Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Control of gut differentiation and intestinal-type gastric carcinogenesis

Key Points

  • Gastric cancer is histologically classified into two main types — intestinal and diffuse.

  • The carcinogenic pathway of intestinal-type gastric carcinomas is believed to begin with Helicobacter pylori infection, followed by chronic gastritis, atrophic gastritis and intestinal metaplasia.

  • Much has been learned recently about the transcriptional control of gut differentiation. Inappropriate activation of the intestine-specific transcription factor CDX2 is one of the most likely contributing factors in the induction of intestinal metaplasia of the stomach.

  • Intestinal metaplasia has been observed not only in the stomach, but also in other digestive organs such as the oesophagus, biliary tracts and gallbladder — possibly as a consequence of inflammatory lesions and regeneration.

  • Several genetic changes have been identified in intestinal-type gastric cancer. These include APC mutations and defects in the MLH1/microsatellite instability pathway, although these defects are only rarely observed. Mutation and/or loss of TP53 have been detected in more than half of the intestinal-type gastric cancers. However, the mechanisms that underlie most cases of this type of cancer remain to be determined.

Abstract

Gastric cancer is one of the world's most common cancers. Its carcinogenic pathway is mainly associated with Helicobacter pylori infection, subsequent inflammation and tissue regeneration. During the regeneration process, cells deviate from the normal pathway of gastric differentiation to an 'intestinal phenotype', which is thought to be precancerous and associated with the intestinal type of gastric cancer. Inappropriate activation of intestine-specific transcription factors could contribute to the occurrence of the intestinal-type cancer of the stomach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models of the gastric carcinogenic pathway.
Figure 2: Regional expression of transcription factors in the developing gut.
Figure 3: Target genes of CDX2.
Figure 4: Causes of intestinal metaplasia and related cancers in digestive organs.

Similar content being viewed by others

References

  1. Pisani, P., Parkin, D. M., Bray, F. & Ferlay, J. Estimates of the worldwide mortality from 25 cancers in 1990. Int. J. Cancer 83, 870–873 (1999).

    CAS  PubMed  Google Scholar 

  2. Food, Nutrition and the Prevention of Cancer: a Global Perspective (eds Potter, J. D. et al.) (World Cancer Research Fund/American Institute for Cancer Research, 1997).

  3. Peek, R. M. Jr & Blaser, M. J. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nature Rev. Cancer 2, 28–37 (2002).

    CAS  Google Scholar 

  4. Huang, J. Q., Sridhar, S., Chen, Y. & Hunt, R. H. Meta-analysis of the relationship between Helicobacter pylori seropositivity and gastric cancer. Gastroenterology 114, 1169–1179 (1998). Meta-analysis of the relationship between H. pylori infection and gastric cancer shows that infection with these bacteria is equally associated with the intestinal or diffuse types of gastric cancer.

    CAS  PubMed  Google Scholar 

  5. Lauren, P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. Acta Pathol. Microbiol. Scand. 64, 31–49 (1965).

    CAS  PubMed  Google Scholar 

  6. Correa, P. Human gastric carcinogenesis: a multistep and multifactorial process – First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res. 52, 6735–6740 (1992).

    CAS  PubMed  Google Scholar 

  7. Abate-Shen, C. Deregulated homeobox gene expression in cancer: cause or consequence? Nature Rev. Cancer 2, 777–785 (2002). Proposes that homeobox genes can be defined as tumour modulators rather than as oncogenes or tumour suppressors, based on deregulated gene expression in cancer.

    CAS  Google Scholar 

  8. Grapin-Botton, A. & Melton D. A. Endoderm development: from patterning to organogenesis. Trends Genet. 16, 124–130 (2000).

    CAS  PubMed  Google Scholar 

  9. Kuo, C. T. et al. GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 11, 1048–1060 (1997).

    CAS  PubMed  Google Scholar 

  10. Molkentin, J. D., Lin, Q., Duncan, S. A. & Olson, E. N. Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 11, 1061–1072 (1997).

    CAS  PubMed  Google Scholar 

  11. Solloway, M. J. & Robertson, E. J. Early embryonic lethality in Bmp5; Bmp7 double mutant mice suggests functional redundancy within the 60A subgroup. Development 126, 1753–1768 (1999).

    CAS  PubMed  Google Scholar 

  12. Beck, F., Tata, F. & Chawengsaksophak, K. Homeobox genes and gut development. Bioessays 22, 431–441 (2000).

    CAS  PubMed  Google Scholar 

  13. Kawazoe, Y. et al. Region-specific gastrointestinal Hox code during murine embryonal gut development. Dev. Growth Differ. 44, 77–84 (2002).

    CAS  PubMed  Google Scholar 

  14. Roberts, D. J. et al. Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut. Development 121, 3163–3174 (1995).

    CAS  PubMed  Google Scholar 

  15. Roberts, D. J., Smith, D. M., Goff, D. J. & Tabin, C. J. Epithelial–mesenchymal signaling during the regionalization of the chick gut. Development 125, 2791–2801 (1998).

    CAS  PubMed  Google Scholar 

  16. Silberg, D. G., Swain, G. P., Suh, E. R. & Traber, P. G. Cdx1 and Cdx2 expression during intestinal development. Gastroenterology 119, 961–971 (2000).

    CAS  PubMed  Google Scholar 

  17. Offield, M. F. et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122, 983–995 (1996).

    CAS  PubMed  Google Scholar 

  18. Chawengsaksophak, K., James, R., Hammond, V. E., Kontgen, F. & Beck, F. Homeosis and intestinal tumours in Cdx2 mutant mice. Nature 386, 84–87 (1997). Mice with heterozygous disruptions in Cdx2 develop many colonic polyps, indicating a tumour-suppressive activity of Cdx2.

    CAS  PubMed  Google Scholar 

  19. Beck, F., Chawengsaksophak, K., Waring, P., Playford, R. J. & Furness, J. B. Reprogramming of intestinal differentiation and intercalary regeneration in Cdx2 mutant mice. Proc. Natl Acad. Sci. USA 96, 7318–7323 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lorentz, O. et al. Key role of the Cdx2 homeobox gene in extracellular matrix-mediated intestinal cell differentiation. J. Cell Biol. 139, 1553–1565 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Charite, J. et al. Transducing positional information to the Hox genes: critical interaction of Cdx gene products with position-sensitive regulatory elements. Development 125, 4349–4358 (1998).

    CAS  PubMed  Google Scholar 

  22. Subramanian, V., Meyer, B. I. & Gruss, P. Disruption of the murine homeobox gene Cdx1 affects axial skeletal identities by altering the mesodermal expression domains of Hox genes. Cell 83, 641–653 (1995).

    CAS  PubMed  Google Scholar 

  23. Jonsson, J., Carlsson, L., Edlund, T. & Edlund, H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371, 606–609 (1994).

    CAS  PubMed  Google Scholar 

  24. Lickert, H., Kispert, A., Kutsch, S. & Kemler, R. Expression patterns of Wnt genes in mouse gut development. Mech. Dev. 105, 181–184 (2001).

    CAS  PubMed  Google Scholar 

  25. McBride, H. J., Fatke, B. & Fraser, S. E. Wnt signaling components in the chicken intestinal tract. Dev. Biol. 256, 18–33 (2003).

    CAS  PubMed  Google Scholar 

  26. Wells, J. M. & Melton, D. A. Early mouse endoderm is patterned by soluble factors from adjacent germ layers. Development 127, 1563–1572 (2000).

    CAS  PubMed  Google Scholar 

  27. Ishii, Y., Rex, M., Scotting, P. J. & Yasugi, S. Region-specific expression of chicken Sox2 in the developing gut and lung epithelium: regulation by epithelial–mesenchymal interactions. Dev. Dyn. 213, 464–475 (1998).

    CAS  PubMed  Google Scholar 

  28. Miettinen, P. J. et al. Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature 376, 337–341 (1995).

    CAS  PubMed  Google Scholar 

  29. Pabst, O., Zweigerdt, R. & Arnold, H. H. Targeted disruption of the homeobox transcription factor Nkx2-3 in mice results in postnatal lethality and abnormal development of small intestine and spleen. Development 126, 2215–2225 (1999).

    CAS  PubMed  Google Scholar 

  30. Sakamoto, N. et al. Role for cGATA-5 in transcriptional regulation of the embryonic chicken pepsinogen gene by epithelial–mesenchymal interactions in the developing chicken stomach. Dev. Biol. 223, 103–113 (2000).

    CAS  PubMed  Google Scholar 

  31. Nishi, T., Kubo, K., Hasebe, M., Maeda, M. & Futai, M. Transcriptional activation of H+/K+-ATPase genes by gastric GATA binding proteins. J. Biochem. 121, 922–929 (1997).

    CAS  PubMed  Google Scholar 

  32. Jacobsen, C. M. et al. Genetic mosaic analysis reveals that GATA-4 is required for proper differentiation of mouse gastric epithelium. Dev. Biol. 241, 34–46 (2002).

    CAS  PubMed  Google Scholar 

  33. Larsson, L. I., Madsen, O. D., Serup, P., Jonsson, J. & Edlund, H. Pancreatic-duodenal homeobox 1: role in gastric endocrine patterning. Mech. Dev. 60, 175–184 (1996).

    CAS  PubMed  Google Scholar 

  34. Freund, J. N., Domon-Dell, C., Kedinger, M. & Duluc, I. The Cdx-1 and Cdx-2 homeobox genes in the intestine. Biochem. Cell Biol. 76, 957–969 (1998).

    CAS  PubMed  Google Scholar 

  35. Yamamoto, H., Bai, Y. -Q. & Yuasa, Y. Homeodomain protein CDX2 regulates goblet specific MUC2 gene expression. Biochem. Biophys. Res. Commun. 300, 813–818 (2003).

    CAS  PubMed  Google Scholar 

  36. Hinoi, T. et al. CDX2 regulates liver intestine-cadherin expression in normal and malignant colon epithelium and intestinal metaplasia. Gastroenterology 123, 1565–1577 (2002).

    CAS  PubMed  Google Scholar 

  37. Jensen, J. et al. Control of endodermal endocrine development by Hes-1. Nature Genet. 24, 36–44 (2000).

    CAS  PubMed  Google Scholar 

  38. Yang, Q., Bermingham, N. A., Finegold, M. J. & Zoghbi, H. Y. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 294, 2155–2158 (2001).

    CAS  PubMed  Google Scholar 

  39. Helicobacter and Cancer Collaborative Group. Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control studies nested within prospective cohorts. Gut 49, 347–353 (2001).

  40. Higashi, H. et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295, 683–686 (2002).

    CAS  PubMed  Google Scholar 

  41. Hussain, S. P., Hofseth, L. J. & Harris, C. C. Radical causes of cancer. Nature Rev. Cancer 3, 276–285 (2003).

    CAS  Google Scholar 

  42. El-Omar, E. M. et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 404, 398–402 (2000). Shows that the IL-1β polymorphism can determine why some individuals infected with H. pylori develop gastric cancer but others do not.

    CAS  PubMed  Google Scholar 

  43. Bai, Y. -Q., Miyake, S., Iwai, T. & Yuasa, Y. CDX2, a homeobox transcription factor, up-regulates transcription of the p21/WAF1/CIP1 gene. Oncogene (in the press).

  44. Bai, Y. -Q. et al. Ectopic expression of homeodomain protein CDX2 in intestinal metaplasia and carcinomas of the stomach. Cancer Lett. 176, 47–55 (2002). The expression of the intestine-specific homeoprotein CDX2 was found in intestinal metaplasia and carcinomas of the stomach, indicating its involvement in these lesions.

    CAS  PubMed  Google Scholar 

  45. Silberg, D. G. et al. Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology 122, 689–696 (2002). Cdx2 ectopic expression in the stomach induces intestinal metaplasia in transgenic mice, showing that Cdx2 is involved in the initiation of intestinal metaplasia formation.

    CAS  PubMed  Google Scholar 

  46. Ishii, Y., Fukuda, K., Saiga, H., Matsushita, S. & Yasugi, S. Early specification of intestinal epithelium in the chicken embryo: a study on the localization and regulation of CdxA expression. Dev. Growth Differ. 39, 643–653 (1997).

    CAS  PubMed  Google Scholar 

  47. Xu, F., Li, H. & Jin, T. Cell type-specific autoregulation of the caudal-related homeobox gene Cdx-2/3. J. Biol. Chem. 274, 34310–34316 (1999).

    CAS  PubMed  Google Scholar 

  48. Silberg, D. G. et al. CDX1 protein expression in normal, metaplastic, and neoplastic human alimentary tract epithelium. Gastroenterology 113, 478–486 (1997).

    CAS  PubMed  Google Scholar 

  49. Ruiz i Altaba, A., Sanchez, P. & Dahmane, N. Gli and hedgehog in cancer: tumours, embryos and stem cells. Nature Rev. Cancer 2, 361–372 (2002).

    CAS  Google Scholar 

  50. Ramalho-Santos, M., Melton, D. A. & McMahon, A. P. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 127, 2763–2772 (2000).

    CAS  PubMed  Google Scholar 

  51. van den Brink, G. R. et al. Sonic hedgehog expression correlates with fundic gland differentiation in the adult gastrointestinal tract. Gut 51, 628–633 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, C. S., Perreault, N., Brestelli, J. E. & Kaestner, K. H. Neurogenin 3 is essential for the proper specification of gastric enteroendocrine cells and the maintenance of gastric epithelial cell identity. Genes Dev. 16, 1488–1497 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Taupin, D. et al. Augmented intestinal trefoil factor (TFF3) and loss of pS2 (TFF1) expression precedes metaplastic differentiation of gastric epithelium. Lab. Invest. 81, 397–408 (2001).

    CAS  PubMed  Google Scholar 

  54. Suh, E. & Traber, P. G. An intestine-specific homeobox gene regulates proliferation and differentiation. Mol. Cell. Biol. 16, 619–625 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mallo, G. V. et al. Expression of the Cdx1 and Cdx2 homeotic genes leads to reduced malignancy in colon cancer-derived cells. J. Biol. Chem. 273, 14030–14036 (1998).

    CAS  PubMed  Google Scholar 

  56. Ee, H. C., Erler, T., Bhathal, P. S., Young, G. P. & James, R. J. Cdx-2 homeodomain protein expression in human and rat colorectal adenoma and carcinoma. Am. J. Pathol. 147, 586–592 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mallo, G. V. et al. Molecular cloning, sequencing and expression of the mRNA encoding human Cdx1 and Cdx2 homeobox. Down-regulation of Cdx1 and Cdx2 mRNA expression during colorectal carcinogenesis. Int. J. Cancer 74, 35–44 (1997).

    CAS  PubMed  Google Scholar 

  58. Soubeyran, P. et al. Cdx1 promotes differentiation in a rat intestinal epithelial cell line. Gastroenterology 117, 1326–1338 (1999).

    CAS  PubMed  Google Scholar 

  59. Lorentz, O. et al. Downregulation of the colon tumour-suppressor homeobox gene Cdx-2 by oncogenic ras. Oncogene 18, 87–92 (1999).

    CAS  PubMed  Google Scholar 

  60. Lickert, H. et al. Wnt/β-catenin signaling regulates the expression of the homeobox gene Cdx1 in embryonic intestine. Development 127, 3805–3813 (2000).

    CAS  PubMed  Google Scholar 

  61. Lynch, J. et al. The caudal-related homeodomain protein Cdx1 inhibits proliferation of intestinal epithelial cells by down-regulation of D-type cyclins. J. Biol. Chem. 275, 4499–4506 (2000).

    CAS  PubMed  Google Scholar 

  62. Kuniyasu, H., Yasui, W., Yokozaki, H. & Tahara, E. Helicobacter pylori infection and carcinogenesis of the stomach. Langenbecks Arch. Surg. 385, 69–74 (2000).

    CAS  PubMed  Google Scholar 

  63. Lee, J. H. et al. Inverse relationship between APC gene mutation in gastric adenomas and development of adenocarcinoma. Am. J. Pathol. 161, 611–618 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    CAS  PubMed  Google Scholar 

  65. Nakatsuru, S. et al. Somatic mutation of the APC gene in gastric cancer: frequent mutations in very well differentiated adenocarcinoma and signet-ring cell carcinoma. Hum. Mol. Genet. 1, 559–563 (1992).

    CAS  PubMed  Google Scholar 

  66. Tamura, G. et al. Mutations of the APC gene occur during early stages of gastric adenoma development. Cancer Res. 54, 1149–1151 (1994).

    CAS  PubMed  Google Scholar 

  67. Seidensticker, M. J. & Behrens, J. Biochemical interactions in the wnt pathway. Biochim. Biophys. Acta 1495, 168–182 (2000).

    CAS  PubMed  Google Scholar 

  68. Park, W. S. et al. Frequent somatic mutations of the β-catenin gene in intestinal-type gastric cancer. Cancer Res. 59, 4257–4260 (1999).

    CAS  PubMed  Google Scholar 

  69. Dunker, N. & Krieglstein, K. Targeted mutations of transforming growth factor-β genes reveal important roles in mouse development and adult homeostasis. Eur. J. Biochem. 267, 6982–6988 (2000).

    CAS  PubMed  Google Scholar 

  70. Boivin, G. P., Molina, J. R., Ormsby, I., Stemmermann, G. & Doetschman, T. Gastric lesions in transforming growth factor β-1 heterozygous mice. Lab. Invest. 74, 513–518 (1996).

    CAS  PubMed  Google Scholar 

  71. Park, K. et al. Genetic changes in the transforming growth factor β (TGF-β) type II receptor gene in human gastric cancer cells: correlation with sensitivity to growth inhibition by TGF-β. Proc. Natl Acad. Sci. USA 91, 8772–8776 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wu, M. S. et al. Clinicopathological significance of altered loci of replication error and microsatellite instability-associated mutations in gastric cancer. Cancer Res. 58, 1494–1497 (1998).

    CAS  PubMed  Google Scholar 

  73. Suzuki, H. et al. Distinct methylation pattern and microsatellite instability in sporadic gastric cancer. Int. J. Cancer 83, 309–313 (1999).

    CAS  PubMed  Google Scholar 

  74. Iacopetta, B. J., Soong, R., House, A. K. & Hamelin, R. Gastric carcinomas with microsatellite instability: clinical features and mutations to the TGF-β type II receptor, IGFII receptor, and BAX genes. J. Pathol. 187, 428–432 (1999).

    CAS  PubMed  Google Scholar 

  75. Schneider, B. G. et al. Microsatellite instability, prognosis and metastasis in gastric cancers from a low-risk population. Int. J. Cancer 89, 444–452 (2000).

    CAS  PubMed  Google Scholar 

  76. Markowitz, S. et al. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science 268, 1336–1338 (1995).

    CAS  PubMed  Google Scholar 

  77. Parsons, R. et al. Microsatellite instability and mutations of the transforming growth factor β type II receptor gene in colorectal cancer. Cancer Res. 55, 5548–5550 (1995).

    CAS  PubMed  Google Scholar 

  78. Li, Q. L. et al. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109, 113–124 (2002).

    CAS  PubMed  Google Scholar 

  79. Kim, J. H. et al. Occurrence of p53 gene abnormalities in gastric carcinoma tumors and cell lines. J. Natl Cancer Inst. 83, 938–943 (1991).

    CAS  PubMed  Google Scholar 

  80. Tamura, G. et al. Detection of frequent p53 gene mutations in primary gastric cancer by cell sorting and polymerase chain reaction single-strand conformation polymorphism analysis. Cancer Res. 51, 3056–3058 (1991).

    CAS  PubMed  Google Scholar 

  81. Hamilton, S. R. & Smith, R. R. The relationship between columnar epithelial dysplasia and invasive adenocarcinoma arising in Barrett's esophagus. Am. J. Clin. Pathol. 87, 301–312 (1987).

    CAS  PubMed  Google Scholar 

  82. Marchetti, M., Caliot, E. & Pringault, E. Chronic acid exposure leads to activation of the Cdx2 intestinal homeobox gene in a long-term culture of mouse esophageal keratinocytes. J. Cell Sci. 116, 1429–1436 (2003). Shows that chronic acid exposure leads to activation of Cdx2 expression in mouse oesophageal keratinocytes.

    CAS  PubMed  Google Scholar 

  83. Kozuka, S., Kurashina, M., Tsubone, M., Hachisuka, K. & Yasui, A. Significance of intestinal metaplasia for the evolution of cancer in the biliary tract. Cancer 54, 2277–2285 (1984).

    CAS  PubMed  Google Scholar 

  84. Parkin, D. M., Ohshima, H., Srivatanakul, P. & Vatanasapt, V. Cholangiocarcinoma: epidemiology, mechanisms of carcinogenesis and prevention. Cancer Epidemiol. Biomarkers Prev. 2, 537–544 (1993).

    CAS  PubMed  Google Scholar 

  85. Albores-Saavedra, J., Nadji, M. & Henson, D. E. Intestinal-type adenocarcinoma of the gallbladder. A clinicopathologic study of seven cases. Am. J. Surg. Pathol. 10, 19–25 (1986).

    CAS  PubMed  Google Scholar 

  86. Fox, J. G. et al. Hepatic Helicobacter species identified in bile and gallbladder tissue from Chileans with chronic cholecystitis. Gastroenterology 114, 755–763 (1998).

    CAS  PubMed  Google Scholar 

  87. Eda, A. et al. Aberrant expression of CDX2 in Barrett's epithelium and inflammatory esophageal mucosa. J. Gastroenterol. 38, 14–22 (2003).

    CAS  PubMed  Google Scholar 

  88. Kim, S. et al. PTEN and TNF-α regulation of the intestinal-specific Cdx-2 homeobox gene through a PI3K, PKB/Akt, and NF-κB-dependent pathway. Gastroenterology 23, 1163–1178 (2002). Shows that CDX2 is a target of PTEN/ phosphatidylinositol 3-kinase signalling and tumour necrosis factor-α.

    Google Scholar 

  89. Domon-Dell, C. & Freund, J. N. Stimulation of Cdx1 by oncogenic β-catenin/Tcf4 in colon cancer cells; opposite effect of the CDX2 homeoprotein. FEBS Lett. 518, 83–87 (2002).

    CAS  PubMed  Google Scholar 

  90. Correa, P. Chemoprevention of gastric dysplasia: randomized trial of antioxidant supplements and anti-Helicobacter pylori therapy. J. Natl Cancer Inst. 92, 1881–1888 (2000).

    CAS  PubMed  Google Scholar 

  91. Satoh, K. et al. Aberrant expression of CDX2 in the gastric mucosa with and without intestinal metaplasia: effect of eradication of Helicobacter pylori. Helicobacter 7, 192–198 (2002).

    CAS  PubMed  Google Scholar 

  92. Kim, D. H. et al. p16INK4a and histology-specific methylation of CpG islands by exposure to tobacco smoke in non-small cell lung cancer. Cancer Res. 61, 3419–3424 (2001).

    CAS  PubMed  Google Scholar 

  93. Huang, M. E. et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72, 567–572 (1988).

    CAS  PubMed  Google Scholar 

  94. Jones, P. A. & Baylin, S. B. The fundamental role of epigenetic events in cancer. Nature Rev. Genet. 3, 415–428 (2002).

    CAS  PubMed  Google Scholar 

  95. Oda, T. et al. E-cadherin gene mutations in human gastric carcinoma cell lines. Proc. Natl Acad. Sci. USA 91, 1858–1862 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Yoshiura, K. et al. Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc. Natl Acad. Sci. USA 92, 7416–7419 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Guilford, P. et al. E-cadherin germline mutations in familial gastric cancer. Nature 392, 402–405 (1998). First presentation of germline mutations in E-cadherin in hereditary diffuse gastric carcinoma.

    CAS  PubMed  Google Scholar 

  98. Thiery, J. P. et al. Epithelial–mesenchymal transitions in tumour progression. Nature Rev. Cancer 2, 442–454 (2002).

    CAS  Google Scholar 

Download references

Acknowledgements

The author thanks S. Yasugi, K. Nakachi, Y. Akiyama and Y.-Q. Bai for their valuable discussions. Supported in part by Grants-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

APC

CagA

CDX1

CDX2

IL-1β

neurogenin-3

PDX1

RUNX3

Sox2

TFF1

TFF2

TFF3

TGF-β

WAF1

WNT

FURTHER INFORMATION

The Canadian H. pylori web site

Cancer Research UK information on gastric cancer

NCI gastric cancer home page

Oncology channel's information on gastric cancer

Glossary

ENDODERM

The endoderm becomes the innermost layer of the embryo and produces the gut tube and its associated organs, including the liver and lungs.

SPLANCHNIC MESODERM

The mesoderm becomes sandwiched between the ectoderm and endoderm of the embryo. It generates the blood, heart, kidney, gonads, bones and connective tissues. The splanchnic mesoderm is the area of mesoderm closest to the endoderm.

SOMITOGENESIS

Formation of somites — paired blocks of mesoderm bracketing the neural tube that arise by segmentation of the paraxial mesoderm at all levels from the anterior hindbrain to the caudal (tail) region.

HOX GENES

Transcription factors that are characterized by a 60-amino-acid domain (the homeodomain) that binds to certain regions of DNA and controls regional specification along the anterior–posterior axis. Mouse and human genomes contain four copies (a–d) of the HOX complex located on four different chromosomes. The equivalent genes in each complex are called a paralogous group.

GASTRIC ANTRUM

The distal third of the stomach.

GENETIC MOSAIC ANALYSIS

To analyse spatial complexity of differentiation, chimeric mice are produced by injection of genetically manipulated embryonic stem cells (for example, Gata4−/−) into ROSA26 blastocysts bearing a ubiquitously expressed β-galactosidase transgene.

HYPOCHLORHYDRIA

Deficiency of hydrochloric acid in the gastric juice, often as a consequence of atrophic gastritis.

PANETH CELLS

Cells in the bottom of the intestinal crypt, containing eosinophil granules and secreting a variety of factors, including host defence factors against microbial pathogens.

GOBLET CELLS

A form of epithelial cell containing mucin and that is bulged like a goblet.

FUNDIC GLAND

A gland that is located in the fundus and body of the stomach. It contains highly specialized cells, which produce pepsinogen (chief cells) and acid (parietal cells).

MICROSATELLITE INSTABILITY

Characterized by expansion or contraction of short repeated DNA sequences (that is, microsatellite repeats) caused by insertion or deletion of repeated units. This instability, known also as a 'mutator phenotype' or 'replication error', indicates probable defects in the DNA mismatch-repair genes.

BARRETT'S OESOPHAGUS

The normal squamous oesophageal epithelium is replaced by columnar epithelium during the process of healing after repetitive injury to the oesophageal mucosa.

HEPATOLITHIASIS

Formation of calculi in the intrahepatic biliary tract. It frequently occurs in association with bacterial infection of the biliary tract or bile stasis. Most of these stones are made of calcium bilirubinate.

CHOLELITHIASIS

Formation of calculi in the biliary tract. Most of gallbladder calculi are made of cholesterol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuasa, Y. Control of gut differentiation and intestinal-type gastric carcinogenesis. Nat Rev Cancer 3, 592–600 (2003). https://doi.org/10.1038/nrc1141

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing