Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Transcription — guarding the genome by sensing DNA damage

Abstract

Cells induce the expression of DNA-repair enzymes, activate cell-cycle checkpoints and, under some circumstances, undergo apoptosis in response to DNA-damaging agents. The mechanisms by which these cellular responses are triggered are not well understood, but there is recent evidence that the transcription machinery might be used in DNA-damage surveillance and in triggering DNA-damage responses to suppress mutagenesis. Transcription might also act as a DNA-damage dosimeter where the severity of blockage determines whether or not to induce cell death. Could transcription therefore be a potential therapeutic target for anticancer strategies?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular consequences of blocked transcription.
Figure 2: Recovery of RNA synthesis.
Figure 3: Balance between DNA-damage responses, cancer and ageing.

Similar content being viewed by others

References

  1. Mellon, I., Spivak, G. & Hanawalt, P. C. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51, 241–249 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Christians, F. C. & Hanawalt, P. C. Lack of Transcription-coupled repair in mammalian ribosomal RNA genes. Biochemistry 32, 10512–10518 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Dammann, R. & Pfeifer, G. P. Lack of gene- and strand-specific DNA repair in RNA polymerase III-transcribed human tRNA genes. Mol. Cell. Biol. 17, 219–229 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mitchell, J. R., Hoeijmakers, J. H. & Niedernhofer, L. J. Divide and conquer: nucleotide excision repair battles cancer and ageing. Curr. Opin. Cell Biol. 15, 232–240 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Ljungman, M. & Zhang, F. Blockage of RNA polymerase as a possible trigger for UV light-induced apoptosis. Oncogene 13, 823–831 (1996).

    CAS  PubMed  Google Scholar 

  6. Andera, L. & Wasylyk, B. Transcription abnormalities potentiate apoptosis of normal human fibroblasts. Mol. Med. 3, 852–863 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ljungman, M., Zhang, F. F., Chen, F., Rainbow, A. J. & McKay, B. C. Inhibition of RNA polymerase II as a trigger for the p53 response. Oncogene 18, 583–592 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. van Oosten, M. et al. Differential role of transcription-coupled repair in UVB-induced G(2) arrest and apoptosis in mouse epidermis. Proc. Natl Acad. Sci. USA 97, 11268–11273 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brash, D. E. et al. The DNA damage signal for Mdm2 regulation, Trp53 induction, and sunburn cell formation in vivo originates from actively transcribed genes. J. Invest. Derm. 117, 1234–1240 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Queille, S., Drougard, C., Sarasin, A. & Daya-Grosjean, L. Effects of XPD mutations on ultraviolet-induced apoptosis in relation to skin cancer-proneness in repair-deficient syndromes. J. Invest. Derm. 117, 1162–1170 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. McKay, B. C., Becerril, C. & Ljungman, M. P53 plays a protective role against UV- and cisplatin-induced apoptosis in transcription-coupled repair proficient fibroblasts. Oncogene 20, 6805–6808 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. van Gijssel, H. E., Mullenders, L. H., van Oosterwijk, M. F. & Meerman, J. H. Blockage of transcription as a trigger for p53 accumulation by 2-acetylaminofluorene DNA-adducts. Life Sci. 73, 1759–1771 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Shen, H. et al. Smoking, DNA repair capacity and risk of nonsmall cell lung cancer. Int. J. Cancer 107, 84–88 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Park, J. Y. et al. Polymorphisms of the DNA repair gene xeroderma pigmentosum group A and risk of primary lung cancer. Cancer Epidemiol. Biomarkers Prev. 11, 993–997 (2002).

    CAS  PubMed  Google Scholar 

  15. Wei, Q. et al. Repair of tobacco carcinogen-induced DNA adducts and lung cancer risk: a molecular epidemiologic study. J. Natl Cancer Inst. 92, 1764–1772 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Wei, Q. Y., Cheng, L., Hong, W. K. & Spitz, M. R. Reduced DNA repair capacity in lung cancer patients. Cancer Res. 56, 4103–4107 (1996).

    CAS  PubMed  Google Scholar 

  17. Shi, Q. et al. Reduced DNA repair of benzo(a)pyrene diol epoxide-induced adducts and common XPD polymorphisms in breast cancer patients. Carcinogenesis (in the press).

  18. Ramos, J. M. et al. DNA repair and breast carcinoma susceptibility in women. Cancer 100, 1352–1357 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Lane, D. p53, guardian of the genome. Nature 358, 15–16 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Ljungman, M. Dial 9-1-1 for p53: Mechanisms of p53 activation by cellular stress. Neoplasia 2, 208–225 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yamaizumi, M. & Sugano, T. UV-induced nuclear accumulation of p53 is evoked through DNA damage of actively transcribed genes independent of the cell cycle. Oncogene 9, 2775–2784 (1994).

    CAS  PubMed  Google Scholar 

  22. Dumaz, N. et al. Prolonged p53 protein accumulation in trichothiodystrophy fibroblasts dependent on unrepaired pyrimidine dimers on the transcribed strands of cellular genes. Mol. Carcinogen. 20, 340–347 (1997).

    Article  CAS  Google Scholar 

  23. McKay, B. C., Ljungman, M. & Rainbow, A. J. Persistent DNA damage induced by ultraviolet light inhibits p21waf1 and bax expression: implications for DNA repair, UV sensitivity and the induction of apoptosis. Oncogene 17, 545–555 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Blattner, C., Bender, K., Herrlich, P. & Rahmsdorf, H. Photoproducts in transcriptionally active DNA induce signal transduction to delay U. V.-responsive genes for collagenase and metallothionein. Oncogene 16, 2827–2834 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. van Hoffen, A., Balajee, A. S., van Zeeland, A. A. & Mullenders, L. H. Nucleotide excision repair and its interplay with transcription. Toxicology 193, 79–90 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. de Boer, J. et al. Premature aging in mice deficient in DNA repair and transcription. Science 296, 1276–1279 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. de Boer, J. et al. A mouse model for the basal transcription/DNA repair syndrome trichothiodystrophy. Mol. Cell 1, 981–990 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. de Boer, J. et al. Mouse model for the DNA repair/basal transcription disorder trichotiodystrophy reveals cancer predisposition. Cancer Res. 59, 3489–3494 (1999).

    CAS  PubMed  Google Scholar 

  29. Garssen, J. et al. Transcription-coupled and global genome repair differentially influence UV-B-induced acute skin effects and systemic immunosuppression. J. Immunol. 164, 6199–6205 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Ljungman, M., O'Hagan, H. M. & Paulsen, M. T. Induction of ser15 and lys382 modifications of p53 by blockage of transcription elongation. Oncogene 20, 5964–5971 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Klibanov, S. A., O'Hagan, H. M. & Ljungman, M. Accumulation of soluble and nucleolar-associated p53 proteins following cellular stress. J. Cell Sci. 114, 1867–1873 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. O'Hagan, H. M. & Ljungman, M. Phosphorylation and nuclear accumulation are distinct events contributing to the activation of p53. Mutat. Res. 546, 7–15 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Lane, D. P. & Hall, P. A. MDM2- arbiter of p53's destruction. Trends Biochem. Sci. 22, 372–374 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Freedman, D. A. & Levine, A. J. Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol. Cell. Biol. 18, 7288–7293 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Boyd, S. D., Tsai, K. Y. & Jacks, T. An intact HDM2 RING-finger domain is required for nuclear exclusion of p53. Nature Cell Biol. 2, 563–568 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Geyer, R. K., Yu, Z. K. & Maki, C. G. The MDM2 RING-finger domain is required to promote p53 nuclear export. Nature Cell Biol. 2, 569–573 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Gu, J. J., Nie, L. H., Wiederschain, D. & Yuan, Z. M. Identification of p53 sequence elements that are required for MDM2-mediated nuclear export. Mol. Cell. Biol. 21, 8533–8546 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lohrum, M. A. E., Woods, D. B., Ludwig, R. L., Balint, E. & Vousden, K. H. C-terminal ubiquitination of p53 contributes to nuclear export. Mol. Cell. Biol. 21, 8521–8532 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Blattner, C., Sparks, A. & Lane, D. Transcription factor E2F-1 is upregulated in response to DNA damage in a manner analogous to that of p53. Mol. Cell. Biol. 19, 3704–3713 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ashcroft, M., Taya, Y. & Vousden, K. H. Stress signals utilize multiple pathways to stabilize p53. Mol. Cell. Biol. 20, 3224–3233 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Conforti, G., Nardo, T., D'Incalci, M. & Stefanini, M. Proneness to UV-induced apoptosis in human fibroblasts defective in transcription coupled repair is associated with the lack of Mdm2 transactivation. Oncogene 19, 2714–2720 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Blagosklonny, M., Demidenko, Z. & Fojo, T. Inhibition of transcription results in accumulation of wt p53 followed by delayed outburst of p53-inducible proteins: p53 as a sensor of transcriptional integrity. Cell Cycle 1, 67–74 (2002).

    CAS  PubMed  Google Scholar 

  43. O'Hagan, H. M. & Ljungman, M. Nuclear accumulation of p53 following inhibition of transcription is not due to diminished levels of MDM2. Oncogene 23, 5505–5512 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Koumenis, C. & Giaccia, A. Transformed cells require continuous activity of RNA polymerase II to resist oncogene-induced apoptosis. Mol. Cell. Biol. 17, 7306–7316 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Poele, R. H. T., Okorokov, A. L. & Joel, S. P. RNA synthesis block by 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) triggers p53-dependent apoptosis in human colon carcinoma cells. Oncogene 18, 5765–5772 (1999).

    Article  CAS  Google Scholar 

  46. Rubbi, C. P. & Milner, J. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J. 22, 6068–6077 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sherr, C. J. & Weber, J. D. The ARF/p53 pathway. Curr. Opin. Genet. Devel. 10, 94–99 (2000).

    Article  CAS  Google Scholar 

  48. Zhang, Y. & Xiong, Y. Control of p53 Ubiquitination and nuclear export by MDM2 and ARF. Cell Growth Diff. 12, 175–186 (2001).

    CAS  PubMed  Google Scholar 

  49. Benavente, R., Reimer, G., Rose, K. M., Hugle-Dorr, B. & Scheer, U. Nucleolar changes after microinjection of antibodies to RNA polymerase I into the nucleus of mammalian cells. Chromosoma 97, 115–123 (1988).

    Article  CAS  PubMed  Google Scholar 

  50. Haaf, T. & Ward, D. C. Inhibition of RNA polymerase II transcription causes chromatin decondensation, loss of nucleolar structure, and dispersion of chromosomal domains. Exp. Cell Res. 224, 163–173 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. O'Hagan, H. M. & Ljungman, M. Efficient NES-dependent protein nuclear export requires ongoing synthesis and export of mRNAs. Exp. Cell Res. 297, 548–559 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Stommel, J. M. et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 18, 1660–1672 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, Y. P. & Xiong, Y. A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation. Science 292, 1910–1915 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Yoshida, Y. et al. Binding of RNA to p53 regulates its oligomerization and DNA–binding activity. Oncogene 23, 4371–4379 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. McKay, B. C. et al. Regulation of ultraviolet light-induced gene expression by gene size. Proc. Natl Acad. Sci. USA 101, 6582–6586 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Billecke, C. A. et al. Lack of functional pRb results in attenuated recovery of mRNA synthesis and increased apoptosis following UV radiation in human breast cancer cells. Oncogene 21, 4481–4489 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. McKay, B. C., Chen, F., Perumalswami, C. R., Zhang, F. F. & Ljungman, M. The tumor suppressor p53 can both stimulate and inhibit ultraviolet light-induced apoptosis. Mol. Biol. Cell 11, 2543–2551 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McKay, B. & Ljungman, M. Role for p53 in the recovery of transcription and protection against apoptosis induced by ultraviolet light. Neoplasia 1, 276–284 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Proietti De Santis, L. et al. Inhibition of p53, p21 and Bax by pifithrin-α does not affect UV induced apoptotic response in CS-B cells. DNA Repair 2, 891–900 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Chouinard, N., Valerie, K., Rouabhia, M. & Huot, J. UVB-mediated activation of p38 mitogen-activated protein kinase enhances resistance of normal human keratinocytes to apoptosis by stabilizing cytoplasmic p53. Biochem. J. 365, 133–145 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. McKay, B., Becerril, C., Spronck, J. & Ljungman, M. Ultraviolet light-induced apoptosis is associated with S-phase in primary human fibroblasts. DNA Repair 1, 811–820 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. McGlynn, P. & Lloyd, R. G. Recombinational repair and restart of damaged replication forks. Nature Rev. Mol. Cell Biol. 3, 859–870 (2002).

    Article  CAS  Google Scholar 

  63. Bissonnette, N. & Hunting, D. J. p21-induced cycle arrest in G1 protects cells from apoptosis induced by UV-irradiation or RNA polymerase II blockage. Oncogene 16, 3461–3469 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Porter, L. A., Cukier, I. H. & Lee, J. M. Nuclear localization of cyclin B1 regulates DNA damage-induced apoptosis. Blood 101, 1928–1933 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Viswanathan, A. & Doetsch, P. W. Effects of nonbulky DNA base damages on Escherichia coli RNA polymerase-mediated elongation and promoter clearance. J. Biol. Chem. 273, 21276–21281 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Tornaletti, S., Maeda, L. S., Lloyd, D. R., Reines, D. & Hanawalt, P. C. Effect of thymine glycol on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II. J. Biol. Chem. 276, 45367–45371 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Tornaletti, S., Maeda, L. S., Kolodner, R. D. & Hanawalt, P. C. Effect of 8-oxoguanine on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II. DNA Repair (Amst) 3, 483–494 (2004).

    Article  CAS  Google Scholar 

  68. Le Page, F. et al. Transcription-coupled repair of 8-oxoGuanine: Requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Cell 101, 159–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Yanamadala, S. & Ljungman, M. Potential role of MLH1 in the induction of p53 and apoptosis by blocking transcription on damaged DNA templates. Mol. Cancer Res. 1, 747–754 (2003).

    CAS  PubMed  Google Scholar 

  70. Duckett, D. R. et al. Human MutSα recognizes damaged DNA base pairs containing O6-methylguanine, O4-methylthymine, or the cisplatin-d(GpG) adduct. Proc. Natl Acad. Sci. USA 93, 6443–6447 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bellacosa, A. Functional interactions and signaling properties of mammalian DNA mismatch repair proteins. Cell Death Differ. 8, 1076–1092 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Duckett, D. R., Bronstein, S. M., Taya, Y. & Modrich, P. hMutSα- and hMutLα-dependent phosphorylation of p53 in response to DNA methylator damage. Proc. Natl Acad. Sci. USA 96, 12384–12388 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hickman, M. J. & Samson, L. D. Role of DNA mismatch repair and p53 in signaling induction of apoptosis by alkylating agents. Proc. Natl Acad. Sci. USA 96, 10764–10769 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Donahue, B. A., Yin, S., Taylor, J. S., Reines, D. & Hanawalt, P. C. Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template. Proc. Natl Acad. Sci. USA 91, 8502–8506 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tornaletti, S., Reines, D. & Hanawalt, P. C. Structural characterization of RNA polymerase II complexes arrested by a cyclobutane pyrimidine dimer in the transcribed strand of template DNA. J. Biol. Chem. 274, 24124–24130 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Sauerbier, W. & Hercules, K. Gene and transcription mapping by radiation effects. Annu. Rev. Genet. 12, 329–363 (1978).

    Article  CAS  PubMed  Google Scholar 

  77. Ljungman, M. Recovery of RNA synthesis from the DHFR gene following UV-irradiation precedes the removal of photolesions from the transcribed strand. Carcinogenesis 20, 395–399 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Leadon, S. & Snowden, M. Differential repair of DNA damage in the human metallothionein gene family. Mol. Cell. Biol. 8, 5331–5338 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Doetsch, P. W. Translesion synthesis by RNA polymerases: occurrence and biological implications for transcriptional mutagenesis. Mutat. Res. 510, 131–140 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. van Hoffen, A. et al. Deficient repair of the transcribed strand of active genes in Cockayne's syndrome cells. Nucleic Acids Res. 21, 5890–5895 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Leadon, S. A. & Cooper, P. K. Preferential repair of ionizing radiation-induced damage in the transcribed strand of an active human gene is defective in Cockayne syndrome. Proc. Natl Acad. Sci. USA 90, 10499–10503 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mellon, I., Rajpal, D. K., Koi, M., Boland, C. R. & Champe, G. N. Transcription-coupled repair deficiency and mutations in human mismatch repair genes. Science 272, 557–560 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Nakatsu, Y. et al. XAB2, a novel tetratricopeptide repeat protein involved in transcription-coupled DNA repair and transcription. J. Biol. Chem. 275, 34931–34937 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Abbott, D. W. et al. BRCA1 expression restores radiation resistance in BRCA1-defective cancer cells through enhancement of transcription-coupled DNA repair. J. Biol. Chem. 274, 18808–18812 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Le Page, F. et al. BRCA1 and BRCA2 are necessary for the transcription-coupled repair of the oxidative 8-oxoguanine lesion in human cells. Cancer Res. 60, 5548–5552 (2000).

    CAS  PubMed  Google Scholar 

  86. Furuta, T. et al. Transcription-coupled nucleotide excision repair as a determinant of cisplatin sensitivity of human cells. Cancer Res. 62, 4899–4902 (2002).

    CAS  PubMed  Google Scholar 

  87. de Boer, J. & Hoeijmakers, J. H. J. Nucleotide excision repair and human syndromes. Carcinogenesis 21, 453–460 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Lu, Y. et al. Disruption of the Cockayne syndrome B gene impairs spontaneous tumorigenesis in cancer-predisposed Ink4a/ARF knockout mice. Mol. Cell. Biol. 21, 1810–1818 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Takebayashi, Y. et al. Antiproliferative activity of ecteinascidin 743 is dependent upon transcription-coupled nucleotide-excision repair. Nature Med. 7, 961–966 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Jaspers, N. G. J. et al. Anti-tumour compounds illudin S and Irofulven induce DNA lesions ignored by global repair and exclusively processed by transcription- and replication-coupled repair pathways. DNA Repair 1, 1027–1038 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Ljungman, M. & Hanawalt, P. C. The anti-cancer drug camptothecin inhibits elongation but stimulates initiation of RNA polymerase II transcription. Carcinogenesis 17, 31–35 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Ratner, J. N., Balasubramanian, B., Corden, J., Warren, S. L. & Bregman, D. B. Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II — implications for transcription-coupled DNA repair. J. Biol. Chem. 273, 5184–5189 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Bregman, D. B. et al. UV-induced ubiquitination of RNA polymerase II: A novel modification deficient in cockayne syndrome cells. Proc. Natl Acad. Sci. USA 93, 11586–11590 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. McKay, B. C. et al. UV light-induced degradation of RNA polymerase II is dependent on the Cockayne's syndrome A and B proteins but not p53 or MLH1. Mutat. Res. 485, 93–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Lee, K. B., Wang, D., Lippard, S. J. & Sharp, P. A. Transcription-coupled and DNA damage dependent ubiquitination of RNA polymerase II in vitro. Proc. Natl Acad. Sci. USA 99, 4239–4244 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yang, L. Y., Jiang, H. & Rangel, K. M. RNA polymerase II stalled on a DNA template during transcription elongation is ubiquitinated and the ubiquitination facilitates displacement of the elongation complex. Int. J. Oncol. 22, 683–689 (2003).

    CAS  PubMed  Google Scholar 

  97. Gillette, T. G., Gonzalez, F., Delahodde, A., Johnston, S. A. & Kodadek, T. Physical and functional association of RNA polymerase II and the proteasome. Proc. Natl Acad. Sci. USA 101, 5904–5909 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Iwai, K. et al. Identification of the von Hippel–Lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc. Natl Acad. Sci. USA 96, 12436–12441 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kuznetsova, A. V. et al. von Hippel–Lindau protein binds hyperphosphorylated large subunit of RNA polymerase II through a proline hydroxylation motif and targets it for ubiquitination. Proc. Natl Acad. Sci. USA 100, 2706–2711 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schoenfeld, A. R. et al. The von Hippel–Lindau tumor suppressor gene protects cells from UV-mediated apoptosis. Oncogene 19, 5851–5857 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Luo, Z. H., Zheng, J. H., Lu, Y. & Bregman, D. B. Ultraviolet radiation alters the phosphorylation of RNA polymerase II large subunit and accelerates its proteasome-dependent degradation. Mutat. Res. 486, 259–274 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Groisman, R. et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113, 357–367 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Scully, R. et al. BRCA1 is a component of the RNA polymerase II holoenzyme. Proc. Natl Acad. Sci. USA 94, 5605–5610 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chiba, N. & Parvin, J. D. The BRCA1 and BARD1 association with the RNA polymerase II holoenzyme. Cancer Res. 62, 4222–4228 (2002).

    CAS  PubMed  Google Scholar 

  105. Krum, S. A., Miranda, G. A., Lin, C. & Lane, T. F. BRCA1 associates with processive RNA polymerase II. J. Biol. Chem. 278, 52012–52020 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Rolig, R. L. & McKinnon, P. J. Linking DNA damage and neurodegeneration. Trends Neurosci. 23, 417–424 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Hasty, P., Campisi, J., Hoeijmakers, J., van Steeg, H. & Vijg, J. Aging and genome maintenance: lessons from the mouse? Science 299, 1355–1359 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Balajee, A. S. et al. The Werner syndrome protein is involved in RNA polymerase II transcription. Mol. Biol. Cell 10, 2655–2668 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lee, S. K., Johnson, R. E., Yu, S. L., Prakash, L. & Prakash, S. Requirement of yeast SGS1 and SRS2 genes for replication and transcription. Science 286, 2339–2342 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Furuichi, Y. Premature aging and predisposition to cancers caused by mutations in RecQ family helicases. Ann. NY Acad. Sci. 928, 121–131 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Eriksson, M. et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423, 293–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Mounkes, L. C., Kozlov, S., Hernandez, L., Sullivan, T. & Stewart, C. L. A progeroid syndrome in mice is caused by defects in A-type lamins. Nature 423, 298–301 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Spann, T. P., Goldman, A. E., Wang, C., Huang, S. & Goldman, R. D. Alteration of nuclear lamin organization inhibits RNA polymerase II-dependent transcription. J. Cell Biol. 156, 603–608 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kumaran, R. I., Muralikrishna, B. & Parnaik, V. K. Lamin A/C speckles mediate spatial organization of splicing factor compartments and RNA polymerase II transcription. J. Cell Biol. 159, 783–793 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Vogel, H., Lim, D. S., Karsenty, G., Finegold, M. & Hasty, P. Deletion of Ku86 causes early onset of senescence in mice. Proc. Natl Acad. Sci. USA 96, 10770–10775 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Woodard, R. L., Lee, K. J., Huang, J. & Dynan, W. S. Distinct roles for Ku protein in transcriptional reinitiation and DNA repair. J. Biol. Chem. 276, 15423–15433 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Mo, X. M. & Dynan, W. S. Subnuclear localization of Ku protein: Functional association with RNA polymerase II elongation sites. Mol. Cell. Biol. 22, 8088–8099 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bertinato, J., Tomlinson, J. J., Schild-Poulter, C. & Hache, R. J. G. Evidence implicating Ku antigen as a structural factor in RNA polymerase II-mediated transcription. Gene 302, 53–64 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Chang, T. C. et al. Effects of transcription and translation inhibitors on a human gastric carcinoma cell line- Potential role of Bcl-X-s in apoptosis triggered by these inhibitors. Biochem. Pharmacol. 53, 969–977 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Chang, D., Chen, F., Zhang, F. F., McKay, B. C. & Ljungman, M. Dose-dependent effects of DNA-damaging agents on p53-mediated cell cycle arrest. Cell Growth Differ. 10, 155–162 (1999).

    CAS  PubMed  Google Scholar 

  121. Collins, I., Weber, A. & Levens, D. Transcriptional consequences of topoisomerase inhibition. Mol. Cell. Biol. 21, 8437–8451 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Squires, S., Ryan, A. J., Strutt, H. L. & Johnson, R. T. Hypersensitivity of Cockayne's syndrome cells to camptothecin is associated with the generation of abnormally high levels of double strand breaks in nascent DNA. Cancer Res. 53, 2012–2019 (1993).

    CAS  PubMed  Google Scholar 

  123. Geoffroy, F. J., Allegra, C. J., Sinha, B. & Grem, J. L. Enhanced cytotoxicity with interleukin-1 alpha and 5-fluorouracil in HCT116 colon cancer cells. Oncol. Res. 6, 581–591 (1994).

    CAS  PubMed  Google Scholar 

  124. Pritchard, D. M., Watson, A. J. M., Potten, C. S., Jackman, A. L. & Hickman, J. A. Inhibition by uridine but not thymidine of p53-dependent intestinal apoptosis initiated by 5-fluorouracil: Evidence for the involvement of RNA perturbation. Proc. Natl Acad. Sci. USA 94, 1795–1799 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Huang, P., Sandoval, A., Van Den Neste, E., Keating, M. J. & Plunkett, W. Inhibition of RNA transcription: a biochemical mechanism of action against chronic lymphocytic leukemia cells by fludarabine. Leukemia 14, 1405–1413 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. McClue, S. J. et al. In vitro and in vivo antitumor properties of the cyclin dependent kinase inhibitor CYC202 (R-roscovitine). Int. J. Cancer 102, 463–468 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Senderowicz, A. M. Novel direct and indirect cyclin-dependent kinase modulators for the prevention and treatment of human neoplasms. Cancer Chemother. Pharmacol. 52, 61–73 (2003).

    Article  CAS  Google Scholar 

  128. Ljungman, M. & Paulsen, M. T. The cyclin-dependent kinase inhibitor roscovitine inhibits RNA synthesis and triggers nuclear accumulation of p53 that is unmodified at Ser15 and Lys382. Mol. Pharm. 60, 785–789 (2001).

    CAS  Google Scholar 

  129. Lam, L. T. et al. Genomic-scale measurement of mRNA turnover and the mechanisms of action of the anti-cancer drug flavopiridol. Genome Biol. 2, 1–11 (2001).

    Article  Google Scholar 

  130. Gojo, I., Zhang, B. & Fenton, R. G. The cyclin-dependent kinase inhibitor flavopiridol induces apoptosis in multiple myeloma cells through transcriptional repression and down-regulation of Mcl-1. Clin. Cancer Res. 8, 3527–3538 (2002).

    CAS  Google Scholar 

  131. Hietanen, S., Lain, S., Krausz, E., Blattner, C. & Lane, D. P. Activation of p53 in cervical carcinoma cells by small molecules. Proc. Natl Acad. Sci. USA 97, 8501–8506 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Blaydes, J. P. et al. Synergistic activation of p53-dependent transcription by two cooperating damage recognition pathways. Oncogene 19, 3829–3839 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Maggiorella, L. et al. Enhancement of radiation response by roscovitine in human breast carcinoma in vitro and in vivo. Cancer Res. 63, 2513–2517 (2003).

    CAS  PubMed  Google Scholar 

  134. Lain, S. & Lane, D. Improving cancer therapy by non-genotoxic activation of p53. Eur. J. Cancer 39, 1053–1060 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Woods, Y. L. & Lane, D. P. Exploiting the p53 pathway for cancer diagnosis and therapy. Hematol. J. 4, 233–247 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Laín, S., Xirodimas, D. & Lane, D. P. Accumulating active p53 in the nucleus by inhibition of nuclear export: A novel strategy to promote the p53 tumor suppressor function. Exp. Cell Res. 253, 315–324 (1999).

    Article  PubMed  CAS  Google Scholar 

  137. Lane, D. P. Exploiting the p53 pathway for cancer diagnosis and therapy. Br. J. Cancer 80, 1–5 (1999).

    Article  CAS  PubMed  Google Scholar 

  138. Lane, D. P. & Lain, S. Therapeutic exploitation of the p53 pathway. Trends Mol. Med. 8, S38–S42 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Abraham, R. T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15, 2177–2196 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Brumbaugh, K. M. et al. The mRNA surveillance protein hSMG-1 functions in genotoxic stress response pathways in mammalian cells. Mol. Cell 14, 585–598 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Venkitaraman, A. R. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108, 171–182 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Xu, B., Kim, S. T. & Kastan, M. B. Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol. Cell. Biol. 21, 3445–3450 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tibbetts, R. S. et al. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev. 14, 2989–3002 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gatei, M. et al. Ataxia telangiectasia mutated (ATM) kinase and ATM and Rad3 related kinase mediate phosphorylation of Brca1 at distinct and overlapping sites. In vivo assessment using phospho-specific antibodies. J. Biol. Chem. 276, 17276–17280 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Deng, C. X. & Brodie, S. G. Roles of BRCA1 and its interacting proteins. Bioessays 22, 728–737 2000).

    Article  CAS  PubMed  Google Scholar 

  147. Scully, R. & Livingston, D. M. In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature 408, 429–432 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank The National Institute of Health, The Swedish Cancer Foundation, Cancer Research UK and the American Institute for Cancer Research for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mats Ljungman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

breast cancer

lung cancer

Entrez Gene

BCL2

BCL-XL

CDKN1A

CSA

CSB

Csb

cyclin B1

DDB2

Ku86

lamin A/C

MDM2

MLH1

MSH2

NUP160

p53

TAP

UBF

VHL

Xpa

Xpc

XPC

FURTHER INFORMATION

Mats Ljungmans' lab

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ljungman, M., Lane, D. Transcription — guarding the genome by sensing DNA damage. Nat Rev Cancer 4, 727–737 (2004). https://doi.org/10.1038/nrc1435

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1435

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing