Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diet and cancer prevention: the roles of observation and experimentation

Key Points

  • Chemoprevention is defined as the use of pharmacological agents (including nutrients) to impede, arrest or reverse carcinogenesis and has been used to test the efficacy of numerous nutrients and other dietary factors.

  • Observational epidemiology and experimentation by randomized controlled trials (RCTs) have been used to evaluate dietary factors in cancer chemoprevention; however, consistency in findings has been elusive.

  • The study of diet and cancer associations in humans poses a variety of challenges owing to the complexity in measuring dietary intake as well as the multifactorial nature of the cancer endpoints.

  • In several circles, RCTs are viewed as being more credible than observational studies.

  • When discrepant results between observational studies and RCTs are reported, careful consideration needs to be given to the details of each set of studies before accepting RCTs as valid and those of observational studies as biased.

  • Considerations in the interpretation of results from RCTs include the background diet of the study population; the dose, duration and timing of the intervention; the precise form of the nutrient or dietary factor tested; and compliance with the intervention.

Abstract

Observational epidemiology and experimentation by randomized controlled trials (RCTs) have been used to evaluate dietary factors in cancer prevention; however, consistency in findings has been elusive. In several circles, RCTs are viewed as more credible than observational studies. As the testing of dietary epidemiological findings in RCTs has been more common for colorectal cancer than for other cancers, we use experience with this malignancy to critically appraise the reasons for discrepancies between results of observational and experimental studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Randomized controlled trials (RCTs) versus observational studies of cancer.
Figure 2: Ranges of nutrient intakes tested in observational and randomized controlled trials (RCTs) of calcium and fibre.
Figure 3: Randomized controlled trials (RCTs) of colorectal adenomas.

Similar content being viewed by others

References

  1. Doll, R. & Peto, R. The causes of cancer: Quantitative estimates of avoidable risks of cancer in the United States today. J. Natl Cancer Inst. 66, 1191–1308 (1981). This landmark publication revolutionized the area of cancer aetiology related to lifestyle and environmental factors. The authors provided for the first time quantitative estimates that, although crude, emphasized that cancer was avoidable.

    Article  CAS  PubMed  Google Scholar 

  2. World Cancer Research Fund/American Institute for Cancer Research. Second Expert Report (AICR, Washington, D. C., 2007). In this second edition, international data from published studies of diet and cancer are summarized systematically (through meta-analyses) and results are interpreted to provide individual and policy recommendations.

  3. Flood, D. M. et al. Colorectal cancer incidence in Asian migrants to the United States and their descendants. Cancer Causes Control 11, 403–411 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Willett, W. C. Goals for nutrition in the year 2000. Ca. Cancer J. Clin. 49, 331–352 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Bresalier, R. S. Chemoprevention of colorectal cancer: Why all the confusion? Curr. Opin. Gastroenterol. 24, 48–50 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Meyskens, F. L., Jr & Szabo, E. Diet and cancer: The disconnect between epidemiology and randomized clinical trials. Cancer Epidemiol. Biomarkers Prev. 14, 1366–1369 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Shekelle, P. et al. in AHRQ Publication No. 03-E047 (Agency for Healthcare Research and Quality, Rockville, USA, 2003).

    Google Scholar 

  8. Schachter, H. M. et al. in AHRQ Publication No. 04-E013-2 (Agency for Healthcare Research and Quality, Rockville, USA, 2004).

    Google Scholar 

  9. Graham, S. et al. Diet in the epidemiology of postmenopausal breast cancer in a New York State cohort. Am. J. Epidemiol. 136, 1327 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Slattery, M. et al. Energy balance and colon cancer — beyond physical activity. Cancer Res. 57, 75–80 (1997).

    CAS  PubMed  Google Scholar 

  11. Omenn, G. S. et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N. Engl. J. Med. 334, 1150–1155 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Marshall, J. R. & Hastrup, J. L. Mismeasurement and resonance of strong confounders: Uncorrelated errors. Am. J. Epidemiol. 143, 1069–1078 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Willett, W. C. (ed.) Nutritional epidemiology (Oxford University Press, New York, 1998).

    Book  Google Scholar 

  14. Martínez, M. E. et al. Calcium, vitamin D, and the occurrence of colorectal cancer among women. J. Natl Cancer Inst. 88, 1375–1382 (1996).

    Article  PubMed  Google Scholar 

  15. Fuchs, C. S. et al. Dietary fiber and the risk of colorectal cancer and adenoma in women. N. Engl. J. Med. 340, 169–176 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Slattery, M. L. et al. Energy balance, insulin-related genes and risk of colon and rectal cancer. Int. J. Cancer 215, 148–154 (2005).

    Article  CAS  Google Scholar 

  17. The Alpha-Tocopherol Beta-Carotene Cancer Prevention Study Group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N. Engl. J. Med. 330, 1029–1035 (1994).

  18. Pierce, J. P. et al. Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer: The women's healthy eating and living (WHELl) randomized trial. JAMA 298, 289–298 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sporn, M. B. Carcinogenesis and cancer: Different perspectives on the same disease. Cancer Res. 51, 6215–6218 (1991). This landmark article describes the concept behind chemoprevention.

    CAS  PubMed  Google Scholar 

  20. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990). This article describes the adenoma-to-carcinoma multi-step sequence, which is described in Fig. 2 of the manuscript.

    Article  CAS  PubMed  Google Scholar 

  21. Morson, B. C. Evolution of cancer of the colon and rectum. Cancer 34 (Suppl), 845–849 (1974).

    Article  Google Scholar 

  22. Muto, T., Bussey, H. J. & Morson, B. C. The evolution of cancer of the colon and rectum. Cancer 36, 2251–2270 (1975).

    Article  CAS  PubMed  Google Scholar 

  23. Stryker, S. J. et al. Natural history of untreated colonic polyps. Gastroenterology 93, 1009–1013 (1987).

    Article  CAS  PubMed  Google Scholar 

  24. Leslie, A., Carey, F. A., Pratt, N. R. & Steele, R. J. C. The colorectal adenoma–carcinoma sequence. Br. J. Surg. 89, 845–865 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Wagner, C. Symposium on the subcellular compartmentation of folate metabolism. J. Nutr. 126, 1228S–1234S (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Choi, S. W. & Mason, J. B. Folate status: Effects on pathways of colorectal carcinogenesis. J. Nutr. 132, 2413S–2418S (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Duthie, S. J. Folic acid deficiency and cancer: Mechanisms of DNA instability. Br. Med. Bull. 55, 578–592 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, Y. I. Folate and carcinogenesis: Evidence, mechanisms, and implications. J. Nutr. Biochem. 10, 66–88 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Martinez, M. E. et al. Folate fortification, plasma folate, homocysteine and colorectal adenoma recurrence. Int. J. Cancer 119, 1140–1446 (2006).

    Article  CAS  Google Scholar 

  30. Martinez, M. E., Henning, S. M. & Alberts, D. S. Folate and colorectal neoplasia: Relationship between plasma and dietary markers of folate and adenoma recurrence. Am. J. Clin. Nutr. 79, 691–697 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Glynn, S. A. et al. Colorectal cancer and folate status: A nested case-control study among male smokers. Cancer Epidemiol. Biomarkers Prev. 5, 487–494 (1996).

    CAS  PubMed  Google Scholar 

  32. Kato, I. et al. Serum folate, homocysteine and colorectal cancer risk in women: A nested case-control study. Br. J. Cancer 79, 1917–1921 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bailey, L. B. Dietary reference intakes for folate: The debut of dietary folate equivalents. Nutr. Rev. 56, 294–299 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Sanjoaquin, M. A., Allen, N., Couto, E., Roddam, A. W. & Key, T. J. Folate intake and colorectal cancer risk: A meta-analytical approach. Int. J. Cancer 113, 825–828 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Cole, B. F. et al. Folic acid for the prevention of colorectal adenomas: A randomized clinical trial. JAMA 297, 2351–2359 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Logan, R. F. et al. Aspirin and folic acid for the prevention of recurrent colorectal adenomas. Gastroenterology 134, 29–38 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Kim, Y. I. Role of folate in colon cancer development and progression. J. Nutr. 133, 3731S–3739S (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Cravo, M. L. et al. Folate deficiency enhances the development of colonic neoplasia in dimethylhydrazine-treated rats. Cancer Res. 52, 5002–5006 (1992).

    CAS  PubMed  Google Scholar 

  39. Kim, Y.-I. et al. Dietary folate protectects against the development of macroscopic colonic neoplasia in a dose responsive manner in rates. Gut 39, 732–740 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Le Leu, R. K., Young, G. P. & McIntosh, G. H. Folate deficiency reduces the development of colorectal cancer in rats. Carcinogenesis 21, 2261–2265 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Song, J., Medline, A., Mason, J. B., Gallinger, S. & Kim, Y.-I. Effects of dietry folate on intestinal tumorigenesis in the Apcmin mouse. Cancer Res. 60, 5434–5440 (2000).

    CAS  PubMed  Google Scholar 

  42. Ulrich, C. M. & Potter, J. D. Folate and cancer — timing is everything. JAMA. 297, 2408–2409 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Wu, K. et al. in Proc. 99th Annu. Meeting Am. Assoc. Cancer Res. LB–78 (San Diego, USA, 2008).

    Google Scholar 

  44. Honein, M. A., Paulozzi, L. J., Mathews, T. J., Erickson, J. D. & Wong, L.-Y. Impact of folic acid fortification of the US food supply on the occurrence of neural tube defects. JAMA 285, 2981–2986 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Newmark, H. L., Wargowich, M. J. & Bruce, W. R. Colon cancer and dietary fat, phosphate, and calcium: a hypothesis. J. Natl Cancer Inst. 72, 1323–1325 (1984).

    CAS  PubMed  Google Scholar 

  46. Norat, T. & Riboli, E. Dairy products and colorectal cancer. A review of possible mechanisms and epidemiological evidence. Eur. J. Clin. Nutr. 57, 1–17 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Cho, E. et al. Dairy foods, calcium, and colorectal cancer: A pooled analysis of 10 cohort studies. J. Natl. Cancer Inst. 96, 1015–1022 (2004). This article presents results of pooled prospective studies of calcium and colorectal cancer.

    Article  CAS  PubMed  Google Scholar 

  48. Peters, U. et al. Calcium intake and colorectal adenoma in a US colorectal cancer early detection program. Am. J. Clin. Nutr. 80, 1358–1365 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Kesse, E. et al. Dietary calcium, phosphorus, vitamin D, dairy products and the risk of colorectal adenoma and cancer among French women of the E3N-Epic prospective study. Int. J. Cancer 117, 137–144 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Oh, K., Willett, W. C., Wu, K., Fuchs, C. S. & Giovannucci, E. L. Calcium and vitamin D intakes in relation to risk of distal colorectal adenoma in women. Am. J. Epidemiol. 165, 1178–1186 (2007).

    Article  PubMed  Google Scholar 

  51. Hartman, T. J. et al. The association of calcium and vitamin D with risk of colorectal adenomas. J. Nutr. 135, 252–259 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Baron, J. A. et al. Calcium supplements for the prevention of colorectal adenomas. N. Engl. J. Med. 340, 101–107 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Bonithon-Kopp, C., Kronborg, O., Giacosa, A., Rath, U. & Faivre, J. Calcium and fibre supplementation in prevention of colorectal adenoma recurrence: A randomized intervention trial. European cancer prevention organisation study group. Lancet 356, 1300–1306 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Hofstad, B. et al. The relationship between faecal bile acid profile with or without supplementation with calcium and antioxidants on recurrence and growth of colorectal polyps. Eur. J. Cancer Prev. 7, 287–294 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Wactawski-Wende, J. et al. Calcium plus vitamin D supplementation and the risk of colorectal cancer. N. Engl. J. Med. 354, 684–696 (2006). This article presents the results of the WHI RCT of calcium and colorectal cancer.

    Article  CAS  PubMed  Google Scholar 

  56. Martinez, M. E. & Willett, W. C. Calcium, vitamin D, and colorectal cancer: A review of the epidemiologic evidence. Cancer Epidemiol, Biomarkers Prev 7, 163–168 (1998).

    CAS  Google Scholar 

  57. Wu, K., Willett, W. C., Fuchs, C. S., Colditz, G. A. & Giovannucci, E. L. Calcium intake and risk of colon cancer in women and men. J. Natl Cancer Inst. 94, 437–446 (2002).

    Article  PubMed  Google Scholar 

  58. Burkitt, D. P. Epidemiology of cancer of the colon and rectum. Cancer 28, 3–13 (1971).

    Article  CAS  PubMed  Google Scholar 

  59. Park, Y. et al. Dietary fiber intake and risk of colorectal cancer: A pooled analysis of prospective cohort studies. JAMA 294, 2849–2857 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Peters, U. et al. Dietary fibre and colorectal adenoma in a colorectal cancer early detection programme. Lancet 361, 1491–1495 (2003). This article presents an observational study that assesses dietary fibre and colorectal adenoma prevalence.

    Article  PubMed  Google Scholar 

  61. Bingham, S. A. et al. Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): An observational study. Lancet 361, 1496–1501 (2003). This article presents results of an observational study of dietary fibre and colorectal cancer.

    Article  PubMed  Google Scholar 

  62. Alberts, D. S. et al. Lack of effect of a high-fiber cereal supplement on the recurrence of colorectal adenomas. Phoenix colon cancer prevention physicians' network. N. Engl. J. Med. 342, 1156–1162 (2000). This article presents the results of one of the RCTs of fibre and colorectal adenoma.

    Article  CAS  PubMed  Google Scholar 

  63. Schatzkin, A. et al. Lack of effect of a low-fat, high-fiber diet on the recurrence of colorectal adenomas. Polyp prevention trial study group. N. Engl. J. Med. 342, 1149–1155 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Beresford, S. A. et al. Low-fat dietary pattern and risk of colorectal cancer: The women's health initiative randomized controlled dietary modification trial. JAMA 295, 643–654 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Giacosa, A., Franceschi, S., La Vecchia, C., Favero, A. & Andreatta, R. Energy intake, overweight, physical exercise and colorectal cancer risk. Eur. J. Cancer Prev. 8 (Suppl. 1), 53S–60S (1999).

    Google Scholar 

  66. Larsson, S. C. & Wolk, A. Meat consumption and risk of colorectal cancer: A meta-analysis of prospective studies. Int. J. Cancer 119, 2657–2664 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Norat, T. & Riboli, E. Meat consumption and colorectal cancer: A review of epidemiologic evidence. Nutr. Rev. 59, 37–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Sacks, F. M. & Katan, M. Randomized clinical trials on the effects of dietary fat and carbohydrate on plasma lipoproteins and cardiovascular disease. Am. J. Med. 113, 13S–24S (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Shrier, I. et al. Should meta-analyses of interventions include observational studies in addition to randomized controlled trials? A critical examination of underlying principles. Am. J. Epidemiol. 166, 1203–1209 (2007).

    Article  PubMed  Google Scholar 

  70. Prentice, R. L. et al. Low-fat dietary pattern and risk of invasive breast cancer: The Women's Health Initiative randomized controlled dietary modification trial. JAMA 295, 629–642 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Troen, A. M. et al. Unmetabolized folic acid in plasma is associated with reduced naturalkiller cell cytotoxicity among postmenopausal women. J. Nutr. 136, 189–194 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Vivier, E., Tomasello, E., Baratin, M., Walzer, T. & Ugolini, S. Functions of natural killer cells. Nature Immunol. 9, 503–510 (2008).

    Article  CAS  Google Scholar 

  73. Byers, T. What can randomized controlled trials tell us about nutrition and cancer prevention? CA Cancer J. Clin. 49, 353–361 (1999). An excellent summary related to interpretation of results from RCTs that have tested efficacy of dietary factors as preventive agents.

    Article  CAS  PubMed  Google Scholar 

  74. Giovannucci, E. Nutrition, insulin, insulin-like growth factors and cancer. Horm. Metab. Res. 35, 694–704 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Thun, M. J., Henley, S. J. & Patrono, C. Nonsteroidal anti-inflammatory drugs as anticancer agents: Mechanistic, pharmacologic, and clinical issues. J. Natl Cancer Inst. 94, 252–266 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Chan, A. T. Aspirin, non-steroidal anti-inflammatory drugs and colorectal neoplasia: Future challenges in chemoprevention. Cancer Causes Control 14, 413–418 (2003).

    Article  PubMed  Google Scholar 

  77. Baron, J. A. Epidemiology of non-steroidal anti-inflammatory drugs and cancer. Prog. Exp. Tumor Res. 37, 1–24 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Huls, G., Koornstra, J. J. & Kleibeuker, J. H. Non-steroidal anti-inflammatory drugs and molecular carcinogenesis of colorectal carcinomas. Lancet 362, 230–232 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Giovannucci, E. et al. Aspirin use and the risk of colorectal cancer and adenoma in male health professionals. Ann. Intern. Med. 121, 241–246 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. Giovannucci, E. et al. Aspirin use and risk of colorectal cancer in women. N. Engl. J. Med. 333, 609–614 (1995).

    Article  CAS  PubMed  Google Scholar 

  81. Larsson, S. C., Giovannucci, E. & Wolk, A. Long-term aspirin use and colorectal cancer risk: A cohort study in Sweden. Br. J. Cancer 95, 1277–1279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chan, A. T. et al. Long-term use of aspirin and nonsteroidal anti-inflammatory drugs and risk of colorectal cancer. JAMA 294, 914–923 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tangrea, J. A. et al. Non-steroidal anti-inflammatory drug use is associated with reduction in recurrence of advanced and non-advanced colorectal adenomas (United States). Cancer Causes Control 14, 403–411 (2003).

    Article  PubMed  Google Scholar 

  84. Baron, J. A. et al. A randomized trial of aspirin to prevent colorectal adenomas. N. Engl. J. Med. 348, 891–899 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Sandler, R. S. et al. A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N. Engl. J. Med. 348, 883–890 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Benamouzig, R. et al. Daily soluble aspirin and prevention of colorectal adenoma recurrence: one-year results of the APACC trial. Gastroenterology 125, 328–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Gann, P. H., Manson, J. E., Glynn, R. J., Buring, J. E. & Hennekens, C. H. Low-dose aspirin and incidence of colorectal tumors in a randomized trial. J. Natl Cancer Inst. 85, 1220–1224 (1993).

    Article  CAS  PubMed  Google Scholar 

  88. Cook, N. R. et al. Low-dose aspirin in the primary prevention of cancer: The women's health study: A randomized controlled trial. JAMA 294, 47–55 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Flossman, E., Rothwell, P. M. & British Doctors Aspirin Trial and the UK-TIA Aspirin Trial. Effect of aspirin on long-term risk of colorectal cancer: Consistent evidence from randomised and observational studies. Lancet 369, 1603–1613 (2007).

    Article  CAS  Google Scholar 

  90. Byers, T. Diet, colorectal adenomas, and colorectal cancer. N. Engl. J. Med. 343, 1206–1207 (2000).

    Article  Google Scholar 

  91. Papadimitrakopoulou, V. A. & Hong, W. K. Retinoids in head and neck chemoprevention. Proc. Soc. Exp. Biol. Med. 216, 283–290 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Correa, P. et al. Chemoprevention of gastric dysplasia: Randomized trial of antioxidant supplements and anti-helicobacter pylori therapy. J. Natl Cancer Inst. 92, 1881–1888 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Heimburger, D. C. et al. Improvement in bronchial squamous metaplasia in smokers treated with folate and vitamin B12. Report of a preliminary randomized, double-blind intervention trial. JAMA 259, 1525–1530 (1988).

    Article  CAS  PubMed  Google Scholar 

  94. Butterworth, C. E. et al. Oral folic acid supplementation for cervical dysplasia: A clinical intervention trial. Am. J. Obstet. Gynecol. 166, 803–809 (1992).

    Article  PubMed  Google Scholar 

  95. Vogelstein, B. & Kinzler, K. W. (eds) The Genetic Basis of Human Cancer (McGraw Hill Medical Publishing Division, New York, 2002).

    Google Scholar 

  96. Greenberg, E. R. et al. A clinical trial of antioxidant vitamins to prevent colorectal adenoma. N. Engl. J. Med. 331, 141–147 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Elena Martínez.

Related links

Related links

DATABASES

National Cancer Institute

breast cancer

colorectal cancer

lung cancer

pancreatic cancer

Glossary

Confounder

A factor that is associated with both an exposure factor and disease outcome such that it distorts or masks the true effect of exposure in an epidemiological study.

Colonoscopy

A procedure usually performed by a gastroenterologist that allows him/her to look inside the colon.

Polypectomy

Removal of one or more polyps, usually by colonoscopy.

Metachronous adenomas

Multiple separate adenomas developing at different intervals.

Adenoma recurrence

A model commonly used to test chemopreventive properties of a variety of agents. Study participants include individuals who have undergone colonoscopy and polypectomy of all lesions visualized and are followed prospectively for the development of metachronous and/or recurrent adenomas.

Polyglutamation

The addition of multiple glutamic acid residues by an enzymatic process. The polyglutamated folates have greater metabolic activity and are retained better in cells.

Ispaghula husk

Also known as psyllium, this is a bulk-forming laxative used to treat constipation and is a dietary source of soluble fibre.

Natural killer cells

A type of lymphocyte that attacks and kills tumour cells and protects against infectious microbes. The term 'natural' is used because they do not need additional stimulation in order to attack and kill.

Hyperinsulinaemia

The presence of an abnormally high level of insulin in the blood. This is usually caused by insulin resistance, a condition in which the body cannot use insulin properly.

Glycaemic load

An indicator of glucose response or insulin demand that is induced by total carbohydrate intake. It is calculated by multiplying the weighted mean of the dietary glycaemic index by the percentage of total energy from carbohydrate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, M., Marshall, J. & Giovannucci, E. Diet and cancer prevention: the roles of observation and experimentation. Nat Rev Cancer 8, 694–703 (2008). https://doi.org/10.1038/nrc2441

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2441

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing