Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Active-site directed probes to report enzymatic action in the ubiquitin proteasome system

Abstract

Irreversible covalent inhibitors equipped with reporter groups, also termed activity-based probes, allow the study of target enzymes based on catalytic activity instead of expression level, which does not necessarily indicate protein function and subsequent cellular consequences. Activity-based probes offer advantages over traditional techniques: they can be applied to the cell or tissue of choice and molecular imaging and pharmacology applications are possible. Here the design and use of probes directed at enzymatic activities in the ubiquitin proteasome system are discussed. This system holds promise for the development of new, targeted anticancer therapies and the probes discussed here might aid in fulfilling this promise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ubiquitin proteasome system.
Figure 2: Development of chemical activity-based probes that directly report enzymatic activity.
Figure 3: Probes to study proteasome and DUB activity.
Figure 4: Applications of mechanism-based active-site directed probes for detection of proteasome and DUB activity.

Similar content being viewed by others

References

  1. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  2. Glickman, M. H. & Ciechanover, A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82, 373–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Akiyama, K. et al. Replacement of proteasome subunits X and Y by LMP7 and LMP2 induced by interferon-γ for acquirement of the functional diversity responsible for antigen processing. FEBS Lett. 343, 85–88 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Murata, S. et al. Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 316, 1349–1353 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Nalepa, G., Rolfe, M. & Harper, J. W. Drug discovery in the ubiquitin-proteasome system. Nature Rev. Drug Discov. 5, 596–613 (2006).

    Article  CAS  Google Scholar 

  6. Chauhan, D. et al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8, 407–419 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Raiborg, C., Slagsvold, T. & Stenmark, H. A new side to ubiquitin. Trends Biochem. Sci. 31, 541–544 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Hicke, L. Protein regulation by monoubiquitin. Nature Rev. Mol. Cell Biol. 2, 195–201 (2001).

    Article  CAS  Google Scholar 

  9. Li, W., Tu, D., Brunger, A. T. & Ye, Y. A ubiquitin ligase transfers preformed polyubiquitin chains from a conjugating enzyme to a substrate. Nature 446, 333–337 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Haglund, K. & Dikic, I. Ubiquitylation and cell signaling. EMBO J. 24, 3353–3359 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pickart, C. M. & Eddins, M. J. Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta 1695, 55–72 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Pickart, C. M. Back to the future with ubiquitin. Cell 116, 181–190 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Brondani, V., Schefer, Q., Hamy, F. & Klimkait, T. The peptidyl-prolyl isomerase Pin1 regulates phospho-Ser77 retinoic acid receptor alpha stability. Biochem. Biophys. Res. Commun. 328, 6–13 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Nijman, S. M. et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Crosas, B. et al. Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 127, 1401–1413 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Hemelaar, J. et al. Chemistry-based functional proteomics: mechanism-based activity-profiling tools for ubiquitin and ubiquitin-like specific proteases. J. Proteome Res. 3, 268–276 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Zhou, H. et al. Yersinia virulence factor YopJ acts as a deubiquitinase to inhibit NF-κ B activation. J. Exp. Med. 202, 1327–1332 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wada, H., Kito, K., Caskey, L. S., Yeh, E. T. & Kamitani, T. Cleavage of the C-terminus of NEDD8 by UCH-L3. Biochem. Biophys. Res. Commun. 251, 688–692 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Wu, K. et al. DEN1 is a dual function protease capable of processing the C terminus of Nedd8 and deconjugating hyper-neddylated CUL1. J. Biol. Chem. 278, 28882–28891 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Gan-Erdene, T. et al. Identification and characterization of DEN1, a deneddylase of the ULP family. J. Biol. Chem. 278, 28892–28900 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Nakayama, K. I. & Nakayama, K. Ubiquitin ligases: cell-cycle control and cancer. Nature Rev. Cancer 6, 369–381 (2006).

    Article  CAS  Google Scholar 

  22. Hoeller, D., Hecker, C. M. & Dikic, I. Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nature Rev. Cancer 6, 776–788 (2006).

    Article  CAS  Google Scholar 

  23. Dantuma, N. P., Lindsten, K., Glas, R., Jellne, M. & Masucci, M. G. Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nature Biotechnol. 18, 538–543 (2000).

    Article  CAS  Google Scholar 

  24. Groothuis, T. A., Dantuma, N. P., Neefjes, J. & Salomons, F. A. Ubiquitin crosstalk connecting cellular processes. Cell Div. 1, 21 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Dantuma, N. P., Groothuis, T. A., Salomons, F. A. & Neefjes, J. A dynamic ubiquitin equilibrium couples proteasomal activity to chromatin remodeling. J. Cell Biol. 173, 19–26 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yao, T. & Cohen, R. E. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419, 403–407 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Lindsten, K., Menendez-Benito, V., Masucci, M. G. & Dantuma, N. P. A transgenic mouse model of the ubiquitin/proteasome system. Nature Biotechnol. 21, 897–902 (2003).

    Article  CAS  Google Scholar 

  28. Luker, G. D., Pica, C. M., Song, J., Luker, K. E. & Piwnica-Worms, D. Imaging 26S proteasome activity and inhibition in living mice. Nature Med. 9, 969–973 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Evans, M. J. & Cravatt, B. F. Mechanism-based profiling of enzyme families. Chem. Rev. 106, 3279–3301 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. van Swieten, P. F., Leeuwenburgh, M. A., Kessler, B. M. & Overkleeft, H. S. Bioorthogonal organic chemistry in living cells: novel strategies for labeling biomolecules. Org. Biomol. Chem. 3, 20–27 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Sadaghiani, A. M., Verhelst, S. H. & Bogyo, M. Tagging and detection strategies for activity-based proteomics. Curr. Opin. Chem. Biol. 11, 20–28 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Harris, J. L., Alper, P. B., Li, J., Rechsteiner, M. & Backes, B. J. Substrate specificity of the human proteasome. Chem. Biol. 8, 1131–1141 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Fenteany, G., Standaert, R. F., Reichard, G. A., Corey, E. J. & Schreiber, S. L. A β-lactone related to lactacystin induces neurite outgrowth in a neuroblastoma cell line and inhibits cell cycle progression in an osteosarcoma cell line. Proc. Natl Acad. Sci. USA 91, 3358–3362 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fenteany, G. et al. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268, 726–731 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Bogyo, M., Shin, S., McMaster, J. S. & Ploegh, H. L. Substrate binding and sequence preference of the proteasome revealed by active-site-directed affinity probes. Chem. Biol. 5, 307–320 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Bogyo, M. et al. Covalent modification of the active site threonine of proteasomal beta subunits and the Escherichia coli homolog HslV by a new class of inhibitors. Proc. Natl Acad. Sci. USA 94, 6629–6634 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kessler, B. M. et al. Extended peptide-based inhibitors efficiently target the proteasome and reveal overlapping specificities of the catalytic beta-subunits. Chem. Biol. 8, 913–929 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Kim, K. B., Myung, J., Sin, N. & Crews, C. M. Proteasome inhibition by the natural products epoxomicin and dihydroeponemycin: insights into specificity and potency. Bioorg. Med. Chem. Lett. 9, 3335–3340 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Sin, N. et al. Total synthesis of the potent proteasome inhibitor epoxomicin: a useful tool for understanding proteasome biology. Bioorg. Med. Chem. Lett. 9, 2283–2288 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Ovaa, H. et al. Chemistry in living cells: detection of active proteasomes by a two-step labeling strategy. Angew. Chem. Int. Ed. Engl. 42, 3626–3629 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. van Swieten, P. F. et al. A cell-permeable inhibitor and activity-based probe for the caspase-like activity of the proteasome. Bioorg. Med. Chem. Lett. 17, 3402–3405 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Berkers, C. R. et al. Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib. Nature Methods 2, 357–362 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Kristiansen, M. et al. Disease-associated prion protein oligomers inhibit the 26S proteasome. Mol. Cell 26, 175–188 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Ho, Y. K., Bargagna-Mohan, P., Wehenkel, M., Mohan, R. & Kim, K. B. LMP2–specific inhibitors: chemical genetic tools for proteasome biology. Chem. Biol. 14, 419–430 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Verdoes, M. et al. A fluorescent broad-spectrum proteasome inhibitor for labeling proteasomes in vitro and in vivo. Chem. Biol. 13, 1217–1226 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Berkers, C. R. et al. Profiling proteasome activity in tissue with fluorescent probes. Mol. Pharm. [in the press].

  47. Verdoes, M. et al. Mixing of peptides and electrophilic traps gives rise to potent, broad-spectrum proteasome inhibitors. Org. Biomol. Chem. 5, 1416–1426 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Altun, M. et al. Effects of PS-341 on the activity and composition of proteasomes in multiple myeloma cells. Cancer Res. 65, 7896–7901 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Kraus, M. et al. Activity patterns of proteasome subunits reflect bortezomib sensitivity of hematologic malignancies and are variable in primary human leukemia cells. Leukemia 21, 84–92 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Wilkinson, K. D., Cox, M. J., Mayer, A. N. & Frey, T. Synthesis and characterization of ubiquitin ethyl ester, a new substrate for ubiquitin carboxyl-terminal hydrolase. Biochemistry 25, 6644–6649 (1986).

    Article  CAS  PubMed  Google Scholar 

  51. Dang, L. C., Melandri, F. D. & Stein, R. L. Kinetic and mechanistic studies on the hydrolysis of ubiquitin C-terminal 7-amido-4-methylcoumarin by deubiquitinating enzymes. Biochemistry 37, 1868–1879 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Hershko, A. & Rose, I. A. Ubiquitin-aldehyde: a general inhibitor of ubiquitin-recycling processes. Proc. Natl Acad. Sci. USA 84, 1829–1833 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pickart, C. M. & Rose, I. A. Mechanism of ubiquitin carboxyl-terminal hydrolase. Borohydride and hydroxylamine inactivate in the presence of ubiquitin. J. Biol. Chem. 261, 10210–10217 (1986).

    CAS  PubMed  Google Scholar 

  54. Lam, Y. A., Xu, W., DeMartino, G. N. & Cohen, R. E. Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature 385, 737–740 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Borodovsky, A. et al. A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14. EMBO J. 20, 5187–5196 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Muralidharan, V. & Muir, T. W. Protein ligation: an enabling technology for the biophysical analysis of proteins. Nature Methods 3, 429–438 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Borodovsky, A. et al. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem. Biol. 9, 1149–1159 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Denison, C., Kirkpatrick, D. S. & Gygi, S. P. Proteomic insights into ubiquitin and ubiquitin-like proteins. Curr. Opin. Chem. Biol. 9, 69–75 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Kirkpatrick, D. S., Denison, C. & Gygi, S. P. Weighing in on ubiquitin: the expanding role of mass-spectrometry-based proteomics. Nature Cell Biol. 7, 750–757 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Hemelaar, J. et al. Specific and covalent targeting of conjugating and deconjugating enzymes of ubiquitin-like proteins. Mol. Cell Biol. 24, 84–95 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kang, S. H. et al. Two novel ubiquitin-fold modifier 1 (Ufm1)-specific proteases, UfSP1 and UfSP2. J. Biol. Chem. 282, 5256–5262 (2006).

    Article  PubMed  Google Scholar 

  62. Evans, P. C. et al. Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochem. J. 378, 727–734 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rolen, U. et al. Activity profiling of deubiquitinating enzymes in cervical carcinoma biopsies and cell lines. Mol. Carcinog. 45, 260–269 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Ovaa, H. et al. Activity-based ubiquitin-specific protease (USP) profiling of virus-infected and malignant human cells. Proc. Natl Acad. Sci. USA 101, 2253–2258 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kattenhorn, L. M., Korbel, G. A., Kessler, B. M., Spooner, E. & Ploegh, H. L. A deubiquitinating enzyme encoded by HSV-1 belongs to a family of cysteine proteases that is conserved across the family Herpesviridae. Mol. Cell 19, 547–557 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Wang, J., Loveland, A. N., Kattenhorn, L. M., Ploegh, H. L. & Gibson, W. High-molecular-weight protein (pUL48) of human cytomegalovirus is a competent deubiquitinating protease: mutant viruses altered in its active-site cysteine or histidine are viable. J. Virol. 80, 6003–6012 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Misaghi, S. et al. Chlamydia trachomatis-derived deubiquitinating enzymes in mammalian cells during infection. Mol. Microbiol. 61, 142–150 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Artavanis-Tsakonas, K. et al. Identification by functional proteomics of a deubiquitinating/deNeddylating enzyme in Plasmodium falciparum. Mol. Microbiol. 61, 1187–1195 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Catic, A., Misaghi, S., Korbel, G. A. & Ploegh, H. L. ElaD, a deubiquitinating protease expressed by E. coli. PLoS. ONE 2, e381 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Mukherjee, S. et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312, 1211–1214 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Hu, M. et al. Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell 111, 1041–1054 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Renatus, M. et al. Structural basis of ubiquitin recognition by the deubiquitinating protease USP2. Structure 14, 1293–1302 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hu, M. et al. Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14. EMBO J. 24, 3747–3756 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mullally, J. E., Moos, P. J., Edes, K. & Fitzpatrick, F. A. Cyclopentenone prostaglandins of the J series inhibit the ubiquitin isopeptidase activity of the proteasome pathway. J. Biol. Chem. 276, 30366–30373 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Liu, Y. et al. Discovery of inhibitors that elucidate the role of UCH-L1 activity in the H1299 lung cancer cell line. Chem. Biol. 10, 837–846 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Graner, E. et al. The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell 5, 253–261 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Priolo, C. et al. The isopeptidase USP2a protects human prostate cancer from apoptosis. Cancer Res. 66, 8625–8632 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Popov, N. et al. The ubiquitin-specific protease USP28 is required for MYC stability. Nature Cell Biol. 9, 765–774.

  79. Lim, H. S., Archer, C. T. & Kodadek, T. Identification of a peptoid inhibitor of the proteasome 19S regulatory particle. J. Am. Chem. Soc. 129, 7750–7751 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Issaeva, N. et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nature Med. 10, 1321–1328 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Krajewski, M., Ozdowy, P., D'Silva, L., Rothweiler, U. & Holak, T. A. NMR indicates that the small molecule RITA does not block p53-MDM2 binding in vitro. Nature Med. 11, 1135–1136 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Concannon, C. G. et al. Apoptosis induced by proteasome inhibition in cancer cells: predominant role of the p53/PUMA pathway. Oncogene 26, 1681–1692 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Nair, V. D., McNaught, K. S., Gonzalez-Maeso, J., Sealfon, S. C. & Olanow, C. W. p53 mediates nontranscriptional cell death in dopaminergic cells in response to proteasome inhibition. J. Biol. Chem. 281, 39550–39560 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Hideshima, T. et al. NF-κ B as a therapeutic target in multiple myeloma. J. Biol. Chem. 277, 16639–16647 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Miyoshi, Y. et al. High expression of ubiquitin carboxy-terminal hydrolase-L1 and-L3 mRNA predicts early recurrence in patients with invasive breast cancer. Cancer Sci. 97, 523–529 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Nijman, S. M. et al. The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol. Cell 17, 331–339 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Huang, T. T. et al. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nature Cell Biol. 8, 339–347 (2006).

    CAS  PubMed  Google Scholar 

  89. Stevenson, L. F. et al. The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J. 26, 976–986 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Oishi, K. et al. Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes. J. Biol. Chem. 278, 41519–41527 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Gray, D. A. et al. Elevated expression of Unph, a proto-oncogene at 3p21. 3, in human lung tumors. Oncogene 10, 2179–2183 (1995).

    CAS  PubMed  Google Scholar 

  92. Gilchrist, C. A. & Baker, R. T. Characterization of the ubiquitin-specific protease activity of the mouse/human Unp/Unph oncoprotein. Biochim. Biophys. Acta 1481, 297–309 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Ghbeish, N. et al. The dual role of ultraspiracle, the Drosophila retinoid X receptor, in the ecdysone response. Proc. Natl Acad. Sci. USA 98, 3867–3872 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Blanchette, P., Gilchrist, C. A., Baker, R. T. & Gray, D. A. Association of UNP, a ubiquitin-specific protease, with the pocket proteins pRb, p107 and p130. Oncogene 20, 5533–5537 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Gupta, K., Copeland, N. G., Gilbert, D. J., Jenkins, N. A. & Gray, D. A. Unp, a mouse gene related to the tre oncogene. Oncogene 8, 2307–2310 (1993).

    CAS  PubMed  Google Scholar 

  96. Gilchrist, C. A., Gray, D. A. & Baker, R. T. A ubiquitin-specific protease that efficiently cleaves the ubiquitin-proline bond. J. Biol. Chem. 272, 32280–32285 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Oliveira, A. M. et al. Aneurysmal bone cyst variant translocations upregulate USP6 transcription by promoter swapping with the ZNF9, COL1A1, TRAP150, and OMD genes. Oncogene 24, 3419–3426 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Oliveira, A. M. et al. USP6 (Tre2) fusion oncogenes in aneurysmal bone cyst. Cancer Res. 64, 1920–1923 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Martinu, L. et al. The TBC (Tre-2/Bub2/Cdc16) domain protein TRE17 regulates plasma membrane-endosomal trafficking through activation of Arf6. Mol. Cell Biol. 24, 9752–9762 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Masuda-Robens, J. M., Kutney, S. N., Qi, H. & Chou, M. M. The TRE17 oncogene encodes a component of a novel effector pathway for Rho GTPases Cdc42 and Rac1 and stimulates actin remodeling. Mol. Cell Biol. 23, 2151–2161 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Menin, C. Association between MDM2–SNP309 and age at colorectal cancer diagnosis according to p53 mutation status. J. Natl Cancer Inst. 98, 285–288 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Masuya, D. et al. The HAUSP gene plays an important role in non-small cell lung carcinogenesis through p53-dependent pathways. J. Pathol. 208, 724–732 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Li, M. et al. Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416, 648–653 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Cummins, J. M. et al. Tumour suppression: disruption of HAUSP gene stabilizes p53. Nature 428, 1 (2004).

    Article  PubMed  Google Scholar 

  105. Meulmeester, E. et al. Loss of HAUSP-mediated deubiquitination contributes to DNA damage-induced destabilization of Hdmx and Hdm2. Mol. Cell 18, 565–576 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Taya, S., Yamamoto, T., Kanai-Azuma, M., Wood, S. A. & Kaibuchi, K. The deubiquitinating enzyme Fam interacts with and stabilizes beta-catenin. Genes Cells 4, 757–767 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Deng, S. et al. Over-expression of genes and proteins of ubiquitin specific peptidases (USPs) and proteasome subunits (PSs) in breast cancer tissue observed by the methods of RFDD-PCR and proteomics. Breast Cancer Res. Treat. 104, 21–30.

  108. Murray, R. Z., Jolly, L. A. & Wood, S. A. The FAM deubiquitylating enzyme localizes to multiple points of protein trafficking in epithelia, where it associates with E-cadherin and beta-catenin. Mol. Biol. Cell 15, 1591–1599 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Grunda, J. M. et al. Increased expression of thymidylate synthetase (TS), ubiquitin specific protease 10 (USP10) and survivin is associated with poor survival in glioblastoma multiforme (GBM). J. Neurooncol. 80, 261–274 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Faus, H., Meyer, H. A., Huber, M., Bahr, I. & Haendler, B. The ubiquitin-specific protease USP10 modulates androgen receptor function. Mol. Cell Endocrinol. 245, 138–146 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Shinji, S. et al. Ubiquitin-specific protease 14 expression in colorectal cancer is associated with liver and lymph node metastases. Oncol. Rep. 15, 539–543 (2006).

    CAS  PubMed  Google Scholar 

  112. Baker, R. T., Wang, X. W., Woollatt, E., White, J. A. & Sutherland, G. R. Identification, functional characterization, and chromosomal localization of USP15, a novel human ubiquitin-specific protease related to the UNP oncoprotein, and a systematic nomenclature for human ubiquitin-specific proteases. Genomics 59, 264–274 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Schweitzer, K., Bozko, P. M., Dubiel, W. & Naumann, M. CSN controls NF-κB by deubiquitinylation of IκBα. EMBO J. 26, 1532–1541 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. De Pitta, C. et al. A leukemia-enriched cDNA microarray platform identifies new transcripts with relevance to the biology of pediatric acute lymphoblastic leukemia. Haematologica 90, 890–898 (2005).

    CAS  PubMed  Google Scholar 

  115. Li, Z., Wang, D., Messing, E. M. & Wu, G. VHL protein-interacting deubiquitinating enzyme 2 deubiquitinates and stabilizes HIF-1α. EMBO Rep. 6, 373–378 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Paulsson, K. et al. A novel and cytogenetically cryptic t(7;21)(p22;q22) in acute myeloid leukemia results in fusion of RUNX1 with the ubiquitin-specific protease gene USP42. Leukemia 20, 224–229 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Bignell, G. R. et al. Identification of the familial cylindromatosis tumour-suppressor gene. Nature Genet. 25, 160–165 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Young, A. L. et al. CYLD mutations underlie Brooke-Spiegler, familial cylindromatosis, and multiple familial trichoepithelioma syndromes. Clin. Genet. 70, 246–249 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Massoumi, R., Chmielarska, K., Hennecke, K., Pfeifer, A. & Fassler, R. Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-κB signaling. Cell 125, 665–677 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Brummelkamp, T. R., Nijman, S. M., Dirac, A. M. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424, 797–801 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Trompouki, E. et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature 424, 793–796 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Jono, H. et al. NF-κB is essential for induction of CYLD, the negative regulator of NF-κB: evidence for a novel inducible autoregulatory feedback pathway. J. Biol. Chem. 279, 36171–36174 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Kovalenko, A. et al. The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature 424, 801–805 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Regamey, A. et al. The tumor suppressor CYLD interacts with TRIP and regulates negatively nuclear factor κB activation by tumor necrosis factor. J. Exp. Med. 198, 1959–1964 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Vendrell, J. A. et al. A20/TNFAIP3, a new estrogen-regulated gene that confers tamoxifen resistance in breast cancer cells. Oncogene 12 February 2007 (Epub ahead of print).

  127. Jensen, D. E. et al. BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene 16, 1097–1112 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Sobhian, B. et al. RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 316, 1198–1202 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dong, Y. et al. Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol. Cell 12, 1087–1099 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Chen, X., Arciero, C. A., Wang, C., Broccoli, D. & Godwin, A. K. BRCC36 is essential for ionizing radiation-induced BRCA1 phosphorylation and nuclear foci formation. Cancer Res. 66, 5039–5046 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the Ovaa laboratory is supported by grants from the Netherlands Foundation for Scientific Research (700.55.018 and 700.55.422) and The Netherlands Cancer Society (NKI 2005-3368).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Overview of active site–directed proteasome probes (PDF 181 kb)

Related links

Related links

FURTHER INFORMATION

Author's homepage

The human protein reference database

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ovaa, H. Active-site directed probes to report enzymatic action in the ubiquitin proteasome system. Nat Rev Cancer 7, 613–620 (2007). https://doi.org/10.1038/nrc2128

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2128

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing