Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Generation and purification of highly specific antibodies for detecting post-translationally modified proteins in vivo

Abstract

Post-translational modifications alter protein structure, affecting activity, stability, localization and/or binding partners. Antibodies that specifically recognize post-translationally modified proteins have a number of uses including immunocytochemistry and immunoprecipitation of the modified protein to purify protein-protein and protein-nucleic acid complexes. However, antibodies directed at modified sites on individual proteins are often nonspecific. Here we describe a protocol to purify polyclonal antibodies that specifically detect the modified protein of interest. The approach uses iterative rounds of subtraction and affinity purification, using stringent washes to remove antibodies that recognize the unmodified protein and low sequence complexity epitopes containing the modified amino acid. Dot blot and western blot assays are used to assess antibody preparation specificity. The approach is designed to overcome the common occurrence that a single round of subtraction and affinity purification is not sufficient to obtain a modified protein-specific antibody preparation. One full round of antibody purification and specificity testing takes 6 d of discontinuous time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatial control of NOS-3 phosphorylation in the C. elegans germ-line tissue.
Figure 2: Workflow for phospho-antibody purification.
Figure 3: Removal of nonspecific antibodies from the phospho-CGH-1 preparation through multiple rounds of affinity purification as assessed by western blots of adult C. elegans lysates.
Figure 4: Testing the efficiency of peptide conjugation to activated BSA.
Figure 5: Dot blot to test specificity toward the CGH-1 phosphopeptides and non-phosphopeptides.
Figure 6: Genetic tests for specificity of the purified anti-pCGH-1 polyclonal antibody preparation.
Figure 7: Dot blotting to identify fractions containing the antipeptide antibody.
Figure 8: Staining for pCGH-1 and activated MPK-1 ERK overlap in the germ-line tissue.
Figure 9: Phosphorylation of CGH-1 alters protein subcellular localization.

Similar content being viewed by others

References

  1. Cleghon, V. et al. Opposing actions of CSW and RasGAP modulate the strength of Torso RTK signaling in the Drosophila terminal pathway. Mol. Cell 2, 719–727 (1998).

    Article  CAS  Google Scholar 

  2. Cleghon, V. et al. Drosophila terminal structure development is regulated by the compensatory activities of positive and negative phosphotyrosine signaling sites on the Torso RTK. Genes Dev. 10, 566–577 (1996).

    Article  CAS  Google Scholar 

  3. Cutler, R.E. Jr. & Morrison, D.K. Mammalian Raf-1 is activated by mutations that restore Raf signaling in Drosophila. EMBO J. 16, 1953–1960.

  4. Deem, A.K., Li, X. & Tyler, J.K. Epigenetic regulation of genomic integrity. Chromosoma 121, 131–151.

  5. Gao, J.J. et al. The proteasome regulates bacterial CpG DNA-induced signaling pathways in murine macrophages. Shock 34, 390–401.

  6. Gayko, U., Cleghon, V., Copeland, T., Morrison, D.K. & Perrimon, N. Synergistic activities of multiple phosphotyrosine residues mediate full signaling from the Drosophila Torso receptor tyrosine kinase. Proc. Natl. Acad. Sci. USA 96, 523–528 (1999).

    Article  CAS  Google Scholar 

  7. Hsu, V., Zobel, C.L., Lambie, E.J., Schedl, T. & Kornfeld, K. Caenorhabditis elegans lin-45 raf is essential for larval viability, fertility and the induction of vulval cell fates. Genetics 160, 481–492 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jacobs, D., Beitel, G.J., Clark, S.G., Horvitz, H.R. & Kornfeld, K. Gain-of-function mutations in the Caenorhabditis elegans lin-1 ETS gene identify a C-terminal regulatory domain phosphorylated by ERK MAP kinase. Genetics 149, 1809–1822 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaplan, D.R., Morrison, D.K., Wong, G., McCormick, F. & Williams, L.T. PDGF-β-receptor stimulates tyrosine phosphorylation of GAP and association of GAP with a signaling complex. Cell 61, 125–133 (1990).

    Article  CAS  Google Scholar 

  10. Kornfeld, K., Hom, D.B. & Horvitz, H.R. The ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signaling in C. elegans. Cell 83, 903–913 (1995).

    Article  CAS  Google Scholar 

  11. Lackner, M.R., Kornfeld, K., Miller, L.M., Horvitz, H.R. & Kim, S.K. A MAP kinase homolog, mpk-1, is involved in ras-mediated induction of vulval cell fates in Caenorhabditis elegans. Genes Dev. 8, 160–173 (1994).

    Article  CAS  Google Scholar 

  12. Mason, J.M., Morrison, D.J., Basson, M.A. & Licht, J.D. Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol. 16, 45–54.

  13. Morrison, D.K. & Davis, R.J. Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu. Rev. Cell Dev. Biol. 19, 91–118.

  14. Ohsawa, R., Adkins, M. & Tyler, J.K. Epigenetic inheritance of an inducibly nucleosome-depleted promoter and its associated transcriptional state in the apparent absence of transcriptional activators. Epigenetics Chromatin 2, 11 (2009).

    Article  Google Scholar 

  15. Ory, S. & Morrison, D.K. Signal transduction: implications for Ras-dependent ERK signaling. Curr. Biol. 14, R277–R278 (2004).

    Article  CAS  Google Scholar 

  16. Ory, S., Zhou, M., Conrads, T.P., Veenstra, T.D. & Morrison, D.K. Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites. Curr. Biol. 13, 1356–1364 (2003).

    Article  CAS  Google Scholar 

  17. Ritt, D.A., Monson, D.M., Specht, S.I. & Morrison, D.K. Impact of feedback phosphorylation and Raf heterodimerization on normal and mutant B-Raf signaling. Mol. Cell Biol. 30, 806–819 (2010).

    Article  CAS  Google Scholar 

  18. Shen, J. et al. Key inflammatory signaling pathways are regulated by the proteasome. Shock 25, 472–484 (2006).

    Article  CAS  Google Scholar 

  19. Jud, M.C. et al. Large P body-like RNPs form in C. elegans oocytes in response to arrested ovulation, heat shock, osmotic stress, and anoxia and are regulated by the major sperm protein pathway. Dev. Biol. 318, 38–51 (2008).

    Article  CAS  Google Scholar 

  20. Liu, T. et al. Broad chromosomal domains of histone modification patterns in C. elegans. Genome Res. 21, 227–236 (2011).

    Article  CAS  Google Scholar 

  21. Mikeladze-Dvali, T. et al. Analysis of centriole elimination during C. elegans oogenesis. Development 139, 1670–1679 (2012).

    Article  CAS  Google Scholar 

  22. Logan, C.Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810.

  23. Argenzio, E. et al. Proteomic snapshot of the EGF-induced ubiquitin network. Mol. Syst. Biol. 7, 462.

  24. Blagoev, B. et al. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat. Biotechnol. 21, 315–318 (2003).

    Article  CAS  Google Scholar 

  25. Pandey, A. et al. Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proc. Natl. Acad. Sci. USA 97, 179–184 (2000).

    Article  CAS  Google Scholar 

  26. Schulze, W.X., Deng, L. & Mann, M. Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol. Syst. Biol. 1, 2005.0008 (2005).

    Article  Google Scholar 

  27. Arur, S. et al. MPK-1 ERK controls membrane organization in C. elegans oogenesis via a sex-determination module. Dev. Cell 20, 677–688 (2011).

    Article  CAS  Google Scholar 

  28. Arur, S. et al. Multiple ERK substrates execute single biological processes in Caenorhabditis elegans germ-line development. Proc. Natl. Acad. Sci. USA 106, 4776–4781 (2009).

    Article  CAS  Google Scholar 

  29. Kraus, S. & Seger, R. Determination of ERK activity: antiphospho-ERK antibodies, in vitro phosphorylation, and in-gel kinase assay. Methods Mol. Biol. 250, 29–48 (2004).

    CAS  PubMed  Google Scholar 

  30. Kumar, J.P. et al. Dissecting the roles of the Drosophila EGF receptor in eye development and MAP kinase activation. Development 125, 3875–3885 (1998).

    CAS  PubMed  Google Scholar 

  31. Perlson, E. et al. Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve. Neuron 45, 715–726 (2005).

    Article  CAS  Google Scholar 

  32. Wortzel, I. & Seger, R. The ERK cascade: distinct functions within various subcellular organelles. Genes Cancer 2, 195–209 (2011).

    Article  CAS  Google Scholar 

  33. Yao, Z. et al. Detection of partially phosphorylated forms of ERK by monoclonal antibodies reveals spatial regulation of ERK activity by phosphatases. FEBS Lett. 468, 37–42 (2000).

    Article  CAS  Google Scholar 

  34. Chuderland, D. & Seger, R. Calcium regulates ERK signaling by modulating its protein-protein interactions. Commun. Integr. Biol. 1, 4–5 (2008).

    Article  CAS  Google Scholar 

  35. Hadwiger, G., Dour, S., Arur, S., Fox, P. & Nonet, M.L. A monoclonal antibody toolkit for C. elegans. PLoS ONE 5, e10161 (2010).

    Article  Google Scholar 

  36. Rubinfeld, H. & Seger, R. The ERK cascade as a prototype of MAPK signaling pathways. Methods Mol. Biol. 250, 1–28 (2004).

    CAS  PubMed  Google Scholar 

  37. Shaul, Y.D. & Seger, R. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim. Biophys. Acta 1773, 1213–1226 (2007).

    Article  CAS  Google Scholar 

  38. Wolf, I. et al. Involvement of the activation loop of ERK in the detachment from cytosolic anchoring. J. Biol. Chem. 276, 24490–24497 (2001).

    Article  CAS  Google Scholar 

  39. Yao, Z. & Seger, R. The ERK signaling cascade--views from different subcellular compartments. Biofactors 35, 407–416 (2009).

    Article  CAS  Google Scholar 

  40. Zehorai, E., Yao, Z., Plotnikov, A. & Seger, R. The subcellular localization of MEK and ERK--a novel nuclear translocation signal (NTS) paves a way to the nucleus. Mol. Cell Endocrinol. 314, 213–220 (2010).

    Article  CAS  Google Scholar 

  41. Friedman, A. & Perrimon, N. A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling. Nature 444, 230–234 (2006).

    Article  CAS  Google Scholar 

  42. Ahn, N.G., Seger, R., Bratlien, R.L. & Krebs, E.G. Growth factor-stimulated phosphorylation cascades: activation of growth factor-stimulated MAP kinase. Ciba Found. Symp. 164, 113–126 (1992).

    CAS  PubMed  Google Scholar 

  43. Alberola-Ila, J., Forbush, K.A., Seger, R., Krebs, E.G. & Perlmutter, R.M. Selective requirement for MAP kinase activation in thymocyte differentiation. Nature 373, 620–623 (1995).

    Article  CAS  Google Scholar 

  44. Gabay, L., Seger, R. & Shilo, B.Z. MAP kinase in situ activation atlas during Drosophila embryogenesis. Development 124, 3535–3541 (1997).

    CAS  PubMed  Google Scholar 

  45. Harris, D. et al. Activation of MAPK cascades by GnRH: ERK and Jun N-terminal kinase are involved in basal and GnRH-stimulated activity of the glycoprotein hormone LH-subunit promoter. Endocrinology 143, 1018–1025 (2002).

    Article  CAS  Google Scholar 

  46. Egelhofer, T.A. et al. An assessment of histone-modification antibody quality. Nat. Struct. Mol. Biol. 18, 91–93 (2011).

    Article  CAS  Google Scholar 

  47. Xie, C., Liang, Z., Chang, S. & Mohan, C. Use of a novel elution regimen reveals the dominance of polyreactive antinuclear autoantibodies in lupus kidneys. Arthritis Rheum. 48, 2343–2352 (2003).

    Article  CAS  Google Scholar 

  48. Goto, H. & Inagaki, M. Production of a site- and phosphorylation state-specific antibody. Nat. Protoc. 2, 2574–2581 (2007).

    Article  CAS  Google Scholar 

  49. Ayyar, B.V., Arora, S., Murphy, C. & O'Kennedy, R. Affinity chromatography as a tool for antibody purification. Methods 56, 116–129 (2012).

    Article  CAS  Google Scholar 

  50. Ross, A.H., Baltimore, D. & Eisen, H.N. Phosphotyrosine-containing proteins isolated by affinity chromatography with antibodies to a synthetic hapten. Nature 294, 654–656 (1981).

    Article  CAS  Google Scholar 

  51. Nairn, A.C., Detre, J.A., Casnellie, J.E. & Greengard, P. Serum antibodies that distinguish between the phospho- and dephospho-forms of a phosphoprotein. Nature 299, 734–736 (1982).

    Article  CAS  Google Scholar 

  52. Boldicke, T. et al. A new peptide-affinity tag for the detection and affinity purification of recombinant proteins with a monoclonal antibody. J. Immunol. Methods 240, 165–183 (2000).

    Article  CAS  Google Scholar 

  53. Cook, C., Hazen, B. & Pang, D. Luer tip quick antibody purification by affinity chromatography. Am. Biotechnol. Lab. 8, 16–18 (1990).

    Google Scholar 

  54. Dansithong, W., Paul, S., Kojima, Y., Kamiya, K. & Shinozawa, T. A simple method for midkine purification by affinity chromatography with a heavy chain variable domain (VH) fragment of antibody. J. Biochem. Biophys. Methods 48, 77–84 (2001).

    Article  CAS  Google Scholar 

  55. Hocking, G.R. et al. Lymphocyte fluorescence polarization changes after phytohemagglutinin stimulation in the diagnosis of colorectal carcinoma. J. Natl. Cancer Inst. 68, 579–583 (1982).

    CAS  PubMed  Google Scholar 

  56. Kreutz, F.T., Wishart, D.S. & Suresh, M.R. Efficient bispecific monoclonal antibody purification using gradient thiophilic affinity chromatography. J. Chromatogr. B. Biomed. Sci. Appl. 714, 161–170 (1998).

    Article  CAS  Google Scholar 

  57. Czernik, A.J. et al. Production of phosphorylation state-specific antibodies. Methods Enzymol. 201, 264–283 (1991).

    Article  CAS  Google Scholar 

  58. Meggio, F., Perich, J.W., Reynolds, E.C. & Pinna, L.A. A synthetic β-casein phosphopeptide and analogues as model substrates for casein kinase-1, a ubiquitous, phosphate directed protein kinase. FEBS Lett. 283, 303–306 (1991).

    Article  CAS  Google Scholar 

  59. Meggio, F., Perich, J.W., Reynolds, E.C. & Pinna, L.A. Phosphotyrosine as a specificity determinant for casein kinase-2, a growth related Ser/Thr-specific protein kinase. FEBS Lett. 279, 307–309 (1991).

    Article  CAS  Google Scholar 

  60. Perich, J.W. Synthesis of O-phosphoserine- and O-phosphothreonine-containing peptides. Methods Enzymol. 201, 225–233 (1991).

    Article  CAS  Google Scholar 

  61. Perich, J.W. Synthesis of O-phosphotyrosine-containing peptides. Methods Enzymol 201, 234–245 (1991).

    Article  CAS  Google Scholar 

  62. Saez, J.C. et al. Phosphorylation of connexin43 and the regulation of neonatal rat cardiac myocyte gap junctions. J. Mol. Cell Cardiol. 29, 2131–2145 (1997).

    Article  CAS  Google Scholar 

  63. Archuleta, A.J., Stutzke, C.A., Nixon, K.M. & Browning, M.D. Optimized protocol to make phospho-specific antibodies that work. Methods Mol. Biol. 717, 69–88 (2011).

    Article  CAS  Google Scholar 

  64. Blanquet, P.R., Mariani, J. & Fournier, B. Temporal assessment of histone H3 phospho-acetylation and casein kinase 2 activation in dentate gyrus from ischemic rats. Brain Res. 1302, 10–20 (2009).

    Article  CAS  Google Scholar 

  65. Veras, E., Malpica, A., Deavers, M.T. & Silva, E.G. Mitosis-specific marker phospho-histone H3 in the assessment of mitotic index in uterine smooth muscle tumors: a pilot study. Int. J. Gynecol. Pathol. 28, 316–321 (2009).

    Article  Google Scholar 

  66. Tapia, C. et al. Two mitosis-specific antibodies, MPM-2 and phospho-histone H3 (Ser28), allow rapid and precise determination of mitotic activity. Am. J. Surg. Pathol. 30, 83–89 (2006).

    Article  Google Scholar 

  67. Burks, E.A., Chen, G., Georgiou, G. & Iverson, B.L. In vitro scanning saturation mutagenesis of an antibody binding pocket. Proc. Natl. Acad. Sci. USA 94, 412–417 (1997).

    Article  CAS  Google Scholar 

  68. Davies, J. & Riechmann, L. Affinity improvement of single antibody VH domains: residues in all three hypervariable regions affect antigen binding. Immunotechnology 2, 169–179 (1996).

    Article  CAS  Google Scholar 

  69. Davies, J. & Riechmann, L. Single antibody domains as small recognition units: design and in vitro antigen selection of camelized, human VH domains with improved protein stability. Protein Eng. 9, 531–537 (1996).

    Article  CAS  Google Scholar 

  70. McGinnis, S. & Madden, T.L. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 32, W20–W25 (2004).

    Article  CAS  Google Scholar 

  71. Schall, C.A. & Wiencek, J.M. Stability of nicotinamide adenine dinucleotide immobilized to cyanogen bromide activated agarose. Biotechnol. Bioeng. 53, 41–48 (1997).

    Article  CAS  Google Scholar 

  72. Bollin, E. Jr. & Sulkowski, E. Physico-chemical characterization of hamster interferon. Prep. Biochem. 9, 339–358 (1979).

    CAS  PubMed  Google Scholar 

  73. Werber, M.M. Nucleophilicity of isourea linkages in substituted agaroses. A direct method for the determination of alkylamino groups coupled to CNBr-activated agarose. Anal. Biochem. 76, 177–183 (1976).

    Article  CAS  Google Scholar 

  74. Wilchek, M., Oka, T. & Topper, Y.J. Structure of a soluble super-active insulin is revealed by the nature of the complex between cyanogen-bromide-activated Sepharose and amines. Proc. Natl. Acad. Sci. USA 72, 1055–1058 (1975).

    Article  CAS  Google Scholar 

  75. Bernatowicz, M.S., Matsueda, R. & Matsueda, G.R. Preparation of Boc-[S-(3-nitro-2-pyridinesulfenyl)]-cysteine and its use for unsymmetrical disulfide bond formation. Int. J. Pept. Protein Res. 28, 107–112 (1986).

    Article  CAS  Google Scholar 

  76. Bernatowicz, M.S. & Matsueda, G.R. Preparation of peptide-protein immunogens using N-succinimidyl bromoacetate as a heterobifunctional crosslinking reagent. Anal. Biochem. 155, 95–102 (1986).

    Article  CAS  Google Scholar 

  77. Ejima, D., Yumioka, R., Tsumoto, K. & Arakawa, T. Effective elution of antibodies by arginine and arginine derivatives in affinity column chromatography. Anal. Biochem. 345, 250–257 (2005).

    Article  CAS  Google Scholar 

  78. Karim, A.S., Johansson, C.S. & Weltman, J.K. Maleimide-mediated protein conjugates of a nucleoside triphosphate -S and an internucleotide phosphorothioate diester. Nucleic Acids Res. 23, 2037–2040 (1995).

    Article  CAS  Google Scholar 

  79. Taipa, M.A., Kaul, R.H., Mattiasson, B. & Cabral, J.M. Recovery of a monoclonal antibody from hybridoma culture supernatant by affinity precipitation with Eudragit S-100. Bioseparation 9, 291–298 (2000).

    Article  CAS  Google Scholar 

  80. Meldrum, N.U. & Tarr, H.L. The reduction of glutathione by the Warburg-Christian system. Biochem. J. 29, 108–115 (1935).

    Article  CAS  Google Scholar 

  81. Walker, J.M. The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol. Biol. 32, 5–8 (1994).

    CAS  PubMed  Google Scholar 

  82. Sambrook, J. & Russell, D.W. The Condensed Protocols from Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2006).

  83. Boag, P.R., Nakamura, A. & Blackwell, T.K. A conserved RNA-protein complex component involved in physiological germline apoptosis regulation in C. elegans. Development 132, 4975–4986 (2005).

    Article  CAS  Google Scholar 

  84. Navarro, R.E. & Blackwell, T.K. Requirement for P granules and meiosis for accumulation of the germline RNA helicase CGH-1. Genesis 42, 172–180 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work in the T.S. laboratory on this project was supported by National Science Foundation grant no. 0416502 and US National Institutes of Health (NIH) grant no. GM085150. Work in S.A.'s laboratory on this project was supported by NIH grant no. GM98200, an Institutional Research Grant from a Cancer Center Supplemental Grant (CCSG) to The University of Texas M.D. Anderson Cancer Center and the Center for Genetics and Genomics, The University of Texas M.D. Anderson Cancer Center. We thank A. Golden (NIH/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)), D. Greenstein (University of Minnesota) and C. Spike (University of Minnesota) for extensive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.A. and T.S. designed, implemented and wrote the protocol.

Corresponding authors

Correspondence to Swathi Arur or Tim Schedl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arur, S., Schedl, T. Generation and purification of highly specific antibodies for detecting post-translationally modified proteins in vivo. Nat Protoc 9, 375–395 (2014). https://doi.org/10.1038/nprot.2014.017

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.017

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing