Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Oncogenic resistance to growth-limiting conditions

Abstract

Many carcinogens are mutagens, indicating that mutagenesis is the driving force of carcinogenesis. But what if we turn this prevailing view on its head? I will argue here that carcinogens are cytostatic and/or cytotoxic, and it is not mutation per se, but clonal selection for resistance to these antiproliferative conditions, that leads to cancer. But why aren't all cytotoxins carcinogenic?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cancer as a by-product of adaptation to the environment.
Figure 2: Two types of mechanism of resistance: non-oncogenic or oncogenic.
Figure 3: Development of non-oncogenic or oncogenic resistance to an antimicrotubule agent, Taxol.
Figure 4: A single alteration in a signalling pathway can change the output from growth inhibition to growth stimulation.
Figure 5: Continuous process of carcinogenesis: from cancer initiation to cancer therapy.

Similar content being viewed by others

References

  1. Vogelstein, B. & Kinzler, K. W. The multistep nature of cancer. Trends Genet. 9, 138–141 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Cahill, D. P., Kinzler, K. W., Vogelstein, B. & Lengauer, C. Genetic instability and Darwinian selection in tumours. Trends Cell Biol. 9, M57–M60 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Tomlinson, I. & Bodmer, W. Selection, the mutation rate and cancer: ensuring that the tail does not wag the dog. Nature Med. 5, 11–12 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Duesberg, P., Stindl, R. & Hehlmann, R. Explaining the high mutation rates of cancer cells to drug and multidrug resistance by chromosome reassortments that are catalyzed by aneuploidy. Proc. Natl Acad. Sci. USA 97, 14295–14300 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rissler, P., Torndal, U. B. & Eriksson, L. C. Induced drug resistance inhibits selection of initiated cells and cancer development. Carcinogenesis 18, 649–655 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Meijer, G. A. et al. Increased expression of multidrug resistance related proteins Pgp, MRP1, and LRP/MVP occurs early in colorectal carcinogenesis. J. Clin. Pathol. 52, 450–454 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Giannakakou, P. et al. Paclitaxel-resistant human ovarian cancer cells have mutant β-tubulins that exhibit impaired paclitaxel-driven polymerization. J. Biol. Chem. 272, 17118–17125 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Amarante-Mendes, G. P. et al. BCR–ABL exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome c and activation of caspase-3. Blood 91, 1700–1705 (1998).

    CAS  PubMed  Google Scholar 

  10. Hart, B. A., Potts, R. J. & Watkin, R. D. Cadmium adaptation in the lung: a double-edged sword? Toxicology 160, 65–70 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Tsujimoto, Y., Cossman, J., Jaffe, E. & Croce, C. M. Involvement of the BCL2 gene in human follicular lymphoma. Science 228, 1440–1443 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. Rossiter, H. et al. Targeted expression of Bcl-2 to murine basal epidermal keratinocytes results in paradoxical retardation of ultraviolet- and chemical-induced tumorigenesis. Cancer Res. 61, 3619–3626 (2001).

    CAS  PubMed  Google Scholar 

  13. Greenhalgh, D. A., Wang, X. J., Donehower, L. A. & Roop, D. R. Paradoxical tumor inhibitory effect of p53 loss in transgenic mice expressing epidermal-targeted v-Hras, v-Fos, or human transforming growth factor-α. Cancer Res. 56, 4413–4423 (1996).

    CAS  PubMed  Google Scholar 

  14. Judah, D. J., Legg, R. F. & Neal, G. E. Development of resistance to cytotoxicity during aflatoxin carcinogenesis. Nature 265, 343–345 (1977).

    Article  CAS  PubMed  Google Scholar 

  15. Gabrielson, E. W. et al. Human mesothelioma cells and asbestos-exposed mesothelial cells are selectively resistant to amosite toxicity: a possible mechanism for tumor promotion by asbestos. Carcinogenesis 13, 1359–1363 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Miyashita, M. et al. Differential effects of cigarette smoke condensate and its fractions on cultured normal and malignant human bronchial epithelial cells. Exp. Pathol. 38, 19–29 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Bardelli, A. et al. Carcinogen-specific induction of genetic instability. Proc. Natl Acad. Sci USA 98, 5770–5775 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Willey, J. C., Moser, C. E. J., Lechner, J. F. & Harris, C. C. Differential effects of 12-O-tetradecanoylphorbol-13-acetate on cultured normal and neoplastic human bronchial epithelial cells. Cancer Res. 44, 5124–5126 (1984).

    CAS  PubMed  Google Scholar 

  19. Karen, J. et al. 12-O-tetradecanoylphorbol-13-acetate induces clonal expansion of potentially malignant keratinocytes in a tissue model of early neoplastic progression. Cancer Res. 59, 474–481 (1999).

    CAS  PubMed  Google Scholar 

  20. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Blagosklonny, M. V. A node between proliferation, apoptosis, and growth arrest. Bioessays 21, 704–709 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Chen, C.-R., Kang, Y. & Massague, J. Defective repression of c–MYC in breast cancer cells: a loss at the core of the transforming growth factor-β growth arrest program. Proc. Natl Acad. Sci USA 98, 992–999 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Oft, M., Heider, K. H. & Beug, H. TGF-β signaling is necessary for carcinoma cell invasiveness and metastasis. Curr. Biol. 8, 1243–1252 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Cui, W. et al. TGF-β1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86, 531–542 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Evan, G. I. & Vousden, K. H. Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342–348 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Graeber, T. G. et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88–91 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Salnikow, K., Costa, M., Figg, W. D. & Blagosklonny, M. V. Hyperinducibility of hypoxia-responsive genes without p53/p21-dependent checkpoint in aggressive prostate cancer. Cancer Res. 60, 5630–5634 (2000).

    CAS  PubMed  Google Scholar 

  28. Stackpole, C. W., Groszek, L. & Kalbag, S. S. Benign-to-malignant B16 melanoma progression induced in two stages in vitro by exposure to hypoxia. J. Natl Cancer Inst. 86, 361–367 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Okada, F. et al. Conversion of human colonic adenoma cells to adenocarcinoma cells through inflammation in nude mice. Lab. Invest. 80, 1617–1628 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Schmitt, C. A., Rosenthal, C. T. & Lowe, S. W. Genetic analysis of chemoresistance in primary murine lymphomas. Nature Med. 6, 1029–1035 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Gorre, M. E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR–ABL gene mutation or amplification. Science 293, 876–880 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Breivik, J. & Gaudernack, G. Genomic instability, DNA methylation, and natural selection in colorectal carcinogenesis. Semin. Cancer Biol. 9, 245–254 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Smith, M. A., McCaffrey, R. P. & Karp, J. E. The secondary leukemias: challenges and research directions. J. Natl Cancer Inst. 88, 407–418 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Matsumoto, Y., Takano, H. & Fojo, T. Cellular adaptation to drug exposure: evolution of the drug-resistant phenotype. Cancer Res. 57, 5086–5092 (1997).

    CAS  PubMed  Google Scholar 

  35. Kerbel, R. S. & Davies, A. J. S. Facilitation of tumor progression by cancer-therapy. Lancet 2, 977–978 (1982).

    Article  CAS  PubMed  Google Scholar 

  36. Imamura, F., Horai, T., Mukai, M., Shinkai, K. & Akedo, H. Potentiation of invasive capacity of rat ascites hepatoma-cells by Adriamycin. Cancer Res. 50, 2018–2021 (1990).

    CAS  PubMed  Google Scholar 

  37. Liang, Y. et al. Selection with melphalan or paclitaxel (Taxol) yields variants with different patterns of multidrug resistance, integrin expression and in vitro invasiveness. Eur. J. Cancer 37, 1041–1052 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Rubin, H. Selected cell and selective microenvironment in neoplastic development. Cancer Res. 61, 799–807 (2001).

    CAS  PubMed  Google Scholar 

  39. Bunz, F. et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J. Clin. Invest. 104, 263–269 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Blagosklonny, M. V. et al. Resistance to growth inhibitory and apoptotic effects of phorbol ester and UCN–01 in aggressive cancer cell lines. Int. J. Oncol. 18, 697–794 (2001).

    CAS  PubMed  Google Scholar 

  41. Han, Z. T. et al. Effect of intravenous infusions of 12-O-tetradecanoylphorbol-13-acetate (TPA) in patients with myelocytic leukemia: preliminary studies on therapeutic efficacy and toxicity. Proc. Natl Acad. Sci. USA 95, 5357–5361 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Haddow, A. The influence of carcinogenic substances on sarcomata induced by the same and other compounds. J. Pathol. Bacteriol. 47, 581–591 (1938).

    Article  CAS  Google Scholar 

  43. Vasiliev, J. M. & Guelstein, V. I. Sensitivity of normal and neoplastic cells to the damaging action of cancerogenic substances J. Natl Cancer Inst. 31, 1123–1143 (1963).

    CAS  PubMed  Google Scholar 

  44. Loeb, L. A. A mutator phenotype in cancer. Cancer Res. 61, 3230–3239 (2001).

    CAS  PubMed  Google Scholar 

  45. Rodin, S. N. & Rodin, A. S. Human lung cancer and p53: the interplay between mutagenesis and selection. Proc. Natl Acad. Sci. USA 97, 12244–12249 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stevens, L. Origin of testicular teratomas from primordial germ cells in mice. J. Natl Cancer Inst. 38, 549–552 (1967).

    CAS  PubMed  Google Scholar 

  47. Toren, A., Amariglio, N. & Rechavi, G. Curable and non-curable malignancies: lessons from paediatric cancer. Med. Oncol. 13, 15–21 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Blohm, M. E. et al. Disseminated choriocarcinoma in infancy is curable by chemotherapy and delayed tumour resection. Eur. J. Cancer 37, 72–78 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

CancerNet:

acute myeloid leukaemia

chronic myelogenous leukaemia

hepatomas

prostate cancer

skin tumours

testicular cancer

 LocusLink:

ABL

AKT

BCL2

BCL-XL

BCR

cyclin D1

E2F

v-Fos

v-Hras

hypoxia-inducible factor

INK4A

INK4B

MAPK

metallothionein

c-MYC

p53

RB

SRC

Tgf-α

TGF-β

tubulin

WAF1

 Medscape DrugInfo:

5-fluorouracil

Glivec

paclitaxel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blagosklonny, M. Oncogenic resistance to growth-limiting conditions. Nat Rev Cancer 2, 221–224 (2002). https://doi.org/10.1038/nrc743

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc743

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing