. W. Variants in the PPARgamma gene affect fatty acid and glycerol metabolism in familial combined hyperlipidemia. Mol. Genet. Metab. 80, 296–301 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Pihlajamäki, J. et al. The Pro12A1a substitution in the peroxisome proliferator activated receptor gamma 2 is associated with an insulin-sensitive phenotype in families with familial combined hyperlipidemia and in nondiabetic elderly subjects with dyslipidemia. Atherosclerosis 151, 567–574 (2000).

    Article  PubMed  Google Scholar 

  106. Gagnon, F. et al. Genome scan for quantitative trait loci influencing HDL levels: evidence for multilocus inheritance in familial combined hyperlipidemia. Hum. Genet. 117, 494–505 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Lee, J. C. et al. USF1 contributes to high serum lipid levels in Dutch FCHL families and U. S. whites with coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 27, 2222–2227 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. van der Vleuten, G. M. et al. The involvement of upstream stimulatory factor 1 in Dutch patients with familial combined hyperlipidemia. J. Lipid Res. 48, 193–200 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Badzioch, M. D. et al. Low-density lipoprotein particle size loci in familial combined hyperlipidemia: evidence for multiple loci from a genome scan. Arterioscler. Thromb. Vasc. Biol. 24, 1942–1950 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Tsukamoto, K., Maugeais, C., Glick, J. M. & Rader, D. J. Markedly increased secretion of VLDL triglycerides induced by gene transfer of apolipoprotein E isoforms in apoE-deficient mice. J. Lipid Res. 41, 253–259 (2000).

    CAS  PubMed  Google Scholar 

  111. Pei, W. D. et al. Apolipoprotein E polymorphism influences lipid phenotypes in Chinese families with familial combined hyperlipidemia. Circ. J. 70, 1606–1610 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Bredie, S. J., Vogelaar, J. M., Demacker, P. N. & Stalenhoef, A. F. Apolipoprotein E polymorphism influences lipid phenotypic expression, but not the low density lipoprotein subfraction distribution in familial combined hyperlipidemia. Atherosclerosis 126, 313–324 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Barson, J. R., Morganstern, I. & Leibowitz, S. F. Galanin and consummatory behavior: special relationship with dietary fat, alcohol and circulating lipids. EXS 102, 87–111 (2010).

    CAS  PubMed  Google Scholar 

  114. IBC 50K CAD Consortium. Large-scale gene-centric analysis identifies novel variants for coronary artery disease. PLoS Genet. 7, e1002260 (2011).

  115. Perttilä, J. et al. OSBPL10, a novel candidate gene for high triglyceride trait in dyslipidemic Finnish subjects, regulates cellular lipid metabolism. J. Mol. Med. (Berl.) 87, 825–835 (2009).

    Article  CAS  Google Scholar 

  116. Dallinga-Thie, G. M. et al. Complex genetic contribution of the Apo AI-CIII-AIV gene cluster to familial combined hyperlipidemia. Identification of different susceptibility haplotypes. J. Clin. Invest. 99, 953–961 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Allayee, H. et al. Families with familial combined hyperlipidemia and families enriched for coronary artery disease share genetic determinants for the atherogenic lipoprotein phenotype. Am. J. Hum. Genet. 63, 577–585 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Deeb, S. S., Nevin, D. N., Iwasaki, L. & Brunzell, J. D. Two novel apolipoprotein A-IV variants in individuals with familial combined hyperlipidemia and diminished levels of lipoprotein lipase activity. Hum. Mutat. 8, 319–325 (1996).

    Article  CAS  PubMed  Google Scholar 

  119. Gagnon, F. et al. Evidence of linkage of HDL level variation to APOC3 in two samples with different ascertainment. Hum. Genet. 113, 522–533 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Wong, K. & Ryan, R. O. Characterization of apolipoprotein A-V structure and mode of plasma triacylglycerol regulation. Curr. Opin. Lipidol. 18, 319–324 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Vu-Dac, N. et al. Apolipoprotein A5, a crucial determinant of plasma triglyceride levels, is highly responsive to peroxisome proliferator-activated receptor alpha activators. J. Biol. Chem. 278, 17982–17985 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Prieur, X. et al. Thyroid hormone regulates the hypotriglyceridemic gene APOA5. J. Biol. Chem. 280, 27533–27543 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. van der Vleuten, G. M. et al. Haplotype analyses of the APOA5 gene in patients with familial combined hyperlipidemia. Biochim. Biophys. Acta 1772, 81–88 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Liu, Z. K., Hu, M., Baum, L., Thomas, G. N. & Tomlinson, B. Associations of polymorphisms in the apolipoprotein A1/C3/A4/A5 gene cluster with familial combined hyperlipidaemia in Hong Kong Chinese. Atherosclerosis 208, 427–432 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Ribalta, J. et al. Newly identified apolipoprotein AV gene predisposes to high plasma triglycerides in familial combined hyperlipidemia. Clin. Chem. 48, 1597–1600 (2002).

    CAS  PubMed  Google Scholar 

  126. Holleboom, A. G., Vergeer, M., Hovingh, G. K., Kastelein, J. J. & Kuivenhoven, J. A. The value of HDL genetics. Curr. Opin. Lipidol. 19, 385–394 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Pihlajamäki, J. et al. G–250A substitution in promoter of hepatic lipase gene is associated with dyslipidemia and insulin resistance in healthy control subjects and in members of families with familial combined hyperlipidemia. Arterioscler. Thromb. Vasc. Biol. 20, 1789–1795 (2000).

    Article  PubMed  Google Scholar 

  128. Allayee, H. et al. Contribution of the hepatic lipase gene to the atherogenic lipoprotein phenotype in familial combined hyperlipidemia. J. Lipid Res. 41, 245–252 (2000).

    CAS  PubMed  Google Scholar 

  129. Kathiresan, S. et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat. Genet. 41, 334–341 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Aouizerat, B. E. et al. A genome scan for familial combined hyperlipidemia reveals evidence of linkage with a locus on chromosome 11. Am. J. Hum. Genet. 65, 397–412 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Matsuoka, Y., Li, X. & Bennett, V. Adducin: structure, function and regulation. Cell. Mol. Life Sci. 57, 884–895 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Beeks, E. et al. Association between the alpha-adducin Gly460Trp polymorphism and systolic blood pressure in familial combined hyperlipidemia. Am. J. Hypertens. 14, 1185–1190 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Weissglas-Volkov, D. et al. Identification of two common variants contributing to serum apolipoprotein B levels in Mexicans. Arterioscler. Thromb. Vasc. Biol. 30, 353–359 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Salazar, J. et al. Association of a polymorphism in the promoter of the cellular retinoic acid-binding protein II gene (CRABP2) with increased circulating low-density lipoprotein cholesterol. Clin. Chem. Lab. Med. 45, 615–620 (2007).

    CAS  PubMed  Google Scholar 

  135. Plaisier, C. L. et al. Galanin preproprotein is associated with elevated plasma triglycerides. Arterioscler. Thromb. Vasc. Biol. 29, 147–152 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Kume, T. Specification of arterial, venous, and lymphatic endothelial cells during embryonic development. Histol. Histopathol. 25, 637–646 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Counts, S. E., Perez, S. E., Ginsberg, S. D. & Mufson, E. J. Neuroprotective role for galanin in Alzheimer's disease. EXS 102, 143–162 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Mar-Heyming, R. et al. Association of stearoyl-CoA desaturase 1 activity with familial combined hyperlipidemia. Arterioscler. Thromb. Vasc. Biol. 28, 1193–1199 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Soro, A. et al. Genome scans provide evidence for low-HDL-C loci on chromosomes 8q23, 16q24.1–242, and 20q13.11 in Finnish families. Am. J. Hum. Genet. 70, 1333–1340 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Rosenthal, E. A. et al. Linkage and association of phospholipid transfer protein activity to LASS4. J. Lipid Res. 52, 1837–1846 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Huertas-Vazquez, A. et al. A nonsynonymous SNP within PCDH15 is associated with lipid traits in familial combined hyperlipidemia. Hum. Genet. 127, 83–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Lilja, H. E. et al. Locus for quantitative HDL-cholesterol on chromosome 10q in Finnish families with dyslipidemia. J. Lipid Res. 45, 1876–1884 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. van Himbergen, T. M. et al. Paraoxonase (PON1) is associated with familial combined hyperlipidemia. Atherosclerosis 199, 87–94 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Liu, M. L., James, R. W., Ylitalo, K. & Taskinen, M. R. Associations between HDL oxidation and paraoxonase-1 and paraoxonase-1 gene polymorphisms in families affected by familial combined hyperlipidemia. Nutr. Metab. Cardiovasc. Dis. 14, 81–87 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Huertas-Vazquez, A. et al. TCF7L2 is associated with high serum triacylglycerol and differentially expressed in adipose tissue in families with familial combined hyperlipidaemia. Diabetologia 51, 62–69 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Parikh, H., Lyssenko, V. & Groop, L. C. Prioritizing genes for follow-up from genome wide association studies using information on gene expression in tissues relevant for type 2 diabetes mellitus. BMC Med. Genomics 2, 72 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Goukassian, D. A. et al. Tumor necrosis factor-α receptor p75 is required in ischemia-induced neovascularization. Circulation 115, 752–762 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Kim, E. Y., Priatel, J. J., Teh, S. J. & Teh, H. S. TNF receptor type 2 (p75) functions as a costimulator for antigen-driven T cell responses in vivo. J. Immunol. 176, 1026–1035 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Geurts, J. M. et al. Identification of TNFRSF1B as a novel modifier gene in familial combined hyperlipidemia. Hum. Mol. Genet. 9, 2067–2074 (2000).

    Article  CAS  PubMed  Google Scholar 

  150. Sáez, M. E. et al. WWOX gene is associated with HDL cholesterol and triglyceride levels. BMC Med. Genet. 11, 148 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. C. G. J. Brouwers, M. M. J. van Greevenbroek, J. de Graaf and A. F. H. Stalenhoef researched the data and contributed equally to writing the article. All authors provided a substantial contribution to discussions of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Anton F. H. Stalenhoef.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brouwers, M., van Greevenbroek, M., Stehouwer, C. et al. The genetics of familial combined hyperlipidaemia. Nat Rev Endocrinol 8, 352–362 (2012). https://doi.org/10.1038/nrendo.2012.15

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2012.15

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing