Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Non-invasive measurement of bioelectric currents with a vibrating probe

Abstract

Small d.c. electrical signals have been detected in many biological systems and often serve important functions in cells and organs. For example, we have recently found that they play a far more important role in directing cell migration in wound healing than previously thought. Here, we describe the manufacture and use of a simplified ultrasensitive vibrating probe system for measuring extracellular electrical currents. This vibrating probe is an insulated, sharpened metal wire with a small platinum-black tip (10–30 μm), which can detect ionic currents in the μA cm−2 range in physiological saline. The probe is vibrated at about 300 Hz by a piezoelectric bender. In the presence of an ionic current, the probe detects a voltage difference between the extremes of its movement. The basic, low-cost system we describe is readily adaptable to most laboratories interested in measuring physiological electric currents associated with wounds, developing embryos and other biological systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Probe electroplating and measuring circuits.
Figure 2: Probe calibration.
Figure 3: Measurement of endogenous wound electric currents in cornea.
Figure 4: Measurement of endogenous wound electric currents in mouse and human skin.
Figure 5: Endogenous current measured at tadpole tail stump, zebrafish embryo and Dictyostelium.
Figure 6: Endogenous current measured in rat hippocampus and rat ocular lens.

Similar content being viewed by others

References

  1. Barker, A.T., Jaffe, L.F. & Vanable, J.W., Jr. The glabrous epidermis of cavies contains a powerful battery. Am. J. Physiol. 242, R358–R366 (1982).

    CAS  PubMed  Google Scholar 

  2. Hotary, K.B. & Robinson, K.R. Endogenous electrical currents and the resultant voltage gradients in the chick embryo. Dev. Biol. 140, 149–160 (1990).

    Article  CAS  Google Scholar 

  3. Metcalf, M.E.M., Shi, R.Y. & Borgens, R.B. Endogenous ionic currents and voltages in amphibian embryos. J. Exp. Zool. 268, 307–322 (1994).

    Article  Google Scholar 

  4. Nuccitelli, R. Transcellular ion currents: signals and effectors of cell polarity. Mod. Cell Biol. 2, 451–481 (1983).

    CAS  Google Scholar 

  5. Hagins, W.A., Penn, R.D. & Yoshikami, S. Dark currents and photocurrent in retinal rods. Biophys. J. 10, 380–412 (1970).

    Article  CAS  Google Scholar 

  6. DuBois-Reymond, E. Vorläufiger Abriss einer Untersuchung uber den sogenannten Froschstrom und die electomotorischen Fische. Ann. Phy. U. Chem. 58, 1–30 (1843).

    Google Scholar 

  7. Piccolino, M. Luigi Galvani and animal electricity: two centuries after the foundation of electrophysiology. Brain Res. Bull. 46, 381–407 (1997).

    Article  Google Scholar 

  8. Piccolino, M. The bicentennial of the Voltaic battery (1800–2000): the artificial electric organ. Trends Neurosci. 23, 147–151 (2000).

    Article  CAS  Google Scholar 

  9. Borgens, R.B., Vanable, J.W., Jr. & Jaffe, L.F. Bioelectricity and regeneration. I. Initiation of frog limb regeneration by minute currents. J. Exp. Zool. 200, 403–416 (1977).

    Article  CAS  Google Scholar 

  10. Borgens, R.B., Vanable, J.W., Jr. & Jaffe, L.F. Bioelectricity and regeneration: large currents leave the stumps of regenerating newt limbs. Proc. Natl. Acad. Sci. USA 74, 4528–4532 (1977).

    Article  CAS  Google Scholar 

  11. Borgens, R.B., Vanable, J.W., Jr. & Jaffe, L.F. Role of subdermal current shunts in the failure of frogs to regenerate. J. Exp. Zool. 209, 49–56 (1979).

    Article  CAS  Google Scholar 

  12. Illingworth, C.M. & Barker, A.T. Measurement of electrical currents emerging during the regeneration of amputated fingertips in children. Clin. Phys. Physiol. Meas. 1, 87–89 (1980).

    Article  Google Scholar 

  13. Chiang, M., Robinson, K.R. & Vanable, J.W., Jr. Electrical fields in the vicinity of epithelial wounds in the isolated bovine eye. Exp. Eye Res. 54, 999–1003 (1992).

    Article  CAS  Google Scholar 

  14. Reid, B., Song, B., McCaig, C.D. & Zhao, M. Wound healing in rat cornea: the role of electric currents. FASEB J. 19, 379–386 (2005).

    Article  CAS  Google Scholar 

  15. Wang, E., Reid, B., Lois, N., Forrester, J.V., McCaig, C.D. & Zhao, M. Electrical inhibition of lens epithelial cell proliferation: an additional factor in secondary cataract? FASEB J. 19, 842–844 (2005).

    Article  CAS  Google Scholar 

  16. Robinson, K.R. & Messerli, M.A. Left/right, up/down: the role of endogenous electrical fields as directional signals in development, repair and invasion. BioEssays 25, 759–766 (2003).

    Article  Google Scholar 

  17. Borgens, R.B. Endogenous ionic currents traverse intact and damaged bone. Science 225, 478–482 (1984).

    Article  CAS  Google Scholar 

  18. Borgens, R.B., Jaffe, L.F. & Cohen, M.J. Large and persistent electrical currents enter the transected lamprey spinal cord. Proc. Natl. Acad. Sci. USA 77, 1209–1213 (1980).

    Article  CAS  Google Scholar 

  19. Gow, N.A. & McGillivray, A.M. Ion currents, electrical fields and the polarized growth of fungal hyphae. in Ionic Currents in Development (ed. Nuccitelli, R.) 81–88 (Alan R. Liss, New York, 1986).

    Google Scholar 

  20. Gow, N.A. Circulating ionic currents in micro-organisms. Adv. Microb. Physiol. 30, 89–123 (1989).

    Article  CAS  Google Scholar 

  21. Weisenseel, M.H. & Meyer, A.J. Bioelectricity, gravity and plants. Planta 203 (suppl. 1): S98–S106 (1997).

    Article  CAS  Google Scholar 

  22. van West, P. et al. Oomycete plant pathogens use electric fields to target roots. Mol. Plant Microbe Interact. 15, 790–798 (2002).

    Article  CAS  Google Scholar 

  23. Borgens, R.B., Roederer, E. & Cohen, M.J. Enhanced spinal cord regeneration in lamprey by applied electric fields. Science 213, 611–617 (1981).

    Article  CAS  Google Scholar 

  24. Borgens, R.B., Blight, A.R. & McGinnis, M.E. Behavioral recovery induced by applied electric fields after spinal cord hemisection in guinea pig. Science 238, 366–369 (1987).

    Article  CAS  Google Scholar 

  25. Borgens, R.B. Are limb development and limb regeneration both initiated by an integumentary wounding? A hypothesis. Differentiation 28, 87–93 (1984).

    Article  CAS  Google Scholar 

  26. Jaffe, L.F. & Vanable, J.W., Jr. Electric fields and wound healing. Clin. Dermatol. 2, 34–44 (1984).

    Article  CAS  Google Scholar 

  27. Lee, R.C., Canaday, D.J. & Doong, H. A review of the biophysical basis for the clinical application of electric fields in soft-tissue repair. J. Burn Care Rehabil. 14, 319–335 (1993).

    Article  CAS  Google Scholar 

  28. McCaig, C.D. & Zhao, M. Physiological electrical fields modify cell behaviour. BioEssays 19, 819–826 (1997).

    Article  CAS  Google Scholar 

  29. Altizer, A.M., Moriarty, L.J., Bell, S.M., Schreiner, C.M., Scott, W.J. & Borgens, R.B. Endogenous electric current is associated with normal development of the vertebrate limb. Dev. Dyn. 221, 391–401 (2001).

    Article  CAS  Google Scholar 

  30. Ojingwa, J.C. & Isseroff, R.R. Electrical stimulation of wound healing. J. Invest. Dermatol. 121, 1–12 (2003).

    CAS  PubMed  Google Scholar 

  31. Nuccitelli, R. Endogenous electric fields in embryos during development, regeneration and wound healing. Radiat. Prot. Dosimetry 106, 375–383 (2003).

    Article  CAS  Google Scholar 

  32. Nuccitelli, R. A role for endogenous electric fields in wound healing. Curr. Top. Dev. Biol. 58, 1–26 (2003).

    Article  Google Scholar 

  33. McCaig, C.D., Rajnicek, A.M., Song, B. & Zhao, M. Controlling cell behaviour electrically: current views and future potential. Physiol. Rev. 85, 943–978 (2005).

    Article  Google Scholar 

  34. Shi, R. & Borgens, R.B. Embryonic neuroepithelial sodium transport, the resulting physiological potential, and cranial development. Dev. Biol. 165, 105–116 (1994).

    Article  CAS  Google Scholar 

  35. Shi, R. & Borgens, R.B. Three-dimensional gradients of voltage during development of the nervous system as invisible coordinates for the establishment of embryonic pattern. Dev. Dyn. 202, 101–114 (1995).

    Article  CAS  Google Scholar 

  36. Hotary, K.B. & Robinson, K.R. Endogenous electrical currents and the resultant voltage gradients in the chick embryo. Dev. Biol. 140, 149–160 (1990).

    Article  CAS  Google Scholar 

  37. Hotary, K.B. & Robinson, K.R. Endogenous electrical currents and voltage gradients in Xenopus embryos and the consequences of their disruption. Dev. Biol. 166, 789–800 (1994).

    Article  CAS  Google Scholar 

  38. Levin, M. Bioelectromagnetics in morphogenesis. Bioelectromagnetics 24, 295–315 (2003).

    Article  CAS  Google Scholar 

  39. Levin, M. The embryonic origins of left–right asymmetry. Crit. Rev. Oral Biol. Med. 15, 197–206 (2004).

    Article  Google Scholar 

  40. Jaffe, L.F. & Stern, C.D. Strong electrical currents leave the primitive streak of chick embryos. Science 206, 569–571 (1979).

    Article  CAS  Google Scholar 

  41. Zhao, M. et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN. Nature 442, 457–460 (2006).

    Article  CAS  Google Scholar 

  42. Jaffe, L.F. & Nuccitelli, R. An ultrasensitive vibrating probe for measuring steady extracellular currents. J. Cell Biol. 63 (2 Part 1): 614–628 (1974).

    Article  CAS  Google Scholar 

  43. Freeman, J.A. et al. Steady growth cone currents revealed by a novel circularly vibrating probe: a possible mechanism underlying neurite growth. J. Neurosci. Res. 13, 257–284 (1985).

    Article  CAS  Google Scholar 

  44. Scheffey, C. Two approaches to construction of vibrating probes for electrical current measurement in solution. Rev. Sci. Instr. 59, 787–792 (1988).

    Article  Google Scholar 

  45. Scheffey, C. Pitfalls of the vibrating probe technique, and what to do about them. in Ionic Currents in Development (ed. Nuccitelli, R.) 3–12 (Alan R. Liss, New York, 1986.

    Google Scholar 

  46. Scheffey, C. Electric fields and the vibrating probe, for the uninitiated. in Ionic Currents in Development (ed. Nuccitelli, R.) xxv–xxxvii (Alan R. Liss, New York, 1986).

    Google Scholar 

  47. Robinson, K.R. Endogenous and applied electrical currents: their measurement and application. in Electric Fields in Vertebrate Repair (eds. Borgens, R.B., Robinson, K.R., Vanable, J.W., McGinnis, M.E., McCaig, C.D.) 1–25 (Alan R. Liss Inc., New York, 1989).

    Google Scholar 

  48. Freeman, J.A., Manis, P.B., Samson, P.C. & Wikswo, J.P., Jr. Microprocessor controlled two- and three-dimensional vibrating probes with video graphics: Biological and electro-chemical applications. in Ionic Currents in Development (ed. Nuccitelli, R.) 21–36 (Alan R. Liss, New York, 1986).

    Google Scholar 

  49. Hotary, K.B., Nuccitelli, R. & Robinson, K.R. A computerized 2-dimensional vibrating probe for mapping extracellular current patterns. J. Neurosci. Methods 43, 55–67 (1992).

    Article  CAS  Google Scholar 

  50. Smith, P.J.S.S., Sanger,, R.H. & Jaffe, L.F. The vibrating Ca2+ electrode: a new technique for detecting plasma membrane regions of Ca2+ influx and efflux. Methods Cell Biol. 40, 115–134 (1994).

    Article  CAS  Google Scholar 

  51. Smith, P.J.S.S., Hammar, K., Porterfield, D.M., Sanger, R.H. & Trimarchi, J.R. Self-referencing, non-invasive, ion selective electrode for single cell detection of trans-plasma membrane calcium flux. Microsc. Res. Tech. 46, 398–417 (1999).

    Article  CAS  Google Scholar 

  52. Marenzana, M., Shipley, A.M., Squitiero, P., Kunkel, J.B. & Ribinacci, A. Bone as an ion exchange organ: evidence for instantaneous cell-dependent calcium efflux from bone not due to resorption. Bone 37, 545–554 (2005).

    Article  CAS  Google Scholar 

  53. Kunkel, J.G., Cordeiro, S., Xu, Y., Shipley, A.M. & Feijo, J.A. The use of non-invasive ion-selective microelectrode techniques for the study of plant development. in Plant Electrophysiology—Theory and Methods (ed. Volkov, A.G.) 109–137 (Springer-Verlag, Berlin/Heidelberg, 2006).

    Chapter  Google Scholar 

  54. Messerli, M.A., Robinson, K.R. & Smith, P.J.S.S. Electrochemical sensor applications to the study of molecular physiology and analyte flux in plants. in Plant Electrophysiology—Theory and Methods (ed. Volkov, A.G.) Ch. 4, 73–107 (Springer-Verlag, Berlin/Heidelberg, 2006).

    Chapter  Google Scholar 

  55. Smith, P.J.S.S., Sanger,, R.S. & Messerli, M.A. Principles, development and applications of self-referencing electrochemical microelectrodes to the determination of fluxes at cell membranes. in Methods and New Frontiers in Neuroscience (ed. Michael, A.C.) Ch. 18, 373–405 (CRC Press, Boca Raton, Florida, USA 2007).

    Google Scholar 

  56. Nuccitelli, R. Vibrating probe technique for studies of ion transport. in Noninvasive Techniques in Cell Biology Ch. 11, 273–310 (Wiley-Liss Inc., Boca Raton, Florida, USA 1990).

    Google Scholar 

  57. Nawata, T. A simple method for making a vibrating probe system. Plant Cell Physiol. 25, 1089–1094 (1984).

    Google Scholar 

  58. Dorn, A. & Weisenseel, M.H. Advances in vibrating probe techniques. Protoplasma 113, 89–96 (1982).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Neil Gow for allowing us to re-assemble his vibrating probe system, Ann Rajnicek for technical advice and help with Figure 6c,d and Guy Bewick for photographic assistance. Bing Song contributed to Figures 4a–c and 5e, Christine Pullar to Figure 3e, Yao Li to Figure 6a and Noemi Lois to Figure 6b. We thank the Wellcome Trust for continuous support (058551, 068012). We are grateful to Ken Robinson, Alan Shipley and Peter Smith for many helpful comments on the manuscript. RN is a member of the BioCurrents Research Center Physiology of Development and Polarity Module (NIH:NCRR P41RR01395) and is also supported by NIH R44 GM069194. We thank expert referees and editors for comments and suggestions that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reid, B., Nuccitelli, R. & Zhao, M. Non-invasive measurement of bioelectric currents with a vibrating probe. Nat Protoc 2, 661–669 (2007). https://doi.org/10.1038/nprot.2007.91

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.91

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing