Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

High-resolution human papillomavirus genotyping by MALDI-TOF mass spectrometry

Abstract

We describe a matrix-assisted laser desorption/ionization–time of flight (MALDI-TOF) mass spectrometry (MS)-based assay for human papillomavirus (HPV) genotyping—the restriction fragment mass polymorphism (RFMP) assay, which is based on mass measurement of genotype-specific oligonucleotide fragments generated by TypeIIS restriction endonuclease cleavage after recognition sites have been introduced by PCR amplification. The use of a TypeIIS restriction enzyme makes the RFMP assay independent of sequence and applicable to a wide variety of HPV genotypes, because these enzymes have cleavage sites at a fixed distance from their recognition sites. After PCR amplification, samples are subjected to restriction enzyme digestion with FokI and BtsCI and desalting using Oasis purification plates, followed by analysis by MALDI-TOF MS. Overall, the protocol is simple, takes 4–4.5 h and can accurately detect and identify at least 74 different HPV genotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General procedures for the restriction fragment mass polymorphism genotyping assay.
Figure 2: Matrix-assisted laser desorption/ionization mass spectra of the restriction fragment mass polymorphism assays of three high-risk type human papillomaviruses (HPVs) in negative-ion mode.
Figure 3: Matrix-assisted laser desorption/ionization mass spectra of the restriction fragment mass polymorphism assays of three nonhigh-risk type human papillomaviruses (HPVs) in negative-ion mode.
Figure 4: Matrix-assisted laser desorption/ionization mass spectra of the restriction fragment mass polymorphism assays of mixed genotype infections in negative-ion mode.
Figure 5: Rescue experiment for a case with a failure in PCR amplification step.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Muñoz, N. et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med. 348, 518–527 (2003).

    Article  PubMed  Google Scholar 

  2. Chow, V.T., Loh, E., Yeo, W.M., Tan, S.Y. & Chan, R. Identification of multiple genital HPV types and sequence variants by consensus and nested type-specific PCR coupled with cycle sequencing. Pathology 32, 204–208 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Laconi, S. et al. One-step detection and genotyping of human papillomavirus in cervical samples by reverse hybridization. Diagn. Mol. Pathol. 10, 200–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Human papillomavirus testing for triage of women with cytologic evidence of low-grade squamous intraepithelial lesions: baseline data from a randomized trial. The Atypical Squamous Cells of Undetermined Significance/Low-Grade Squamous Intraepithelial Lesions Triage Study (ALTS) Group. J. Natl. Cancer Inst. 92, 397–402 (2000).

  5. Terry, G. et al. Detection of high-risk HPV types by the hybrid capture 2 test. J. Med. Virol. 65, 155–162 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Schiffman, M.H. et al. Epidemiologic evidence showing that human papillomavirus infection causes most cervical intraepithelial neoplasia. J. Natl. Cancer Inst. 85, 958–964 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Walboomers, J.M. et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189, 12–19 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Bulkmans, N.W., Rozendaal, L., Voorhorst, F.J., Snijders, P.J. & Meijer, C.J. Long-term protective effect of high-risk human papillomavirus testing in population-based cervical screening. Br. J. Cancer 92, 1800–1802 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Clavel, C. et al. Negative human papillomavirus testing in normal smears selects a population at low risk for developing high-grade cervical lesions. Br. J. Cancer 90, 1803–1808 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Haff, L.A. & Smirnov, I.P. Single-nucleotide polymorphism identification assays using a thermostable DNA polymerase and delayed extraction MALDI-TOF mass spectrometry. Genome Res. 7, 378–388 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Laken, S.J. et al. Genotyping by mass spectrometric analysis of short DNA fragments. Nat. Biotechnol. 16, 1352–1356 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Ross, P., Hall, L., Smirnov, I.P. & Haff, L. High level multiplex genotyping by MALDI-TOF mass spectrometry. Nat. Biotechnol. 16, 1347–1351 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Abdi, F., Bradbury, E.M., Doggett, N. & Chen, X. Rapid characterization of DNA oligomers and genotyping of single nucleotide polymorphism using nucleotide-specific mass tags. Nucleic Acids Res. 29, 61 (2001).

    Article  Google Scholar 

  14. Wolfe, J.L. et al. A genotyping strategy based on incorporation and cleavage of chemically modified nucleotides. Proc. Natl. Acad. Sci. USA 99, 11073–11078 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mauger, F. et al. SNP genotyping using alkali cleavage of RNA/DNA chimeras and MALDI time-of-flight mass spectrometry. Nucleic Acids Res. 34, e18 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sauer, S., Reinhardt, R., Lehrach, H. & Gut, I.G. Single-nucleotide polymorphisms: analysis by mass spectrometry. Nat. Protoc. 1, 1761–1771 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Stuyver, L. et al. Line probe assay for monitoring drug resistance in hepatitis B virus-infected patients during antiviral therapy. J. Clin. Microbiol. 38, 702–707 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Stuyver, L., Wyseur, A., van Arnhem, W., Hernandez, F. & Maertens, G. Second-generation line probe assay for hepatitis C virus genotyping. J. Clin. Microbiol. 34, 2259–2266 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim, H.S. et al. Evaluation of methods for monitoring drug resistance in chronic hepatitis B patients during lamivudine therapy based on mass spectrometry and reverse hybridization. Antivir. Ther. 10, 441–449 (2005).

    CAS  PubMed  Google Scholar 

  20. Hong, S.P. et al. Detection of hepatitis B virus YMDD variants using mass spectrometric analysis of oligonucleotide fragments. J. Hepatol. 40, 837–844 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Kim, Y.J. et al. Population genotyping of hepatitis C virus by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of short DNA fragments. Clin. Chem. 51, 1123–1131 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Szybalski, W., Kim, S.C., Hasan, N. & Podhajska, A.J. Class-IIS restriction enzymes-a review. Gene 100, 13–26 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Lee, C.H. et al. Predominance of hepatitis B virus YMDD mutants is prognostic of viral DNA breakthrough. Gastroenterology 130, 1144–1152 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Yeon, J.E. et al. Resistance to adefovir dipivoxil in lamivudine-resistant chronic hepatitis B patients treated with adefovir dipivoxil. Gut 55, 1488–1495 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Paik, Y.H. et al. Clinical impact of early detection for YMDD mutant on the outcomes of long-term lamivudine therapy in patients with chronic hepatitis B. Antivir. Ther. 11, 447–455 (2006).

    CAS  PubMed  Google Scholar 

  26. Lee, Y.S. et al. Increased risk of adefovir resistance in patients with lamivudine-resistant chronic hepatitis B after 48 weeks of adefovir dipivoxil monotherapy. Hepatology 43, 1385–1391 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Chung, H.J. et al. Comparison of efficacy of human papilloma virus genotyping assays using restriction fragment mass polymorphism and DNA chip analysis in patients with abnormal pap smear and uterine cervical cancer. Korean J. Pathol. 40, 439–347 (2006).

    Google Scholar 

  28. Lee, E.H. et al. Human papilloma virus genotyping assay using restriction fragment mass polymorphism analysis, and its comparison with sequencing and hybrid capture assays. Korean J. Lab. Med. 27, 62–68 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Ahn, S.H. et al. Association of genetic variations in CCR5 and its ligand, RANTES with clearance of hepatitis B virus in Korea. J. Med. Virol. 78, 1564–1571 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Hwang, S.H., Oh, H.B., Choi, S.E., Hong, S.P. & Yoo, W. Effective screening of informative single nucleotide polymorphisms using the novel method of restriction fragment mass polymorphism. J. Int. Med. Res. 35, 827–835 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Sohn, S.K. et al. Efficacy of dose escalation of imatinib mesylate in patients with cytogenetic or hematologic resistance. Leuk. Lymphoma 48, 1659–1661 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Smirnov, I.P., Hall, L.R., Ross, P.L. & Haff, L.A. Application of DNA-binding polymers for preparation of DNA for analysis by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 15, 1427–1432 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Little, D.P. et al. MALDI on a chip: analysis of arrays of low-femtomole to subfemtomole quantities of synthetic oligonucleotides and DNA diagnostic products by a piezoelectric pipet. Anal. Chem. 69, 4540–4546 (1997).

    Article  CAS  Google Scholar 

  34. Shahgholi, M., Garcia, B.A., Chiu, N.H., Heaney, P.J. & Tang, K. Sugar additives for MALDI matrices improve signal allowing the smallest nucleotide change (A:T) in a DNA sequence to be resolved. Nucleic Acids Res. 29, e91 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu, K.J., Steding, A. & Becker, C.H. Matrix-assisted laser desorption time-of-flight mass spectrometry of oligonucleotides using 3-hydroxypicolinic acid as an ultraviolet-sensitive matrix. Rapid Commun. Mass Spectrom. 7, 142–146 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Kim, Y., Hurst, G.B., Doktycz, M.J. & Buchanan, M.V. Improving spot homogeneity by using polymer substrates in matrix-assisted laser desorption/ionization mass spectrometry of oligonucleotides. Anal. Chem. 73, 2617–2624 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Gravitt, P.E. et al. Improved amplification of genital human papillomaviruses. J. Clin. Microbiol. 38, 357–361 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kwok, S. & Higuchi, R. Avoiding false positives with PCR. Nature 339, 237–238 (1989).

    Article  CAS  PubMed  Google Scholar 

  39. Wright, T.C. et al. 2001 Consensus Guidelines for the management of women with cervical cytological abnormalities. JAMA 287, 2120–2129 (2002).

    Article  PubMed  Google Scholar 

  40. Fontaine, V. et al. Evaluation of combined general primer-mediated PCR sequencing and type-specific PCR strategies for determination of human papillomavirus genotypes in cervical cell specimens. J. Clin. Microbiol. 45, 928–934 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Ok Kim.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, S., Shin, SK., Lee, E. et al. High-resolution human papillomavirus genotyping by MALDI-TOF mass spectrometry. Nat Protoc 3, 1476–1484 (2008). https://doi.org/10.1038/nprot.2008.136

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.136

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing