Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A single Drosophila embryo extract for the study of mitosis ex vivo

Abstract

Spindle assembly and chromosome segregation rely on a complex interplay of biochemical and mechanical processes. Analysis of this interplay requires precise manipulation of endogenous cellular components and high-resolution visualization. Here we provide a protocol for generating an extract from individual Drosophila syncytial embryos that supports repeated mitotic nuclear divisions with native characteristics. In contrast to the large-scale, metaphase-arrested Xenopus egg extract system, this assay enables the serial generation of extracts from single embryos of a genetically tractable organism, and each extract contains dozens of autonomously dividing nuclei that can be prepared and imaged within 60–90 min after embryo collection. We describe the microscopy setup and micropipette production that facilitate single-embryo manipulation, the preparation of embryos and the steps for making functional extracts that allow time-lapse microscopy of mitotic divisions ex vivo. The assay enables a unique combination of genetic, biochemical, optical and mechanical manipulations of the mitotic machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pipette-based extraction system on an inverted light microscope.
Figure 2: Flowchart of working steps for embryo extract preparation.
Figure 3: Embryo preparation and extraction procedure.
Figure 4: Example of nuclear divisions in extracts.

Similar content being viewed by others

References

  1. Gillespie, P.J., Gambus, A. & Blow, J.J. Preparation and use of Xenopus egg extracts to study DNA replication and chromatin-associated proteins. Methods (2012).

  2. Raschle, M. et al. Mechanism of replication-coupled DNA interstrand crosslink repair. Cell 134, 969–980 (2008).

    Article  CAS  Google Scholar 

  3. Luo, X., Nerlick, S., An, W. & King, M.L. Xenopus germline nanos1 is translationally repressed by a novel structure-based mechanism. Development 138, 589–598 (2011).

    Article  CAS  Google Scholar 

  4. Rooke, N. & Underwood, J. In vitro RNA splicing in mammalian cell extracts. Curr. Protoc. Cell Biol. 11, 11.17–11.20 (2001).

    Google Scholar 

  5. Roca, X. & Karginov, F.V. RNA biology in a test tube-an overview of in vitro systems/assays. RNA 3, 509–527 (2012).

    CAS  PubMed  Google Scholar 

  6. Hoskins, A.A. et al. Ordered and dynamic assembly of single spliceosomes. Science 331, 1289–1295 (2011).

    Article  CAS  Google Scholar 

  7. Azzu, V. & Brand, M.D. Degradation of an intramitochondrial protein by the cytosolic proteasome. J. Cell Sci. 123, 578–585 (2010).

    Article  CAS  Google Scholar 

  8. Jeske, M., Moritz, B., Anders, A. & Wahle, E. Smaug assembles an ATP-dependent stable complex repressing nanos mRNA translation at multiple levels. EMBO J. 30, 90–103 (2011).

    Article  CAS  Google Scholar 

  9. Medenbach, J., Seiler, M. & Hentze, M.W. Translational control via protein-regulated upstream open reading frames. Cell 145, 902–913 (2011).

    Article  CAS  Google Scholar 

  10. Shimamura, A. & Worcel, A. The assembly of regularly spaced nucleosomes in the Xenopus oocyte S-150 extract is accompanied by deacetylation of histone H4. J. Biol. Chem. 264, 14524–14530 (1989).

    CAS  PubMed  Google Scholar 

  11. Tse, C., Sera, T., Wolffe, A.P. & Hansen, J.C. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol. Cell. Biol. 18, 4629–4638 (1998).

    Article  CAS  Google Scholar 

  12. Azuma, Y. Analysis of SUMOylation of topoisomerase IIα with Xenopus egg extracts. Methods Mol. Biol. 582, 221–231 (2009).

    Article  CAS  Google Scholar 

  13. Lohka, M.J. & Masui, Y. Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science 220, 719–721 (1983).

    Article  CAS  Google Scholar 

  14. Lohka, M.J. & Maller, J.L. Induction of nuclear envelope breakdown, chromosome condensation, and spindle formation in cell-free extracts. J. Cell Biol. 101, 518–523 (1985).

    Article  CAS  Google Scholar 

  15. Murray, A.W. & Kirschner, M.W. Cyclin synthesis drives the early embryonic cell cycle. Nature 339, 275–280 (1989).

    Article  CAS  Google Scholar 

  16. Hannak, E. & Heald, R. Investigating mitotic spindle assembly and function in vitro using Xenopus laevis egg extracts. Nat. Protoc. 1, 2305–2314 (2006).

    Article  CAS  Google Scholar 

  17. Kornbluth, S., Yang, J. & Powers, M. Analysis of the cell cycle using Xenopus egg extracts. Curr. Protoc. Cell Biol. 11.11.1–11.11.14 (2006).

  18. Telley, I.A., Gaspar, I., Ephrussi, A. & Surrey, T. Aster migration determines the length scale of nuclear separation in the Drosophila syncytial embryo. J. Cell Biol. 197, 887–895 (2012).

    Article  CAS  Google Scholar 

  19. Wuhr, M. et al. Evidence for an upper limit to mitotic spindle length. Curr. Biol. 18, 1256–1261 (2008).

    Article  Google Scholar 

  20. Holloway, S.L., Glotzer, M., King, R.W. & Murray, A.W. Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting factor. Cell 73, 1393–1402 (1993).

    Article  CAS  Google Scholar 

  21. Shamu, C.E. & Murray, A.W. Sister chromatid separation in frog egg extracts requires DNA topoisomerase II activity during anaphase. J. Cell Biol. 117, 921–934 (1992).

    Article  CAS  Google Scholar 

  22. Murray, A.W., Desai, A.B. & Salmon, E.D. Real-time observation of anaphase in vitro. Proc. Natl. Acad. Sci. USA 93, 12327–12332 (1996).

    Article  CAS  Google Scholar 

  23. Desai, A., Maddox, P.S., Mitchison, T.J. & Salmon, E.D. Anaphase A chromosome movement and poleward spindle microtubule flux occur at similar rates in Xenopus extract spindles. J. Cell Biol. 141, 703–713 (1998).

    Article  CAS  Google Scholar 

  24. Itabashi, T. et al. Probing the mechanical architecture of the vertebrate meiotic spindle. Nat. Methods 6, 167–172 (2009).

    Article  CAS  Google Scholar 

  25. Shimamoto, Y., Maeda, Y.T., Ishiwata, S., Libchaber, A.J. & Kapoor, T.M. Insights into the micromechanical properties of the metaphase spindle. Cell 145, 1062–1074 (2011).

    Article  CAS  Google Scholar 

  26. Brown, K.S. et al. Xenopus tropicalis egg extracts provide insight into scaling of the mitotic spindle. J. Cell Biol. 176, 765–770 (2007).

    Article  CAS  Google Scholar 

  27. Kieserman, E.K. & Heald, R. Mitotic chromosome size scaling in Xenopus. Cell Cycle 10, 3863–3870 (2011).

    Article  CAS  Google Scholar 

  28. Loughlin, R., Wilbur, J.D., McNally, F.J., Nedelec, F.J. & Heald, R. Katanin contributes to interspecies spindle length scaling in Xenopus. Cell 147, 1397–1407 (2011).

    Article  CAS  Google Scholar 

  29. Bowes, J.B. et al. Xenbase: a Xenopus biology and genomics resource. Nucleic Acids Res. 36, D761–767 (2008).

    Article  CAS  Google Scholar 

  30. McCleland, M.L. & O'Farrell, P.H. RNAi of mitotic cyclins in Drosophila uncouples the nuclear and centrosome cycle. Curr. Biol. 18, 245–254 (2008).

    Article  CAS  Google Scholar 

  31. Oliveira, R.A., Hamilton, R.S., Pauli, A., Davis, I. & Nasmyth, K. Cohesin cleavage and Cdk inhibition trigger formation of daughter nuclei. Nat. Cell Biol. 12, 185–192 (2010).

    Article  CAS  Google Scholar 

  32. Cao, J., Crest, J., Fasulo, B. & Sullivan, W. Cortical actin dynamics facilitate early-stage centrosome separation. Curr. Biol. 20, 770–776 (2010).

    Article  CAS  Google Scholar 

  33. Sharp, D.J. et al. Functional coordination of three mitotic motors in Drosophila embryos. Mol. Biol. Cell 11, 241–253 (2000).

    Article  CAS  Google Scholar 

  34. Cheerambathur, D.K. et al. Quantitative analysis of an anaphase B switch: predicted role for a microtubule catastrophe gradient. J. Cell Biol. 177, 995–1004 (2007).

    Article  CAS  Google Scholar 

  35. Baker, J., Theurkauf, W.E. & Schubiger, G. Dynamic changes in microtubule configuration correlate with nuclear migration in the preblastoderm Drosophila embryo. J. Cell Biol. 122, 113–121 (1993).

    Article  CAS  Google Scholar 

  36. von Dassow, G. & Schubiger, G. How an actin network might cause fountain streaming and nuclear migration in the syncytial Drosophila embryo. J. Cell Biol. 127, 1637–1653 (1994).

    Article  CAS  Google Scholar 

  37. Johansen, J. & Johansen, K.M. The spindle matrix through the cell cycle in Drosophila. Fly 3, 213–220 (2009).

    Article  Google Scholar 

  38. Scott, M.P., Storti, R.V., Pardue, M.L. & Rich, A. Cell-free protein synthesis in lysates of Drosophila melanogaster cells. Biochemistry 18, 1588–1594 (1979).

    Article  CAS  Google Scholar 

  39. Kunert, N. et al. dMec: a novel Mi-2 chromatin remodelling complex involved in transcriptional repression. EMBO J. 28, 533–544 (2009).

    Article  CAS  Google Scholar 

  40. Gebauer, F., Corona, D.F., Preiss, T., Becker, P.B. & Hentze, M.W. Translational control of dosage compensation in Drosophila by Sex-lethal: cooperative silencing via the 5' and 3' UTRs of msl-2 mRNA is independent of the poly(A) tail. EMBO J. 18, 6146–6154 (1999).

    Article  CAS  Google Scholar 

  41. Dahmann, C. Drosophila: Methods and Protocols (Humana Press, 2008).

  42. Pfeiffer, B.D. et al. Refinement of tools for targeted gene expression in Drosophila. Genetics 186, 735–755 (2010).

    Article  CAS  Google Scholar 

  43. Lund, V.K., DeLotto, Y. & DeLotto, R. A set of P-element transformation vectors permitting the simplified generation of fluorescent fusion proteins in Drosophila melanogaster. Fly 5, 255–260 (2011).

    Article  CAS  Google Scholar 

  44. Lindsley, D.L. & Zimm, G.G. The genome of Drosophila melanogaster (Academic Press, 1992).

  45. Bieling, P., Telley, I.A., Hentrich, C., Piehler, J. & Surrey, T. Fluorescence microscopy assays on chemically functionalized surfaces for quantitative imaging of microtubule, motor, and +TIP dynamics. Methods Cell Biol. 95, 555–580 (2010).

    Article  CAS  Google Scholar 

  46. Schubiger, G. & Edgar, B. Using inhibitors to study embryogenesis. Methods Cell Biol. 44, 697–713 (1994).

    Article  CAS  Google Scholar 

  47. Brust-Mascher, I. & Scholey, J.M. Microinjection techniques for studying mitosis in the Drosophila melanogaster syncytial embryo. J. Vis. Exp. 31, e1382 (2009).

    Google Scholar 

  48. Cold Spring Harbor Protocols. Drosophila apple juice-agar plates. Cold Spring Harb. Protoc. doi:10.1101/pdb.rec065672 (2011).

  49. Brown, K.T. & Flaming, D.G. Advanced Micropipette Techniques for Cell Physiology (Wiley, 1986).

  50. Foe, V.E. & Alberts, B.M. Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J. Cell Sci. 61, 31–70 (1983).

    CAS  PubMed  Google Scholar 

  51. Musacchio, A. Spindle assembly checkpoint: the third decade. Philos. Trans. R. Soc. B 366, 3595–3604 (2011).

    Article  CAS  Google Scholar 

  52. Sigrist, S., Jacobs, H., Stratmann, R. & Lehner, C.F. Exit from mitosis is regulated by Drosophila fizzy and the sequential destruction of cyclins A, B and B3. EMBO J. 14, 4827–4838 (1995).

    Article  CAS  Google Scholar 

  53. Peti, W. & Page, R. Strategies to maximize heterologous protein expression in Escherichia coli with minimal cost. Protein Expr. Purif. 51, 1–10 (2007).

    Article  CAS  Google Scholar 

  54. Telley, I.A., Bieling, P. & Surrey, T. Obstacles on the microtubule reduce the processivity of kinesin-1 in a minimal in vitro system and in cell extract. Biophys. J. 96, 3341–3353 (2009).

    Article  CAS  Google Scholar 

  55. Edgar, B.A., Sprenger, F., Duronio, R.J., Leopold, P. & O'Farrell, P.H. Distinct molecular mechanism regulate cell cycle timing at successive stages of Drosophila embryogenesis. Genes Dev. 8, 440–452 (1994).

    Article  CAS  Google Scholar 

  56. Stiffler, L.A., Ji, J.Y., Trautmann, S., Trusty, C. & Schubiger, G. Cyclin A and B functions in the early Drosophila embryo. Development 126, 5505–5513 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the EMBL Mechanical Workshop for equipment construction, and the Bloomington Stock Center for fly stocks. We thank E.M. Tranfield (EMBL) for suggesting correlative light-electron microscopy as an application. I.A.T. was a recipient of an Advanced Researcher Fellowship from the Swiss National Science Foundation (SNF), and acknowledges additional support from the EMBL. I.G. was a recipient of an EMBO long-term fellowship and an EMBL EIPOD fellowship. A.E. acknowledges support of the EMBL. T.S. acknowledges support of the EMBL and Cancer Research UK. This work was supported by the EMBL.

Author information

Authors and Affiliations

Authors

Contributions

I.A.T. and I.G. determined the correct timing of extraction. I.A.T. designed the instrument, drew up the protocol and performed the experiments. I.A.T. and T.S. conceived the cycle arrest experiment. I.A.T. prepared the figures. A.E. and T.S. supervised the work. All authors discussed the work and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Ivo A Telley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Telley, I., Gáspár, I., Ephrussi, A. et al. A single Drosophila embryo extract for the study of mitosis ex vivo. Nat Protoc 8, 310–324 (2013). https://doi.org/10.1038/nprot.2013.003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.003

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing