Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Quantifying protein–protein interactions in high throughput using protein domain microarrays

Abstract

Protein microarrays provide an efficient way to identify and quantify protein–protein interactions in high throughput. One drawback of this technique is that proteins show a broad range of physicochemical properties and are often difficult to produce recombinantly. To circumvent these problems, we have focused on families of protein interaction domains. Here we provide protocols for constructing microarrays of protein interaction domains in individual wells of 96-well microtiter plates, and for quantifying domain–peptide interactions in high throughput using fluorescently labeled synthetic peptides. As specific examples, we will describe the construction of microarrays of virtually every human Src homology 2 (SH2) and phosphotyrosine binding (PTB) domain, as well as microarrays of mouse PDZ domains, all produced recombinantly in Escherichia coli. For domains that mediate high-affinity interactions, such as SH2 and PTB domains, equilibrium dissociation constants (KDs) for their peptide ligands can be measured directly on arrays by obtaining saturation binding curves. For weaker binding domains, such as PDZ domains, arrays are best used to identify candidate interactions, which are then retested and quantified by fluorescence polarization. Overall, protein domain microarrays provide the ability to rapidly identify and quantify protein–ligand interactions with minimal sample consumption. Because entire domain families can be interrogated simultaneously, they provide a powerful way to assess binding selectivity on a proteome-wide scale and provide an unbiased perspective on the connectivity of protein–protein interaction networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein domain microarrays.
Figure 2: Quantifying domain–peptide interactions in high throughput using protein domain microarrays.
Figure 3: Using protein domain microarrays to identify and quantify domain–peptide binding interactions.
Figure 4: Microarrays in microtiter plates.

Similar content being viewed by others

References

  1. Fields, S. & Song, O. A novel genetic system to detect protein–protein interactions. Nature 340, 245–246 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Chien, C.T., Bartel, P.L., Sternglanz, R. & Fields, S. The 2-hybrid system—a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl. Acad. Sci. USA 88, 9578–9582 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Johnsson, N. & Varshavsky, A. Split ubiquitin as a sensor of protein interactions in vivo. Proc. Natl. Acad. Sci. USA 91, 10340–10344 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Smith, G.P. Filamentous fusion phage—novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317 (1985).

    Article  CAS  PubMed  Google Scholar 

  7. Songyang, Z. et al. SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767–778 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. MacBeath, G. & Schreiber, S.L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000).

    CAS  PubMed  Google Scholar 

  9. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Uetz, P. et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Giot, L. et al. A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Li, S. et al. A map of the interactome network of the metazoan C. elegans. Science 303, 540–543 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rual, J.F. et al. Towards a proteome-scale map of the human protein–protein interaction network. Nature 437, 1173–1178 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Stelzl, U. et al. A human protein–protein interaction network: a resource for annotating the proteome. Cell 122, 957–968 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Tarassov, K. et al. An in vivo map of the yeast protein interactome. Science 320, 1465–1470 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Gavin, A.C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Fuh, G. et al. Analysis of PDZ domain–ligand interactions using carboxyl-terminal phage display. J. Biol. Chem. 275, 21486–21491 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Tonikian, R., Zhang, Y., Boone, C. & Sidhu, S.S. Identifying specificity profiles for peptide recognition modules from phage-displayed peptide libraries. Nat. Protoc. 2, 1368–1386 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Tonikian, R. et al. A specificity map for the PDZ domain family. PLoS Biol. 6, e239 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang, Y. et al. Convergent and divergent ligand specificity among PDZ domains of the LAP and zonula occludens (ZO) families. J. Biol. Chem. 281, 22299–22311 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Songyang, Z. et al. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275, 73–77 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Aloy, P. & Russell, R.B. Potential artefacts in protein-interaction networks. FEBS Lett. 530, 253–254 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Bader, J.S., Chaudhuri, A., Rothberg, J.M. & Chant, J. Gaining confidence in high-throughput protein interaction networks. Nat. Biotechnol. 22, 78–85 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Deane, C.M., Salwinski, L., Xenarios, I. & Eisenberg, D. Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol. Cell. Proteomics 1, 349–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Phizicky, E., Bastiaens, P.I., Zhu, H., Snyder, M. & Fields, S. Protein analysis on a proteomic scale. Nature 422, 208–215 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Popescu, S.C. et al. MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev. 23, 80–92 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ptacek, J. et al. Global analysis of protein phosphorylation in yeast. Nature 438, 679–684 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Zhu, H. et al. Global analysis of protein activities using proteome chips. Science 293, 2101–2105 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. He, M. & Taussig, M.J. Single step generation of protein arrays from DNA by cell-free expression and in situ immobilisation (PISA method). Nucleic. Acids Res. 29, e73 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ramachandran, N. et al. Self-assembling protein microarrays. Science 305, 86–90 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Jones, R.B., Gordus, A., Krall, J.A. & MacBeath, G. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439, 168–174 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Gordus, A. & MacBeath, G. Circumventing the problems caused by protein diversity in microarrays: implications for protein interaction networks. J. Am. Chem. Soc. 128, 13668–13669 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Kaushansky, A. et al. System-wide investigation of ErbB4 reveals 19 sites of Tyr phosphorylation that are unusually selective in their recruitment properties. Chem. Biol. 15, 808–817 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kaushansky, A., Gordus, A., Chang, B., Rush, J. & MacBeath, G. A quantitative study of the recruitment potential of all intracellular tyrosine residues on EGFR, FGFR1 and IGF1R. Mol. Biosyst. 4, 643–653 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gordus, A. et al. Linear combinations of docking affinities explain quantitative differences in RTK signaling. Mol. Syst. Biol. 5, 235 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Stiffler, M.A. et al. PDZ domain binding selectivity is optimized across the mouse proteome. Science 317, 364–369 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stiffler, M.A., Grantcharova, V.P., Sevecka, M. & MacBeath, G. Uncovering quantitative protein interaction networks for mouse PDZ domains using protein microarrays. J. Am. Chem. Soc. 128, 5913–5922 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen, J.R., Chang, B.H., Allen, J.E., Stiffler, M.A. & MacBeath, G. Predicting PDZ domain–peptide interactions from primary sequences. Nat. Biotechnol. 26, 1041–1045 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pawson, T. & Nash, P. Assembly of cell regulatory systems through protein interaction domains. Science 300, 445–452 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Yan, K.S., Kuti, M. & Zhou, M.M. PTB or not PTB—that is the question. FEBS Lett. 513, 67–70 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Boutell, J.M., Hart, D.J., Godber, B.L., Kozlowski, R.Z. & Blackburn, J.M. Functional protein microarrays for parallel characterisation of p53 mutants. Proteomics 4, 1950–1958 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. von Mering, C. et al. Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417, 399–403 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Edelhock, H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6, 1948–1954 (1967).

    Article  Google Scholar 

  44. Barbulovic-Nad, I. et al. Bio-microarray fabrication techniques—a review. Crit. Rev. Biotechnol. 26, 237–259 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. George, R.A. The printing process: tips on tips. Methods Enzymol. 410, 121–135 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Schultz, J., Milpetz, F., Bork, P. & Ponting, C.P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. USA 95, 5857–5864 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J.-R. Chen, G. Koytiger and M. Sevecka for helpful contributions to these protocols, particularly in regards to data processing and analysis. This work was supported by awards from the W.M. Keck Foundation, the Arnold and Mabel Beckman Foundation, and the Camille and Henry Dreyfus Foundation, and by grants from the National Institutes of Health (1 RO1 GM072872 and 1 R33 CA128726). A.K. was supported in part by the National Institutes of Health Molecular, Cellular and Chemical Biology Training grant (5 T32 GM07598) and A.G. was the recipient of an NSF Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

A.K., J.E.A. and G.M. wrote the article. A.G. developed initial protocols for printing and probing microarrays of SH2 and PTB domains. A.K. contributed to the further development of these protocols. M.A.S. developed initial protocols for quantifying PDZ domain–peptide interactions using fluorescence polarization. J.E.A. developed peptide synthesis protocols and contributed to the development of FP assays. E.S.K. assisted in the development of FP assays and to the processing of SH2/PTB domain microarray data. B.H.C. developed peptide purification protocols and contributed to the development of FP protocols.

Corresponding author

Correspondence to Gavin MacBeath.

Ethics declarations

Competing interests

Gavin MacBeath is an advisor for and stockholder in Merrimack Pharmaceuticals, Inc., Makoto Life Sciences, Inc., and Aushon BioSystems, Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaushansky, A., Allen, J., Gordus, A. et al. Quantifying protein–protein interactions in high throughput using protein domain microarrays. Nat Protoc 5, 773–790 (2010). https://doi.org/10.1038/nprot.2010.36

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.36

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing