Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Effects of obesity on human sexual development

This article has been updated

Abstract

Puberty is a period of physical and psychological maturation, with long-term effects on health. During the 20th century, a secular trend towards earlier puberty occurred in association with improvements in nutrition. The worldwide pandemic of childhood obesity has renewed interest in the relationship between body composition in childhood and the timing and tempo of puberty. Limited evidence suggests that earlier puberty is associated with a tendency towards central fat deposition; therefore, pubertal status needs to be carefully considered in the categorization of childhood and adolescent overweight and obesity. In the other direction, rapid early weight gain is associated with advanced puberty in both sexes, and a clear association exists between increasing BMI and earlier pubertal development in girls. Evidence in boys is less clear, with the majority of studies showing obesity to be associated with earlier puberty and voice break, although a subgroup of boys with obesity exhibits late puberty, perhaps as a variation of constitutional delay in growth and puberty. The possible mechanisms linking adiposity with pubertal timing are numerous, but leptin, adipocytokines and gut peptides are central players. Other possible mediators include genetic variation and environmental factors such as endocrine disrupting chemicals. This Review presents current evidence on this topic, highlighting inconsistencies and opportunities for future research.

Key Points

  • Rapid early weight gain during infancy is associated with advanced puberty in both sexes

  • Clear associations exist between increased BMI values and early pubertal development in girls

  • In boys, the effect of obesity on pubertal timing is controversial, although the majority of studies show obesity to be associated with early puberty

  • Limited evidence suggests that early puberty is associated with a tendency to central fat deposition

  • The mechanisms that link adiposity and timing of puberty remain unclear but probably involve leptin, adipocytokines, gut peptides, genetic variations and environmental factors

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic graph showing probabilities of occurrence of pubertal signs, depending on age, in boys and girls.
Figure 2: Change in the levels of serum gonadotropins and sex hormones from fetal life to adulthood in relationship to the sensitivity of the central nervous system 'gonadostat' to the negative feedback effect of sex hormones and underlying hormonal changes.

Similar content being viewed by others

Change history

  • 29 March 2012

    In the version of this article initially published the name of one of the authors, Matthew A. Sabin, was spelt incorrectly. The error has been corrected for the HTML and PDF versions of the article.

References

  1. Frisch, R. E. & Revelle, R. Height and weight at menarche and a hypothesis of critical body weights and adolescent events. Science 169, 397–399 (1970).

    Article  CAS  PubMed  Google Scholar 

  2. Johnston, F. E. et al. Height, weight and age at menarche and the “critical weight” hypothesis. Science 174, 1148–1149 (1971).

    Article  CAS  PubMed  Google Scholar 

  3. Frisch, R. E. Pubertal adipose tissue: is it necessary for normal sexual maturation? Evidence from the rat and human female. Fed. Proc. 39, 2395–2400 (1980).

    CAS  PubMed  Google Scholar 

  4. Parent, A. S. et al. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr. Rev. 24, 668–693 (2003).

    Article  PubMed  Google Scholar 

  5. de Muinck Keizer, S. M. & Mul, D. Trends in pubertal development in Europe. Hum. Reprod. Update 7, 287–291 (2001).

    Article  Google Scholar 

  6. Mul, D. et al. Pubertal development in The Netherlands 1965–1997. Pediatr. Res. 50, 479–486 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Bourguignon, J. P. et al. Neuroendocrine disruption of pubertal timing and interactions between homeostasis of reproduction and energy balance. Mol. Cell. Endocrinol. 324, 110–120 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Herman-Giddens, M. E. et al. Secondary sexual characteristics and menses in young girls seen in office practice: a study from the Pediatric Research in Office Settings network. Pediatrics 99, 505–512 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Herman-Giddens, M. E., Wang, L. & Koch, G. Secondary sexual characteristics in boys: estimates from the national health and nutrition examination survey III, 1988–1994. Arch. Pediatr. Adoles. Med. 155, 1022–1028 (2001).

    Article  CAS  Google Scholar 

  10. Freedman, D. S. et al. Relation of age at menarche to race, time period, and anthropometric dimensions: the Bogalusa Heart Study. Pediatrics 110, e43 (2002).

    Article  PubMed  Google Scholar 

  11. Papadimitriou, A. Sex differences in the secular changes in pubertal maturation. Pediatrics 108, e65 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Boyne, M. S. et al. Developmental origins of cardiovascular risk in Jamaican children: the Vulnerable Windows Cohort study. Br. J. Nutr. 104, 1026–1033 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Boyne, M. S. et al. Growth, body composition, and the onset of puberty: longitudinal observations in Afro-Caribbean children. J. Clin. Endocrinol. Metab. 95, 3194–3200 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Prader, A., Largo, R. H., Molinari, L. & Issler, C. Physical growth of Swiss children from birth to 20 years of age. First Zurich longitudinal study of growth and development. Helv. Paediatr. Acta Suppl. 52, 1–125 (1989).

    CAS  PubMed  Google Scholar 

  15. Marshall, W. A. & Tanner, J. M. Variations in the pattern of pubertal changes in boys. Arch. Dis. Child. 45, 13–23 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Marshall, W. A. & Tanner, J. M. Variations in the pattern of pubertal changes in girls. Arch. Dis. Child. 44, 291–303 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Martin, D. D., Hauspie, R. C. & Ranke, M. B. Total pubertal growth and markers of puberty onset in adolescents with GHD: comparison between mathematical growth analysis and pubertal staging methods. Horm. Res. 63, 95–101 (2005).

    CAS  PubMed  Google Scholar 

  18. Karlberg, J. & Boepple, P. A. in Sexual Precocity: Etiology, Diagnosis and Management Ch. 9 (eds Grave, G. D. & Cutler, G. B.) 85–95 (Raven Press Ltd, New York, 1993).

    Google Scholar 

  19. Sandhu, J., Ben Shlomo, Y., Cole, T. J., Holly, J. & Davey, S. G. The impact of childhood body mass index on timing of puberty, adult stature and obesity: a follow-up study based on adolescent anthropometry recorded at Christ's Hospital (1936–1964). Int. J. Obes. (Lond.) 30, 14–22 (2006).

    Article  CAS  Google Scholar 

  20. Greil, H. & Kahl, H. Assessment of developmental age: cross-sectional analysis of secondary sexual characteristics. Anthropol. Anz. 63, 63–75 (2005).

    PubMed  Google Scholar 

  21. Roelants, M., Hauspie, R. & Hoppenbrouers, K. References for growth and pubertal development from birth to 21 years in Flanders, Belgium. Ann. Hum. Biol. 36, 680–694 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Kiess, W. et al. Body fat mass, leptin and puberty. J. Pediatr. Endocrinol. Metab. 13 (Suppl. 1), 717–722 (2000).

    PubMed  Google Scholar 

  23. Kiess, W. et al. A role for leptin in sexual maturation and puberty? Horm. Res. 51 (Suppl. 3), 55–63 (1999).

    CAS  PubMed  Google Scholar 

  24. Han, J. C., Lawlor, D. A. & Kimm, S. Y. Childhood obesity. Lancet 375, 1737–1748 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Patton, G. C. & Viner, R. Pubertal transitions in health. Lancet 369, 1130–1139 (2007).

    Article  PubMed  Google Scholar 

  26. Burt Solorzano, C. M. & McCartney, C. R. Obesity and the pubertal transition in girls and boys. Reproduction 140, 399–410 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ong, K. K. et al. Infancy weight gain predicts childhood body fat and age at menarche in girls. J. Clin. Endocrinol. Metab. 94, 1527–1532 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Ahmed, M. L., Ong, K. K. & Dunger, D. B. Childhood obesity and the timing of puberty. Trends Endocrinol. Metab. 20, 237–242 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Himes, J. H. Examining the evidence for recent secular changes in the timing of puberty in US children in light of increases in the prevalence of obesity. Mol. Cell. Endocrinol. 254–255, 13–21 (2006).

  30. Himes, J. P., Park, K. & Styne, D. Menarche and assessment of body mass index in adolescent girls. J. Pediatr. 155, 393–397 (2009).

    Article  PubMed  Google Scholar 

  31. Veldhuis, J. D. et al. Endocrine control of body fat composition in infancy, childhood, and puberty. Endocr. Rev. 26, 114–146 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Brook, C., Clayton, P. & Brown, R. Brook's Clinical Pediatric Endocrinology 5th edn (Blackwell Publishing, Oxford, 2005).

    Book  Google Scholar 

  33. Roemmich, J. N., Clark, P. A., Weltman, A. & Rogol, A. D. Alterations in growth and body composition during puberty. I. Comparing multicompartment body composition models. J. Appl. Physiol. 83, 927–935 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Malina, R. M. & Bouchard, C. Growth, Maturation and Physical Activity 87–100 (Human Kinetics Books, Champaign, 1991).

    Google Scholar 

  35. Christakis, N. A. & Fowler, J. H. The spread of obesity in a large social network over 32 years. N. Engl. J. Med. 357, 370–379 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Tommiska, J. et al. LIN28B in constitutional delay of growth and puberty. J. Clin. Endocrinol. Metab. 95, 3063–3066 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Körner, A. et al. Sex-specific effect of the Val1483Ile polymorphism in the fatty acid synthase gene (FAS) on body mass index and lipid profile in Caucasian children. Int. J. Obes. (Lond.) 31, 353–358 (2007).

    Article  CAS  Google Scholar 

  38. Ong, K. K. et al. Genetic variation in LIN28B is associated with the timing of puberty. Nat. Genet. 41, 729–733 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fraser, A. et al. Association of maternal weight gain in pregnancy with offspring obesity and metabolic and vascular traits in childhood. Circulation 121, 2557–2564 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fredriks, A. M. et al. Continuing positive secular growth change in The Netherlands 1955–1997. Pediatr. Res. 47, 316–323 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Kiess, W., Blüher, S., Kapellen, T. & Körner, A. Metabolic syndrome in children and adolescents: prevalence, public health issue, and time for initiative. J. Pediatr. Gastroenterol. Nutr. 49, 268–271 (2009).

    Article  PubMed  Google Scholar 

  42. Sharma, M. International school-based interventions for preventing obesity in children. Obes. Rev. 8, 155–167 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Körner, A. et al. New predictors of the metabolic syndrome in children–role of adipocytokines. Pediatr. Res. 61, 640–645 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Körner, A., Kiess, W., Stumvoll, M. & Kovacs, P. Polygenic contribution to obesity: genome-wide strategies reveal new targets. Front. Horm. Res. 36, 12–36 (2008).

    PubMed  Google Scholar 

  45. Wiegand, S. et al. Type 2 diabetes and impaired glucose tolerance in European children and adolescents with obesity—a problem that is no longer restricted to minority groups. Eur. J. Endocrinol. 151, 199–206 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Sinha, R. et al. Prevalence of impaired glucose tolerance among children and adolescents with marked obesity. N. Engl. J. Med. 346, 802–810 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Reich, A. et al. Obesity and blood pressure–results from the examination of 2,365 schoolchildren in Germany. Int. J. Obes. Relat. Metab. Disord. 27, 1459–1464 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Kiess, W. et al. Clinical aspects of obesity in childhood and adolescence. Obes. Rev. 2, 29–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. DiVall, S. A. & Radovick, S. Endocrinology of female puberty. Curr. Opin. Endocrinol. Diabetes Obes. 16, 1–4 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Delemarre-van de Waal, H. A. Regulation of puberty. Best Pract. Res. Clin. Endocrinol. Metab. 16, 1–12 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Rosenfield, R. L., Cooke, D. W. & Radovick, S. in Pediatric Endocrinology 3rd edn Ch. 14 (ed. Sperling, M. A.) 530–609 (Saunders Elsevier, Philadelphia, 2008).

    Book  Google Scholar 

  52. Ogden, C. & Carroll, M. Prevalence of obesity among children and adolescents: United States, trends 1963–1965 through 2007–2008. National Center for Health Statistics. Division of Health and Nutrition Examination Surveys 17, 1–5 (2010).

  53. Kindblom, J. M. et al. Pubertal timing predicts previous fractures and BMD in young adult men: the GOOD study. J. Bone Miner. Res. 21, 790–795 (2006).

    Article  PubMed  Google Scholar 

  54. Kindblom, J. M. et al. Pubertal timing is an independent predictor of central adiposity in young adult males: the Gothenburg osteoporosis and obesity determinants study. Diabetes 55, 3047–3052 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Heger, S. et al. Impact of weight status on the onset and parameters of puberty: analysis of three representative cohorts from central Europe. J. Pediatr. Endocrinol. Metab. 21, 865–877 (2008).

    Article  PubMed  Google Scholar 

  56. Meigen, C. et al. Secular trends in body mass index in German children and adolescents: a cross-sectional data analysis via CrescNet between 1999 and 2006. Metabolism 57, 934–949 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Kleber, M., Schwarz, A. & Reinehr, T. Obesity in children and adolescents: relationship to growth, pubarche, menarche, and voice break. J. Pediatr. Endocrinol. Metab. 24, 125–130 (2011).

    Article  PubMed  Google Scholar 

  58. Sørensen, K., Aksglaede, L., Petersen, J. H. & Juul, A. Recent changes in pubertal timing in healthy Danish boys: associations with body mass index. J. Clin. Endocrinol. Metab. 95, 263–270 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. de Onis, M., Dasgupta, P., Saha, S., Sengupta, D. & Blössner, M. The National Center for Health Statistics reference and the growth of Indian adolescent boys. Amer. J. Clin. Nutr. 74, 248–253 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Sulem, P. et al. Genome-wide association study identifies sequence variants on 6q21 associated with age at menarche. Nat. Genet. 41, 734–738 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. He, Q. & Karlberg, J. BMI in childhood and its association with height gain, timing of puberty, and final height. Pediatr. Res. 49, 244–251 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Juul, A., Magnusdottir, S., Scheike, T., Prytz, S. & Skakkebaek, N. E. Age at voice break in Danish boys: effects of pre-pubertal body mass index and secular trend. Int. J. Androl. 30, 537–542 (2007).

    Article  PubMed  Google Scholar 

  63. Kaplowitz, P. Delayed puberty in obese boys: comparison with constitutional delayed puberty and response to testosterone therapy. J. Pediatr. 133, 745–749 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Kaplowitz, P. B. Link between body fat and the timing of puberty. Pediatrics 121 (Suppl. 3), S208–S217 (2008).

    Article  PubMed  Google Scholar 

  65. Nathan, B. M., Sedlmeyer, I. L. & Palmert, M. R. Impact of body mass index on growth in boys with delayed puberty. J. Pediatr. Endocrinol. Metab. 19, 971–977 (2006).

    Article  PubMed  Google Scholar 

  66. Wang, Y. Is obesity associated with early sexual maturation? A comparison of the association in American boys versus girls. Pediatrics 110, 903–910 (2002).

    Article  PubMed  Google Scholar 

  67. Kaplowitz, P. B., Slora, E. J., Wasserman, R. C., Pedlow, S. E. & Herman-Giddens, M. E. Earlier onset of puberty in girls: relation to increased body mass index and race. Pediatrics 108, 347–353 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Kirchengast, S. & Bauer, M. Menarcheal onset is associated with body composition parameters but not with socioeconomic status. Coll. Antropol. 31, 419–425 (2007).

    PubMed  Google Scholar 

  69. Biro, F. M., Huang, B., Morrison, J. A., Horn, P. S. & Daniels, S. R. Body mass index and waist-to-height changes during teen years in girls are influenced by childhood body mass index. J. Adolesc. Health 46, 245–250 (2010).

    Article  PubMed  Google Scholar 

  70. Biro, F. M., Khoury, P. & Morrison, J. A. Influence of obesity on timing of puberty. Int. J. Androl. 29, 272–277 (2006).

    Article  PubMed  Google Scholar 

  71. Aksglaede, L., Juul, A., Olsen, L. W. & Sørensen, T. I. Age at puberty and the emerging obesity epidemic. PLoS ONE 4, e8450 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Aksglaede, L., Sørensen, K., Petersen, J. H., Skakkebaek, N. E. & Juul, A. Recent decline in age at breast development: the Copenhagen Puberty Study. Pediatrics 123, e932–e939 (2009).

    Article  PubMed  Google Scholar 

  73. Ibáñez, L., Lopez-Bermejo, A., Diaz, M., Marcos, M. V. & de Zegher, F. Early metformin therapy to delay menarche and augment height in girls with precocious pubarche. Fertil. Steril. 95, 727–730 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Keim, S. A., Branum, A. M., Klebanoff, M. A. & Zemel, B. S. Maternal body mass index and daughters' age at menarche. Epidemiology 20, 677–681 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hernández, M. I., Unanue, N., Gaete, X., Cassorla, F. & Codner, E. Age of menarche and its relationship with body mass index and socioeconomic status [Spanish]. Rev. Med. Chil. 135, 1429–1436 (2007).

    Article  PubMed  Google Scholar 

  76. Salsberry, P. J., Reagan, P. B. & Pajer, K. Growth differences by age of menarche in African American and White girls. Nurs. Res. 58, 382–390 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Martos-Moreno, G. A., Chowen, J. A. & Argente, J. Metabolic signals in human puberty: effects of over and undernutrition. Mol. Cell. Endocrinol. 324, 70–81 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Remer, T. et al. Prepubertal adrenarchal androgens and animal protein intake independently and differentially influence pubertal timing. J. Clin. Endocrinol. Metab. 95, 3002–3009 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. McCartney, C. R. et al. Obesity and sex steroid changes across puberty: evidence for marked hyperandrogenemia in pre- and early pubertal obese girls. J. Clin. Endocrinol. Metab. 92, 430–436 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Dunger, D. B., Ahmed, M. L. & Ong, K. K. Early and late weight gain and the timing of puberty. Mol. Cell. Endocrinol. 254255, 140–145 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Gluckman, P. D. & Hanson, M. A. Evolution, development and timing of puberty. Trends Endocrinol. Metab. 17, 7–12 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Papadimitriou, A., Nicolaidou, P., Fretzayas, A. & Chrousos, G. P. Clinical review: constitutional advancement of growth, a.k.a. early growth acceleration, predicts early puberty and childhood obesity. J. Clin. Endocrinol. Metab. 95, 4535–4541 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Hoekstra, R. A., Bartels, M. & Boomsma, D. I. Heritability of testosterone levels in 12-year-old twins and its relation to pubertal development. Twin Res. Hum. Genet. 9, 558–565 (2006).

    Article  PubMed  Google Scholar 

  84. Wehkalampi, K., Widén, E., Laine, T., Palotie, A. & Dunkel, L. Association of the timing of puberty with a chromosome 2 locus. J. Clin. Endocrinol. Metab. 93, 4833–4839 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Perry, J. R. et al. Meta-analysis of genome-wide association data identifies two loci influencing age at menarche. Nat. Genet. 41, 648–650 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Castellano, J. M. et al. Early metabolic programming of puberty onset: impact of changes in postnatal feeding and rearing conditions on the timing of puberty and development of the hypothalamic kisspeptin system. Endocrinology 152, 3396–3408 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Whatmore, A. J., Hall, C. M., Jones, J., Westwood, M. & Clayton, P. E. Ghrelin concentrations in healthy children and adolescents. Clin. Endocrinol. 59, 649–654 (2003).

    Article  CAS  Google Scholar 

  88. Pomerants, T., Tillmann, V., Jürimäe, J. & Jürimäe, T. Relationship between ghrelin and anthropometrical, body composition parameters and testosterone levels in boys at different stages of puberty. J. Endocrinol. Invest. 29, 962–967 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Ebbeling, C. B., Pawlak, D. B. & Ludwig, D. S. Childhood obesity: public-health crisis, common sense cure. Lancet 360, 473–482 (2002).

    Article  PubMed  Google Scholar 

  90. O˝zen, S. & Darcon, S¸. Effects of environmental endocrine disruptors on pubertal development. J. Clin. Res. Pediatr. Endocrinol. 3, 1–6 (2011).

    Article  Google Scholar 

  91. Parent, A. S. et al. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr. Rev. 24, 668–693 (2003).

    Article  PubMed  Google Scholar 

  92. Diamanti-Kandarakis, E. et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr. Rev. 30, 293–342 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ibáñez, L., Ferrer, A., Marcos, M. V., Hierro, F. R. & de Zegher, F. Early puberty: rapid progression and reduced final height in girls with low birth weight. Pediatrics 106, e72 (2000).

    Article  PubMed  Google Scholar 

  94. Adair, L. S. Size at birth predicts age at menarche. Pediatrics 107, e59 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Tam, C. S., de Zegher, F., Garnett, S. P., Baur, L. A. & Cowell, C. T. Opposing influences of prenatal and postnatal growth on the timing of menarche. J. Clin. Endocrinol. Metab. 91, 4369–4373 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Dunger, D. B., Ahmed, M. L. & Ong, K. K. Early and late weight gain and the timing of puberty. Mol. Cell. Endocrinol. 254255, 140–145 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Ong, K. K. et al. Insulin-like growth factor I concentrations in infancy predict differential gains in body length and adiposity: the Cambridge Baby Growth Study. Am. J. Clin. Nutr. 90, 156–161 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work is supported by grants from the Deutsche Forschungsgemeinschaft (KFO-152, to A. K., W. K. and R. W. P.) and from the European Community “PIONEER” (to W. K.). W. K. is also being supported by grants from the Federal Ministry of Education and Research (BMBF), Kompetenznetz “Adipositas”, Konsortium 'LARGE' and the IFB Adipositaserkrankungen, University of Leipzig. M. A. S. is supported through a National Health and Medical Research Council Health Professional Training Fellowship (APP1012201), and the Murdoch Childrens Research Institute is supported in part by the Victorian Government's Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Contributions

I. V. Wagner and M. A. Sabin contributed equally to writing the article and also provided a substantial contribution to discussion of content and to reviewing and editing the manuscript before submission, in the capacity of joint first authors. W. Kiess wrote part of the article, researched data for the article, and provided a substantial contribution to discussion of content and to reviewing and editing the manuscript before submission. R. W. Pfäffle, A. Hiemisch, E. Sergeyev and A. Körner researched data for the article, made a substantial contribution to discussion of content and reviewed or editing the manuscript before submission.

Corresponding author

Correspondence to Wieland Kiess.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, I., Sabin, M., Pfäffle, R. et al. Effects of obesity on human sexual development. Nat Rev Endocrinol 8, 246–254 (2012). https://doi.org/10.1038/nrendo.2011.241

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.241

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing