Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A rapid protocol for construction and production of high-capacity adenoviral vectors

Abstract

High-capacity adenoviral vectors (HC-AdVs) lacking all viral coding sequences were shown to result in long-term transgene expression and phenotypic correction in small and large animal models. It has been established that HC-AdVs show significantly reduced toxicity profiles compared with early-generation adenoviral vectors. Furthermore, with capsid-modified HC-AdV becoming available, we are just starting to understand the full potential of this vector system. However, for many researchers, the wide-scale use of HC-AdV is hampered by labor-intensive and complex production procedures. Herein, we provide a feasible and detailed protocol for efficient generation of HC-AdV. We introduce an efficient cloning strategy for the generation of recombinant HC-AdV vector genomes. Infection and amplification of the HC-AdV are performed in a spinner culture system. For purification, we routinely apply cesium chloride gradients. Finally, we describe various methods for establishing vector titers. Generation of high-titer HC-AdV can be achieved in 3 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram for high-capacity adenoviral vector (HC-AdV) production.
Figure 2: Schematic maps of pHM5 and pAdFTC.
Figure 3: Flowchart of cloning the transgene expression cassette into pAdFTC.
Figure 4: Amplification of high-capacity adenoviral vectors (HC-AdV) in spinner flasks.
Figure 5: Monitoring adenoviral amplification steps during large-scale production.
Figure 6: Flowchart of CsCl purification of HC-AdV.
Figure 7: Transducing units in final vector preparations as determined by Southern blot analysis.

Similar content being viewed by others

References

  1. Luo, J. et al. A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat. Protoc. 2, 1236–1247 (2007).

    Article  CAS  Google Scholar 

  2. Yang, Y., Ertl, H.C. & Wilson, J.M. MHC class I-restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E1-deleted recombinant adenoviruses. Immunity 1, 433–442 (1994).

    Article  CAS  Google Scholar 

  3. Hardy, S., Kitamura, M., Harris-Stansil, T., Dai, Y. & Phipps, M.L. Construction of adenovirus vectors through Cre-lox recombination. J. Virol. 71, 1842–1849 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hartigan-O'Connor, D., Amalfitano, A. & Chamberlain, J.S. Improved production of gutted adenovirus in cells expressing adenovirus preterminal protein and DNA polymerase. J. Virol. 73, 7835–7841 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Fisher, K.J., Choi, H., Burda, J., Chen, S.J. & Wilson, J.M. Recombinant adenovirus deleted of all viral genes for gene therapy of cystic fibrosis. Virology 217, 11–22 (1996).

    Article  CAS  Google Scholar 

  6. Parks, R.J. et al. A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc. Natl. Acad. Sci. USA 93, 13565–13570 (1996).

    Article  CAS  Google Scholar 

  7. Zhang, Y. & Bergelson, J.M. Adenovirus receptors. J. Virol. 79, 12125–12131 (2005).

    Article  CAS  Google Scholar 

  8. Benihoud, K., Yeh, P. & Perricaudet, M. Adenovirus vectors for gene delivery. Curr. Opin. Biotechnol. 10, 440–447 (1999).

    Article  CAS  Google Scholar 

  9. Kozarsky, K.F. & Wilson, J.M. Gene therapy: adenovirus vectors. Curr. Opin. Genet. Dev. 3, 499–503 (1993).

    Article  CAS  Google Scholar 

  10. Wickham, T.J., Roelvink, P.W., Brough, D.E. & Kovesdi, I. Adenovirus targeted to heparan-containing receptors increases its gene delivery efficiency to multiple cell types. Nat. Biotechnol. 14, 1570–1573 (1996).

    Article  CAS  Google Scholar 

  11. Kawano, R. et al. Transduction of full-length dystrophin to multiple skeletal muscles improves motor performance and life span in utrophin/dystrophin double knockout mice. Mol. Ther. 16, 825–831 (2008).

    Article  CAS  Google Scholar 

  12. Deol, J.R. et al. Successful compensation for dystrophin deficiency by a helper-dependent adenovirus expressing full-length utrophin. Mol. Ther. 15, 1767–1774 (2007).

    Article  CAS  Google Scholar 

  13. Gilbert, R. et al. Prolonged dystrophin expression and functional correction of mdx mouse muscle following gene transfer with a helper-dependent (gutted) adenovirus-encoding murine dystrophin. Hum. Mol. Genet. 12, 1287–1299 (2003).

    Article  CAS  Google Scholar 

  14. Brown, B.D. et al. Helper-dependent adenoviral vectors mediate therapeutic factor VIII expression for several months with minimal accompanying toxicity in a canine model of severe hemophilia A. Blood 103, 804–810 (2004).

    Article  CAS  Google Scholar 

  15. McCormack, W.M. Jr. et al. Helper-dependent adenoviral gene therapy mediates long-term correction of the clotting defect in the canine hemophilia A model. J. Thromb. Haemost. 4, 1218–1225 (2006).

    Article  CAS  Google Scholar 

  16. Cerullo, V. et al. Correction of murine hemophilia A and immunological differences of factor VIII variants delivered by helper-dependent adenoviral vectors. Mol. Ther. 15, 2080–2087 (2007).

    Article  CAS  Google Scholar 

  17. Koeberl, D.D. et al. Efficacy of helper-dependent adenovirus vector-mediated gene therapy in murine glycogen storage disease type Ia. Mol. Ther. 15, 1253–1258 (2007).

    Article  CAS  Google Scholar 

  18. Oka, K. et al. Sustained phenotypic correction in a mouse model of hypoalphalipoproteinemia with a helper-dependent adenovirus vector. Gene. Ther. 14, 191–202 (2007).

    Article  CAS  Google Scholar 

  19. Toietta, G. et al. Lifelong elimination of hyperbilirubinemia in the Gunn rat with a single injection of helper-dependent adenoviral vector. Proc. Natl. Acad. Sci. USA 102, 3930–3935 (2005).

    Article  CAS  Google Scholar 

  20. Mian, A. et al. Long-term correction of ornithine transcarbamylase deficiency by WPRE-mediated overexpression using a helper-dependent adenovirus. Mol. Ther. 10, 492–499 (2004).

    Article  CAS  Google Scholar 

  21. Nomura, S. et al. Low-density lipoprotein receptor gene therapy using helper-dependent adenovirus produces long-term protection against atherosclerosis in a mouse model of familial hypercholesterolemia. Gene. Ther. 11, 1540–1548 (2004).

    Article  CAS  Google Scholar 

  22. Brunetti-Pierri, N. et al. Sustained phenotypic correction of canine hemophilia B after systemic administration of helper-dependent adenoviral vector. Hum. Gene. Ther. 16, 811–820 (2005).

    Article  CAS  Google Scholar 

  23. Ehrhardt, A. et al. A gene-deleted adenoviral vector results in phenotypic correction of canine hemophilia B without liver toxicity or thrombocytopenia. Blood 102, 2403–2411 (2003).

    Article  CAS  Google Scholar 

  24. Ehrhardt, A. & Kay, M.A. A new adenoviral helper-dependent vector results in long-term therapeutic levels of human coagulation factor IX at low doses in vivo . Blood 99, 3923–3930 (2002).

    Article  CAS  Google Scholar 

  25. Lamartina, S. et al. Helper-dependent adenovirus for the gene therapy of proliferative retinopathies: stable gene transfer, regulated gene expression and therapeutic efficacy. J. Gene. Med. 9, 862–874 (2007).

    Article  CAS  Google Scholar 

  26. Butti, E. et al. IL4 gene delivery to the CNS recruits regulatory T cells and induces clinical recovery in mouse models of multiple sclerosis. Gene. Ther. 15, 504–515 (2008).

    Article  CAS  Google Scholar 

  27. Brunetti-Pierri, N. et al. Pseudo-hydrodynamic delivery of helper-dependent adenoviral vectors into non-human primates for liver-directed gene therapy. Mol. Ther. 15, 732–740 (2007).

    Article  CAS  Google Scholar 

  28. Jager, L. & Ehrhardt, A. Emerging adenoviral vectors for stable correction of genetic disorders. Curr. Gene. Ther. 7, 272–283 (2007).

    Article  CAS  Google Scholar 

  29. Soifer, H. et al. A novel, helper-dependent, adenovirus-retrovirus hybrid vector: stable transduction by a two-stage mechanism. Mol. Ther. 5, 599–608 (2002).

    Article  CAS  Google Scholar 

  30. Picard-Maureau, M. et al. Foamy virus-adenovirus hybrid vectors. Gene. Ther. 11, 722–728 (2004).

    Article  CAS  Google Scholar 

  31. Yant, S.R. et al. Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo . Nat. Biotechnol. 20, 999–1005 (2002).

    Article  CAS  Google Scholar 

  32. Ehrhardt, A. et al. Somatic integration from an adenoviral hybrid vector into a hot spot in mouse liver results in persistent transgene expression levels in vivo . Mol. Ther. 15, 146–156 (2007).

    Article  CAS  Google Scholar 

  33. Lieber, A., Steinwaerder, D.S., Carlson, C.A. & Kay, M.A. Integrating adenovirus-adeno-associated virus hybrid vectors devoid of all viral genes. J. Virol. 73, 9314–9324 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Recchia, A., Perani, L., Sartori, D., Olgiati, C. & Mavilio, F. Site-specific integration of functional transgenes into the human genome by adeno/AAV hybrid vectors. Mol. Ther. 10, 660–670 (2004).

    Article  CAS  Google Scholar 

  35. Kreppel, F. & Kochanek, S. Long-term transgene expression in proliferating cells mediated by episomally maintained high-capacity adenovirus vectors. J. Virol. 78, 9–22 (2004).

    Article  CAS  Google Scholar 

  36. Dorigo, O. et al. Development of a novel helper-dependent adenovirus–Epstein–Barr virus hybrid system for the stable transformation of mammalian cells. J Virol 78, 6556–6566 (2004).

    Article  CAS  Google Scholar 

  37. Suzuki, K. et al. Highly efficient transient gene expression and gene targeting in primate embryonic stem cells with helper-dependent adenoviral vectors. Proc. Natl. Acad. Sci. USA 105, 13781–13786 (2008).

    Article  CAS  Google Scholar 

  38. Ohbayashi, F. et al. Correction of chromosomal mutation and random integration in embryonic stem cells with helper-dependent adenoviral vectors. Proc. Natl. Acad. Sci. USA 102, 13628–13633 (2005).

    Article  CAS  Google Scholar 

  39. Cregan, S.P. et al. Helper-dependent adenovirus vectors: their use as a gene delivery system to neurons. Gene. Ther. 7, 1200–1209 (2000).

    Article  CAS  Google Scholar 

  40. Wang, H., Cao, H., Wohlfahrt, M., Kiem, H.P. & Lieber, A. Tightly regulated gene expression in human hematopoietic stem cells after transduction with helper-dependent Ad5/35 vectors. Exp. Hematol. 36, 823–831 (2008).

    Article  CAS  Google Scholar 

  41. Balamotis, M.A., Huang, K. & Mitani, K. Efficient delivery and stable gene expression in a hematopoietic cell line using a chimeric serotype 35 fiber pseudotyped helper-dependent adenoviral vector. Virology 324, 229–237 (2004).

    Article  CAS  Google Scholar 

  42. Cerullo, V. et al. Toll-like receptor 9 triggers an innate immune response to helper-dependent adenoviral vectors. Mol. Ther. 15, 378–385 (2007).

    Article  CAS  Google Scholar 

  43. Zhu, J., Huang, X. & Yang, Y. Innate immune response to adenoviral vectors is mediated by both Toll-like receptor-dependent and -independent pathways. J. Virol. 81, 3170–3180 (2007).

    Article  CAS  Google Scholar 

  44. Koehler, D.R. et al. Aerosol delivery of an enhanced helper-dependent adenovirus formulation to rabbit lung using an intratracheal catheter. J. Gene. Med. 7, 1409–1420 (2005).

    Article  CAS  Google Scholar 

  45. Croyle, M.A., Yu, Q.C. & Wilson, J.M. Development of a rapid method for the PEGylation of adenoviruses with enhanced transduction and improved stability under harsh storage conditions. Hum. Gene. Ther. 11, 1713–1722 (2000).

    Article  CAS  Google Scholar 

  46. Ruzsics, Z. et al. Transposon-assisted cloning and traceless mutagenesis of adenoviruses: Development of a novel vector based on species D. J. Virol. 80, 8100–8113 (2006).

    Article  CAS  Google Scholar 

  47. Umana, P. et al. Efficient FLPe recombinase enables scalable production of helper-dependent adenoviral vectors with negligible helper-virus contamination. Nat. Biotechnol. 19, 582–585 (2001).

    Article  CAS  Google Scholar 

  48. Ng, P., Beauchamp, C., Evelegh, C., Parks, R. & Graham, F.L. Development of a FLP/frt system for generating helper-dependent adenoviral vectors. Mol. Ther. 3, 809–815 (2001).

    Article  CAS  Google Scholar 

  49. Meneses-Acosta, A. et al. Development of a suspension serum-free helper-dependent adenovirus production system and assessment of co-infection conditions. J. Virol. Methods 148, 106–114 (2008).

    Article  CAS  Google Scholar 

  50. Zhou, H. et al. A Cre-expressing cell line and an E1/E2a double-deleted virus for preparation of helper-dependent adenovirus vector. Mol. Ther. 3, 613–622 (2001).

    Article  CAS  Google Scholar 

  51. Barjot, C., Hartigan-O'Connor, D., Salvatori, G., Scott, J.M. & Chamberlain, J.S. Gutted adenoviral vector growth using E1/E2b/E3-deleted helper viruses. J. Gene. Med. 4, 480–489 (2002).

    Article  CAS  Google Scholar 

  52. Ng, P., Parks, R.J. & Graham, F.L. Preparation of helper-dependent adenoviral vectors. Methods Mol. Med. 69, 371–388 (2002).

    CAS  PubMed  Google Scholar 

  53. Sandig, V. et al. Optimization of the helper-dependent adenovirus system for production and potency in vivo . Proc. Natl. Acad. Sci. USA 97, 1002–1007 (2000).

    Article  CAS  Google Scholar 

  54. Rauschhuber, C., Xu, H., Salazar, F.H., Marion, P.L. & Ehrhardt, A. Exploring gene-deleted adenoviral vectors for delivery of short hairpin RNAs and reduction of hepatitis B virus infection in mice. J. Gene. Med. 10, 878–889 (2008).

    Article  CAS  Google Scholar 

  55. Palmer, D. & Ng, P. Improved system for helper-dependent adenoviral vector production. Mol. Ther. 8, 846–852 (2003).

    Article  CAS  Google Scholar 

  56. Hillgenberg, M., Schnieders, F., Loser, P. & Strauss, M. System for efficient helper-dependent minimal adenovirus construction and rescue. Hum. Gene. Ther. 12, 643–657 (2001).

    Article  CAS  Google Scholar 

  57. Shi, C.X., Graham, F.L. & Hitt, M.M. A convenient plasmid system for construction of helper-dependent adenoviral vectors and its application for analysis of the breast-cancer-specific mammaglobin promoter. J. Gene. Med. 8, 442–451 (2006).

    Article  CAS  Google Scholar 

  58. Toietta, G. et al. Generation of helper-dependent adenoviral vectors by homologous recombination. Mol. Ther. 5, 204–210 (2002).

    Article  CAS  Google Scholar 

  59. Mizuguchi, H. & Kay, M.A. Efficient construction of a recombinant adenovirus vector by an improved in vitro ligation method. Hum. Gene. Ther. 9, 2577–2583 (1998).

    Article  CAS  Google Scholar 

  60. Parks, R.J. & Graham, F.L. A helper-dependent system for adenovirus vector production helps define a lower limit for efficient DNA packaging. J. Virol. 71, 3293–3298 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bett, A.J., Prevec, L. & Graham, F.L. Packaging capacity and stability of human adenovirus type 5 vectors. J. Virol. 67, 5911–5921 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sambrook, J. & Russell, D.W. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2001).

  63. Offringa, R., Kwappenberg, K., Rabelink, M., Rea, D. & Hoeben, R. Adenoviral transduction of dendritic cells. Methods Mol. Med. 109, 83–96 (2005).

    CAS  PubMed  Google Scholar 

  64. Ugai, H. et al. Stability of a recombinant adenoviral vector: optimization of conditions for storage, transport and delivery. Jpn. J. Cancer. Res. 93, 598–603 (2002).

    Article  CAS  Google Scholar 

  65. Nyberg-Hoffman, C. & Aguilar-Cordova, E. Instability of adenoviral vectors during transport and its implication for clinical studies. Nat. Med. 5, 955–957 (1999).

    Article  CAS  Google Scholar 

  66. Puntel, M. et al. Quantification of high-capacity helper-dependent adenoviral vector genomes in vitro and in vivo, using quantitative TaqMan real-time polymerase chain reaction. Hum. Gene. Ther. 17, 531–544 (2006).

    Article  CAS  Google Scholar 

  67. Palmer, D.J. & Ng, P. Physical and infectious titers of helper-dependent adenoviral vectors: a method of direct comparison to the adenovirus reference material. Mol. Ther. 10, 792–798 (2004).

    Article  CAS  Google Scholar 

  68. Haase, S.B. & Calos, M.P. Replication control of autonomously replicating human sequences. Nucleic Acids. Res. 19, 5053–5058 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by DFG grants SFB455 and SPP1230 and the Wilhelm Sander Stiftung to A.E. We thank Philip Ng for helpful discussions and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Ehrhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jager, L., Hausl, M., Rauschhuber, C. et al. A rapid protocol for construction and production of high-capacity adenoviral vectors. Nat Protoc 4, 547–564 (2009). https://doi.org/10.1038/nprot.2009.4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing