Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Caveolae: mining little caves for new cancer targets

Key Points

  • Caveolae are dynamic, detergent-resistant microdomains that are enriched in cholesterol and glycosphingolipids. They have a distinct invaginated form that is easily detected by electron microscopy.

  • Caveolae constitute an alternative endocytic pathway to clathrin-coated pits.

  • Caveolae can mediate transcytosis — the transcellular movement of molecules (such as select blood-borne macromolecules) across the endothelial cell.

  • Caveolae contain signalling molecules, such as select heterotrimeric G proteins, non-receptor tyrosine kinases and endothelial nitric oxide synthase (eNOS), and seem to act as organized transducing centres that concentrate key signalling molecules.

  • Angiogenesis depends on nitric oxide produced by eNOS, which is concentrated at the endothelial-cell surface in caveolae. Caveola and its caveolins could be targeted to prevent angiogenesis through inhibition of eNOS.

  • Caveolin seems to act as a tumour suppressor in cultured cells, but might be required for later stages of tumour development in vivo, when it promotes cancer-cell survival, metastasis and chemoresistance.

  • Caveolae with their tissue-specific molecules constitute a trafficking pathway that might be worth targeting — not only for site-directed drug and gene delivery but also to overcome the normally restrictive endothelial-cell barrier to reach underlying tissue or tumour cells.

  • Strategies to target caveolae, and even caveolin-1, might be useful in treating cancer through vascular ablation or functional disruption of metastasis, tumorigenesis, angiogenesis and tumour progression.

Abstract

Caveolae exist at cell surfaces as caveolin-coated invaginations that perform transport and signalling functions influencing cell growth, apoptosis, angiogenesis and transvascular exchange. Caveolin could constitute a key switch in tumour development through its function as a tumour suppressor and as a promoter of metastasis, chemoresistance and survival. Targeting of drugs and gene vectors to tissue-specific proteins in caveolae allows selective delivery into vascular endothelial cells in vivo and might even improve direct access to solid-tumour cells. Therefore, caveolae seem to be rich in potential targets for cancer imaging and therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Caveolar regulation of signalling molecules.
Figure 2: Intracellular trafficking pathways.
Figure 3: Role of caveolin-1 in tumour-cell growth and progression in culture and in vivo.
Figure 4: The strategy of targeting caveolae in the neovasculature of solid tumours.
Figure 5: The amplification effect of targeting tumour endothelium and its caveolae.

Similar content being viewed by others

References

  1. Peters, K. R., Carley, W. W. & Palade, G. E. Endothelial plasmalemmal vesicles have a characteristic striped bipolar surface structure. J. Cell Biol. 101, 2233–2238 (1985).

    CAS  PubMed  Google Scholar 

  2. Rothberg, K. G. et al. Caveolin, a protein component of caveolae membrane coats. Cell 68, 673–682 (1992). This paper is one of the first to identify CAV1 as a caveolar-coat protein.

    CAS  PubMed  Google Scholar 

  3. Murata, M. et al. VIP21/caveolin is a cholesterol-binding protein. Proc. Natl Acad. Sci. USA 92, 10339–10343 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Schnitzer, J. E., McIntosh, D. P., Dvorak, A. M., Liu, J. & Oh, P. Separation of caveolae from associated microdomains of GPI-anchored proteins. Science 269, 1435–1439 (1995). This paper shows for the first time that caveolae and lipid rafts are biochemically distinct, based on their isolation from two different subcellular fractions derived from the same starting plasma membranes. The subfractionation technology described here makes possible the mapping of tumour-induced endothelial and caveolar targets.

    CAS  PubMed  Google Scholar 

  5. Anderson, R. G. & Jacobson, K. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296, 1821–1825 (2002).

    CAS  PubMed  Google Scholar 

  6. Schnitzer, J. E. in Vascular Endothelium: Physiology, Pathology, and Therapeutic Opportunities (eds Born, G. V. R. & Schwartz, C. J.) 77–95 (Schattauer, Stuttgart, 1997).

    Google Scholar 

  7. Oh, P. & Schnitzer, J. E. Segregation of heterotrimeric G proteins in cell surface microdomains: Gq binds caveolin to concentrate in caveolae whereas Gi and Gs target lipid rafts by default. Mol. Biol. Cell 12, 685–698 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, J., Oh, P., Horner, T., Rogers, R. A. & Schnitzer, J. E. Organized endothelial cell surface signal transduction in caveolae distinct from glycosylphosphatidylinositol-anchored protein microdomains. J. Biol. Chem. 272, 7211–7222 (1997).

    CAS  PubMed  Google Scholar 

  9. Liu, P., Ying, Y., Ko, Y. G. & Anderson, R. G. Localization of platelet-derived growth factor-stimulated phosphorylation cascade to caveolae. J. Biol. Chem. 271, 10299–10303 (1996).

    CAS  PubMed  Google Scholar 

  10. Rizzo, V., Sung, A., Oh, P. & Schnitzer, J. E. Rapid mechanotransduction in situ at the luminal cell surface of vascular endothelium and its caveolae. J. Biol. Chem. 273, 26323–26329 (1998).

    CAS  PubMed  Google Scholar 

  11. Rizzo, V., McIntosh, D. P., Oh, P. & Schnitzer, J. E. In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association. J. Biol. Chem. 273, 34724–34729 (1998). This paper provides clear evidence of eNOS residing primarily in the caveolae of vascular endothelium as well as evidence of physiologically significant activation and uncoupling of eNOS from CAV1 by haemodynamic forces.

    CAS  PubMed  Google Scholar 

  12. Garcia-Cardena, G. et al. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J. Biol. Chem. 272, 25437–25440 (1997).

    CAS  PubMed  Google Scholar 

  13. Li, S., Couet, J. & Lisanti, M. P. Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J. Biol. Chem. 271, 29182–29190 (1996).

    CAS  PubMed  Google Scholar 

  14. Garcia-Cardena, G., Fan, R., Stern, D. F., Liu, J. & Sessa, W. C. Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1. J. Biol. Chem. 271, 27237–27240 (1996).

    CAS  PubMed  Google Scholar 

  15. Feron, O. et al. Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J. Biol. Chem. 271, 22810–22814 (1996).

    CAS  PubMed  Google Scholar 

  16. Park, H. et al. Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase. Am. J. Physiol. Heart Circ. Physiol. 278, H1285–H1293 (2000).

    CAS  PubMed  Google Scholar 

  17. Michel, J. B., Feron, O., Sacks, D. & Michel, T. Reciprocal regulation of endothelial nitric-oxide synthase by Ca2+-calmodulin and caveolin. J. Biol. Chem. 272, 15583–15586 (1997).

    CAS  PubMed  Google Scholar 

  18. Bucci, M. et al. In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nature Med. 6, 1362–1367 (2000).

    CAS  PubMed  Google Scholar 

  19. Drab, M. et al. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293, 2449–2452 (2001).

    CAS  PubMed  Google Scholar 

  20. Razani, B. et al. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J. Biol. Chem. 276, 38121–38138 (2001). References 19 and 20 comprise the first reports of Cav1 -null mice showing that Cav1 and caveolae are involved in various pathways that regulate proliferation, vascular tone and permeability of endothelial cells in vivo.

    Article  CAS  PubMed  Google Scholar 

  21. Schnitzer, J. E., Oh, P., Pinney, E. & Allard, J. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J. Cell Biol. 127, 1217–1232 (1994).

    CAS  PubMed  Google Scholar 

  22. Park, H. et al. Plasma membrane cholesterol is a key molecule in shear stress-dependent activation of extracellular signal-regulated kinase. J. Biol. Chem. 273, 32304–32311 (1998).

    CAS  PubMed  Google Scholar 

  23. Montesano, R., Roth, J., Robert, A. & Orci, L. Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxins. Nature 296, 651–653 (1982).

    CAS  PubMed  Google Scholar 

  24. Schnitzer, J. E., Allard, J. & Oh, P. NEM inhibits transcytosis, endocytosis, and capillary permeability: implication of caveolae fusion in endothelia. Am. J. Physiol. 268, H48–H55 (1995).

    CAS  PubMed  Google Scholar 

  25. Schnitzer, J. E. & Oh, P. Aquaporin-1 in plasma membrane and caveolae provides mercury-sensitive water channels across lung endothelium. Am. J. Physiol. 270, H416–H422 (1996).

    CAS  PubMed  Google Scholar 

  26. McIntosh, D. P. & Schnitzer, J. E. Caveolae require intact VAMP for targeted transport in vascular endothelium. Am. J. Physiol. 277, H2222–H2232 (1999).

    CAS  PubMed  Google Scholar 

  27. Schnitzer, J. E., Oh, P. & McIntosh, D. P. Role of GTP hydrolysis in fission of caveolae directly from plasma membranes. Science 274, 239–242 (1996). This paper, along with references 38 and 42, establishes that caveolae are not static 'little caves', but rather have the ability to bud from the plasma membrane through GTP hydrolysis mediated by the GTPase dynamin located at the neck of caveolae.

    CAS  PubMed  Google Scholar 

  28. Schnitzer, J. E. Caveolae: from basic trafficking mechanisms to targeting transcytosis for tissue-specific drug and gene delivery in vivo. Adv. Drug Del. Rev. 49, 265–280 (2001).

    CAS  Google Scholar 

  29. Choudhury, A. et al. Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct lipid trafficking in Niemann-Pick C cells. J. Clin. Invest. 109, 1541–1550 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Conrad, P. A., Smart, E. J., Ying, Y. S., Anderson, R. G. & Bloom, G. S. Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps. J. Cell Biol. 131, 1421–1433 (1995).

    CAS  PubMed  Google Scholar 

  31. Smart, E. J., Ying, Y. S., Conrad, P. A. & Anderson, R. G. Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation. J. Cell Biol. 127, 1185–1197 (1994).

    CAS  PubMed  Google Scholar 

  32. Le, P. U. & Nabi, I. R. Distinct caveolae-mediated endocytic pathways target the Golgi apparatus and the endoplasmic reticulum. J. Cell Sci. 116, 1059–1071 (2003).

    CAS  PubMed  Google Scholar 

  33. Puri, V. et al. Clathrin-dependent and-independent internalization of plasma membrane sphingolipids initiates two Golgi targeting pathways. J. Cell Biol. 154, 535–547 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kartenbeck, J., Stukenbrok, H. & Helenius, A. Endocytosis of simian virus 40 into the endoplasmic reticulum. J. Cell Biol. 109, 2721–2729 (1989).

    CAS  PubMed  Google Scholar 

  35. Pelkmans, L., Kartenback, J. & Helenius, A. Caveolar endocytosis of Simian virus 40 reveals a novel two-step vesicular transport pathway to the ER. Nature Cell Biol. 3, 473–483 (2001).

    CAS  PubMed  Google Scholar 

  36. Benlimame, N., Le, P. U. & Nabi, I. R. Localization of autocrine motility factor receptor to caveolae and clathrin-independent internalization of its ligand to smooth endoplasmic reticulum. Mol. Biol. Cell 9, 1773–1786 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tran, D., Carpentier, J. L., Sawano, F., Gorden, P. & Orci, L. Ligands internalized through coated or noncoated invaginations follow a common intracellular pathway. Proc. Natl Acad. Sci. USA 84, 7957–7961 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Oh, P., McIntosh, D. P. & Schnitzer, J. E. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J. Cell Biol. 141, 101–114 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Schnitzer, J. E., Liu, J. & Oh, P. Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases. J. Biol. Chem. 270, 14399–14404 (1995).

    CAS  PubMed  Google Scholar 

  40. Predescu, D., Horvat, R., Predescu, S. & Palade, G. E. Transcytosis in the continuous endothelium of the myocardial microvasculature is inhibited by N-ethylmaleimide. Proc. Natl Acad. Sci. USA 91, 3014–3018 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Stowell, M. H., Marks, B., Wigge, P. & McMahon, H. T. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nature Cell Biol. 1, 27–32 (1999).

    CAS  PubMed  Google Scholar 

  42. Henley, J. R., Krueger, E. W., Oswald, B. J. & McNiven, M. A. Dynamin-mediated internalization of caveolae. J. Cell Biol. 141, 85–99 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mayor, S., Rothberg, K. G. & Maxfield, F. R. Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science 264, 1948–1951 (1994).

    CAS  PubMed  Google Scholar 

  44. Fujimoto, T. GPI-anchored proteins, glycosphingolipids, and sphingomyelin are sequestered to caveolae only after crosslinking. J. Histochem. Cytochem. 44, 929–941 (1996).

    CAS  PubMed  Google Scholar 

  45. Tran, D., Carpentier, J. -L., Sawano, F., Gorden, P. & Orci, L. Ligands internalized through coated or noncoated invaginations follow a common intracellular pathway. Proc. Natl Acad. Sci. USA 84, 7957–7961 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Schnitzer, J. E. Update on the cellular and molecular basis of capillary permeability. Trends Cardiovasc. Med. 3, 124–130 (1993).

    CAS  PubMed  Google Scholar 

  47. McIntosh, D. P., Tan, X. -Y., Oh, P. & Schnitzer, J. E. Targeting endothelium and its dynamic caveolae for tissue-specific transcytosis in vivo: a pathway to overcome cell barriers to drug and gene delivery. Proc. Natl Acad. Sci. USA 99, 1996–2001 (2002). This report is the first to show that molecular heterogeneity of the endothelium and its caveolae allows vascular targeting to achieve rapid tissue-specific delivery and bioefficacy and that caveolae, through transcytosis, might provide a tissue-specific pathway for overcoming key cell barriers to many drug and gene therapies in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Simionescu, M. & Simionescu, N. Endothelial transport of macromolecules: transcytosis and endocytosis. A look from cell biology. Cell Biol. Rev. 25, 1–78 (1991).

    CAS  PubMed  Google Scholar 

  49. Schnitzer, J. E. gp60 is an albumin-binding glycoprotein expressed by continuous endothelium involved in albumin transcytosis. Am. J. Physiol. 262, H246–H254 (1992).

    CAS  PubMed  Google Scholar 

  50. Schnitzer, J. E. & Oh, P. Aquaporin is found on the endothelial cell surface and in caveolae: inhibition of water transport in rat lung in situ. Microcirculation 2, 71 (1995).

    Google Scholar 

  51. Brown, D. A. & London, E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275, 17221–17224 (2000).

    CAS  PubMed  Google Scholar 

  52. Oh, P. & Schnitzer, J. E. in Cell Biology: A Laboratory Handbook (ed. Celis, J.) 34–36 (Academic Press, Orlando, 1998).

    Google Scholar 

  53. Oh, P. & Schnitzer, J. E. Immunoisolation of caveolae with high affinity antibody binding to the oligomeric caveolin cage. Toward understanding the basis of purification. J. Biol. Chem. 274, 23144–23154 (1999).

    CAS  PubMed  Google Scholar 

  54. Fra, A. M., Williamson, E., Simons, K. & Parton, R. G. Detergent-insoluble glycolipid microdomains in lymphocytes in the absence of caveolae. J. Biol. Chem. 269, 30745–30748 (1994).

    CAS  PubMed  Google Scholar 

  55. Gorodinsky, A. & Harris, D. A. Glycolipid-anchored proteins in neuroblastoma cells form detergent-resistant complexes without caveolin. J. Cell Biol. 129, 619–627 (1995).

    CAS  PubMed  Google Scholar 

  56. Verkade, P., Harder, T., Lafont, F. & Simons, K. Induction of caveolae in the apical plasma membrane of Madin–Darby canine kidney cells. J. Cell Biol. 148, 727–739 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Deckert, M., Ticchioni, M. & Bernard, A. Endocytosis of GPI-anchored proteins in human lymphocytes: role of glycolipid-based domains, actin cytoskeleton, and protein kinases. J. Cell Biol. 133, 791–799 (1996).

    CAS  PubMed  Google Scholar 

  58. Makiya, R., Thornell, L. E. & Stigbrand, T. Placental alkaline phosphatase, a GPI-anchored protein, is clustered in clathrin-coated vesicles. Biochem. Biophys. Res. Commun. 183, 803–808 (1992).

    CAS  PubMed  Google Scholar 

  59. Sabharanjak, S., Sharma, P., Parton, R. G. & Mayor, S. GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev. Cell 2, 411–423 (2002).

    CAS  PubMed  Google Scholar 

  60. Keller, G. A., Siegel, M. W. & Caras, I. W. Endocytosis of glycophospholipid-anchored and transmembrane forms of CD4 by different endocytic pathways. EMBO J. 11, 863–874 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kitchens, R. L., Wang, P. & Munford, R. S. Bacterial lipopolysaccharide can enter monocytes via two CD14-dependent pathways. J. Immunol. 161, 5534–5545 (1998).

    CAS  PubMed  Google Scholar 

  62. Glenney, J. R. Jr. Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J. Biol. Chem. 264, 20163–20166 (1989).

    CAS  PubMed  Google Scholar 

  63. Lee, S. W., Reimer, C. L., Oh, P., Campbell, D. B. & Schnitzer, J. E. Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene 16, 1391–1397 (1998).

    CAS  PubMed  Google Scholar 

  64. Engelman, J. A. et al. Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth. J. Biol. Chem. 272, 16374–16381 (1997). This paper, along with references 63 and 68, reports on the reciprocal relationship between CAV1 expression and cell proliferation and oncogenic transformation.

    CAS  PubMed  Google Scholar 

  65. Zhang, W. et al. Caveolin-1 inhibits epidermal growth factor-stimulated lamellipod extension and cell migration in metastatic mammary adenocarcinoma cells (MTLn3). Transformation suppressor effects of adenovirus-mediated gene delivery of caveolin-1. J. Biol. Chem. 275, 20717–20725 (2000).

    CAS  PubMed  Google Scholar 

  66. Fiucci, G., Ravid, D., Reich, R. & Liscovitch, M. Caveolin-1 inhibits anchorage-independent growth, anoikis and invasiveness in MCF-7 human breast cancer cells. Oncogene 21, 2365–2375 (2002).

    CAS  PubMed  Google Scholar 

  67. Liu, J., Lee, P., Galbiati, F., Kitsis, R. N. & Lisanti, M. P. Caveolin-1 expression sensitizes fibroblastic and epithelial cells to apoptotic stimulation. Am. J. Physiol. Cell Physiol. 280, C823–C835 (2001).

    CAS  PubMed  Google Scholar 

  68. Galbiati, F. et al. Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J. 17, 6633–6648 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Razani, B., Schlegel, A., Liu, J. & Lisanti, M. P. Caveolin-1, a putative tumour suppressor gene. Biochem. Soc. Trans. 29, 494–499 (2001).

    CAS  PubMed  Google Scholar 

  70. Aoki, T., Nomura, R. & Fujimoto, T. Tyrosine phosphorylation of caveolin-1 in the endothelium. Exp. Cell Res. 253, 629–636 (1999).

    CAS  PubMed  Google Scholar 

  71. Ko, Y. G., Liu, P., Pathak, R. K., Craig, L. C. & Anderson, R. G. Early effects of pp60(v-src) kinase activation on caveolae. J. Cell Biochem. 71, 524–535 (1998).

    CAS  PubMed  Google Scholar 

  72. Koleske, A. J., Baltimore, D. & Lisanti, M. P. Reduction of caveolin and caveolae in oncogenically transformed cells. Proc. Natl Acad. Sci. USA 92, 1381–1385 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Engelman, J. A. et al. Reciprocal regulation of neu tyrosine kinase activity and caveolin-1 protein expression in vitro and in vivo. Implications for human breast cancer. J. Biol. Chem. 273, 20448–20455 (1998).

    CAS  PubMed  Google Scholar 

  74. Bender, F. C., Reymond, M. A., Bron, C. & Quest, A. F. Caveolin-1 levels are down-regulated in human colon tumors, and ectopic expression of caveolin-1 in colon carcinoma cell lines reduces cell tumorigenicity. Cancer Res. 60, 5870–5878 (2000).

    CAS  PubMed  Google Scholar 

  75. Wiechen, K. et al. Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. Am. J. Pathol. 159, 1635–1643 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wiechen, K. et al. Down-regulation of caveolin-1, a candidate tumor suppressor gene, in sarcomas. Am. J. Pathol. 158, 833–839 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zundel, W., Swiersz, L. M. & Giaccia, A. Caveolin 1-mediated regulation of receptor tyrosine kinase-associated phosphatidylinositol 3-kinase activity by ceramide. Mol. Cell Biol. 20, 1507–1514 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Engelman, J. A., Zhang, X. L., Galbiati, F. & Lisanti, M. P. Chromosomal localization, genomic organization, and developmental expression of the murine caveolin gene family (Cav-1,-2, and-3). Cav-1 and Cav-2 genes map to a known tumor suppressor locus (6-A2/7q31). FEBS Lett. 429, 330–336 (1998).

    CAS  PubMed  Google Scholar 

  79. Cui, J. et al. Hypermethylation of the caveolin-1 gene promoter in prostate cancer. Prostate 46, 249–256 (2001).

    CAS  PubMed  Google Scholar 

  80. Hayashi, K. et al. Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Res. 61, 2361–2364 (2001).

    CAS  PubMed  Google Scholar 

  81. Hurlstone, A. F. et al. Analysis of the CAVEOLIN-1 gene at human chromosome 7q31. 1 in primary tumours and tumour-derived cell lines. Oncogene 18, 1881–1890 (1999).

    CAS  PubMed  Google Scholar 

  82. Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    CAS  PubMed  Google Scholar 

  83. Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature 359, 295–300 (1992).

    CAS  PubMed  Google Scholar 

  84. Oshima, M. et al. Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc. Natl Acad. Sci. USA 92, 4482–4486 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhao, Y. Y. et al. Defects in caveolin-1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. Proc. Natl Acad. Sci. USA 99, 11375–11380 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee, H. et al. Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (−/−) null mice show mammary epithelial cell hyperplasia. Am. J. Pathol. 161, 1357–1369 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Williams, T. M. et al. Loss of caveolin-1 gene expression accelerates the development of dysplastic mammary lesions in tumor-prone transgenic mice. Mol. Biol. Cell 14, 1027–1042 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Mouraviev, V. et al. The role of caveolin-1 in androgen insensitive prostate cancer. J. Urol. 168, 1589–1596 (2002).

    CAS  PubMed  Google Scholar 

  89. Tahir, S. A. et al. Secreted caveolin-1 stimulates cell survival/clonal growth and contributes to metastasis in androgen-insensitive prostate cancer. Cancer Res. 61, 3882–3885 (2001).

    CAS  PubMed  Google Scholar 

  90. Nasu, Y. et al. Suppression of caveolin expression induces androgen sensitivity in metastatic androgen-insensitive mouse prostate cancer cells. Nature Med. 4, 1062–1064 (1998).

    CAS  PubMed  Google Scholar 

  91. Timme, T. L. et al. Caveolin-1 is regulated by c-myc and suppresses c-myc-induced apoptosis. Oncogene 19, 3256–3265 (2000).

    CAS  PubMed  Google Scholar 

  92. Li, L. et al. Caveolin-1 mediates testosterone-stimulated survival/clonal growth and promotes metastatic activities in prostate cancer cells. Cancer Res. 61, 4386–4392 (2001).

    CAS  PubMed  Google Scholar 

  93. Lavie, Y., Fiucci, G. & Liscovitch, M. Up-regulation of caveolae and caveolar constituents in multidrug-resistant cancer cells. J. Biol. Chem. 273, 32380–32383 (1998).

    CAS  PubMed  Google Scholar 

  94. Rajjayabun, P. H. et al. Caveolin-1 expression is associated with high-grade bladder cancer. Urology 58, 811–814 (2001).

    CAS  PubMed  Google Scholar 

  95. Kato, K. et al. Overexpression of caveolin-1 in esophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Cancer 94, 929–933 (2002).

    CAS  PubMed  Google Scholar 

  96. Yang, G. et al. Elevated expression of caveolin is associated with prostate and breast cancer. Clin. Cancer Res. 4, 1873–1880 (1998).

    CAS  PubMed  Google Scholar 

  97. Yang, G., Truong, L. D., Wheeler, T. M. & Thompson, T. C. Caveolin-1 expression in clinically confined human prostate cancer: a novel prognostic marker. Cancer Res. 59, 5719–5723 (1999).

    CAS  PubMed  Google Scholar 

  98. Liu, P., Li, W. P., Machleidt, T. & Anderson, R. G. Identification of caveolin-1 in lipoprotein particles secreted by exocrine cells. Nature Cell Biol. 1, 369–375 (1999).

    CAS  PubMed  Google Scholar 

  99. Lavie, Y., Fiucci, G. & Liscovitch, M. Upregulation of caveolin in multidrug resistant cancer cells: functional implications. Adv. Drug Deliv. Rev. 49, 317–323 (2001).

    CAS  PubMed  Google Scholar 

  100. Galasko, C. S. & Muckle, D. S. Intrasarcolemmal proliferation of the VX2 carcinoma. Br. J. Cancer 29, 59–65 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    CAS  PubMed  Google Scholar 

  102. Folkman, J., Watson, K., Ingber, D. & Hanahan, D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339, 58–61 (1989).

    CAS  PubMed  Google Scholar 

  103. Blood, C. H. & Zetter, B. R. Tumor interaction with the vasculature: angiogenesis and tumor metastasis. Biochim. Biophys. Acta 1032, 89–118 (1990).

    CAS  PubMed  Google Scholar 

  104. de Vries, C. et al. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255, 989–991 (1992).

    CAS  PubMed  Google Scholar 

  105. Millauer, B. et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72, 835–846 (1993).

    CAS  PubMed  Google Scholar 

  106. Pertovaara, L. et al. Vascular endothelial growth factor is induced in response to transforming growth factor-beta in fibroblastic and epithelial cells. J. Biol. Chem. 269, 6271–6274 (1994).

    CAS  PubMed  Google Scholar 

  107. Ferrara, N. VEGF and the quest for tumour angiogenesis factors. Nature Rev. Cancer 2, 795–803 (2002).

    CAS  Google Scholar 

  108. Senger, D. R. et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–985 (1983).

    CAS  PubMed  Google Scholar 

  109. Schubert, W. et al. Microvascular hyperpermeability in caveolin-1 (−/−) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-name, restores normal microvascular permeability in Cav-1 null mice. J. Biol. Chem. 277, 40091–40098 (2002).

    CAS  PubMed  Google Scholar 

  110. Fukumura, D. et al. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc. Natl Acad. Sci. USA 98, 2604–2609 (2001). This study used eNos -null mice to show that eNos is involved in Vegf-induced angiogenesis and vascular permeability in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Feng, D., Nagy, J. A., Hipp, J., Dvorak, H. F. & Dvorak, A. M. Vesiculo-vacuolar organelles and the regulation of venule permeability to macromolecules by vascular permeability factor, histamine, and serotonin. J. Exp. Med. 183, 1981–1986 (1996).

    CAS  PubMed  Google Scholar 

  112. Feng, D. et al. Pathways of macromolecular extravasation across microvascular endothelium in response to VPF/VEGF and other vasoactive mediators. Microcirculation 6, 23–44 (1999).

    CAS  PubMed  Google Scholar 

  113. Vasile, E., Qu, H., Dvorak, H. F. & Dvorak, A. M. Caveolae and vesiculo-vacuolar organelles in bovine capillary endothelial cells cultured with VPF/VEGF on floating Matrigel-collagen gels. J. Histochem. Cytochem. 47, 159–167 (1999).

    CAS  PubMed  Google Scholar 

  114. Spisni, E. et al. Colocalization prostacyclin (PGI2) synthase — caveolin-1 in endothelial cells and new roles for PGI2 in angiogenesis. Exp. Cell Res. 266, 31–43 (2001).

    CAS  PubMed  Google Scholar 

  115. Papetti, M. & Herman, I. M. Mechanisms of normal and tumor-derived angiogenesis. Am. J. Physiol. Cell Physiol. 282, C947–C970 (2002).

    CAS  PubMed  Google Scholar 

  116. Liu, J., Wang, X. B., Park, D. S. & Lisanti, M. P. Caveolin-1 expression enhances endothelial capillary tubule formation. J. Biol. Chem. 277, 10661–10668 (2002).

    CAS  PubMed  Google Scholar 

  117. Liu, J. et al. Angiogenesis activators and inhibitors differentially regulate caveolin-1 expression and caveolae formation in vascular endothelial cells. Angiogenesis inhibitors block vascular endothelial growth factor-induced down-regulation of caveolin-1. J. Biol. Chem. 274, 15781–15785 (1999).

    CAS  PubMed  Google Scholar 

  118. Oh, P., Czarny, M., Huflejt, M. & Schnitzer, J. E. Tumor vascular targeting of caveolae. Proc. Am. Assoc. Cancer Res. 42, A825 (2001).

    Google Scholar 

  119. Labrecque, L. et al. Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Mol. Biol. Cell 14, 334–347 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Feng, Y. et al. VEGF-induced permeability increase is mediated by caveolae. Invest. Ophthalmol. Vis. Sci. 40, 157–167 (1999).

    CAS  PubMed  Google Scholar 

  121. Schnitzer, J. E. Vascular targeting as a strategy for cancer therapy. N. Engl. J. Med. 339, 472–474 (1998).

    CAS  PubMed  Google Scholar 

  122. Dvorak, H. F., Nagy, J. A. & Dvorak, A. M. Structure of solid tumors and their vasculature: implications for therapy with monoclonal antibodies. Cancer Cells 3, 77–85 (1991).

    CAS  PubMed  Google Scholar 

  123. Burrows, F. J. & Thorpe, P. E. Vascular targeting: a new approach to the therapy of solid tumors. Pharmacol. Ther. 64, 155–174 (1994).

    CAS  PubMed  Google Scholar 

  124. Thrush, G. R., Lark, L. A., Clinchy, B. C. & Vitetta, E. S. Immunotoxins: an update. Ann. Rev. Immunol. 14, 49–71 (1996).

    CAS  Google Scholar 

  125. Jain, R. K. Barriers to drug delivery in tumors. Sci. Am. 271, 58–65 (1994).

    CAS  PubMed  Google Scholar 

  126. Carver, L. A. & Schnitzer, J. E. in Biomedical Aspects of Drug Targeting (eds Muzykantov, V. & Torchilin, B.) 107–128 (Kluwer Academic Publishers, Boston, 2002).

    Google Scholar 

  127. Oh, P. et al. Proteomic mapping of tumor neovasculature in vivo for specific targeting and imaging of solid tumors. Proc. Am. Assoc. Cancer Res. 44, A4557 (2003).

    Google Scholar 

  128. Yamada, E. The fine structure of the gall bladder epithelium of the mouse. J Biophys. Biochem. Cytol. 1, 445–458 (1955).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Bundgaard, M., Frokjaer-Jensen, J. & Crone, C. Endothelial plasmalemmal vesicles as elements in a system of branching invaginations from the cell surface. Proc. Natl Acad. Sci. USA 76, 6439–6442 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Frokjaer-Jensen, J. The endothelial vesicle system in cryofixed frog mesenteric capillaries analysed by ultrathin serial sectioning. J. Electron Microsc. Tech. 19, 291–304 (1991).

    CAS  PubMed  Google Scholar 

  131. Severs, N. J. Caveolae: static inpocketings of the plasma membrane, dynamic vesicles or plain artifact? J. Cell Sci. 90, 341–348 (1988).

    PubMed  Google Scholar 

  132. Rippe, B. & Haraldsson, B. Fluid and protein fluxes across small and large pores in the microvasculature. Application of two-pore equations. Acta Physiol. Scand. 131, 411–428 (1987).

    CAS  PubMed  Google Scholar 

  133. Garcia-Cardena, G. et al. Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392, 821–824 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Parts of our work presented here were supported by grants from the National Institutes of Health, as well as the California Tobacco Related Diseases Research Program, the California Breast Cancer Research Program and the United States Department of Defense Breast Cancer Research Program. We apologize to the many researchers whose papers could not be cited here because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan E. Schnitzer.

Related links

Related links

DATABASES

Cancer.org

breast cancer

prostate cancer

LocusLink

Apc

CAV1

CAV2

eNOS

NSF

PI3K

Rb

SNAP

Trp53

VAMP2

VEGF

FURTHER INFORMATION

Jan Schnitzer's lab

Sidney Kimmel Cancer Center

Glossary

PLASMALEMMAL

Related to the plasma membrane of a cell.

CLATHRIN-COATED PITS

Clathrin-coated vesicles that are involved in membrane transport, both in the endocytic and biosynthetic pathways.

MICRODOMAINS

Specialized small regions of membrane with a unique molecular composition that is organized to optimize specific functions.

MECHANOTRANSDUCTION

The activation of intracellular signal-transduction pathways in cells by mechanical stimuli. For example, endothelial-cell signalling induced by changing haemodynamic forces, such as shear stress and blood pressure.

HAEMODYNAMICS

The study of blood flow and the mechanical forces generated in the cardiovascular system arising from blood being pumped through the vessels by the heart.

ENDOCYTOSIS

Internalization and transport of extracellular material and plasma-membrane proteins from the cell surface to intracellular organelles known as endosomes.

TRANSCYTOSIS

Transport of macromolecules across a cell, consisting of endocytosis of a macromolecule at one side of a monolayer and exocytosis at the other side.

LYSOSOME

A membrane-bounded organelle with a low internal pH (4–5) that contains hydrolytic enzymes and that is the site of the degradation of proteins in both the biosynthetic and the endocytic pathways.

ENDOSOME

Intracellular organelles that transport extracellular material and proteins from the cell surface.

DOMINANT-NEGATIVE PROTEIN

A defective protein that retains interaction capabilities and so distorts or competes with normal proteins.

GLYCOSPHINGOLIPIDS

Any compound containing residues of a sphingoid and at least one monosaccharide.

ANOIKIS

Induction of programmed cell death by detatchment of cells from the extracellular matrix.

LOSS OF HETEROZYGOSITY

(LOH). Occurs when loss of a particular segment of the genome can be shown by the analysis of a polymorphic marker in that region. If an individual is somatically heterozygous for this marker, but homozygous in the tumour, then there has been 'loss of heterozygosity' in that region. Recurrent LOH of a region indicates the presence of a classical tumour-suppressor gene, although recurrent regional loss is also seen for other reasons (for example, because of the presence of fragile sites).

PROSTAGLANDINS

Any of a class of hormone-like, lipid-soluble regulatory molecules that are constructed from polyunsaturated fatty acids such as arachidonate. These molecules participate in diverse body functions, such as smooth-muscle contraction and relaxation, vasodilation and regulation of kidney function.

INFARCTING

Causing tissue necrosis due to a critical imbalance between the oxygen supply and demand of the tissue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carver, L., Schnitzer, J. Caveolae: mining little caves for new cancer targets. Nat Rev Cancer 3, 571–581 (2003). https://doi.org/10.1038/nrc1146

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing