Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Selenium modification of nucleic acids: preparation of phosphoroselenoate derivatives for crystallographic phasing of nucleic acid structures

Abstract

This protocol describes a simplified means of introducing an anomalously scattering atom into oligonucleotides by conventional solid-phase synthesis. Replacement of a nonbridging phosphate oxygen in the backbone with selenium is practically suitable for any nucleic acid. The resulting oligonucleotide P-diastereomers can be separated using anion exchange HPLC to yield diastereomerically pure phosphoroselenoates (PSes). The total time for the synthesis and ion-exchange HPLC separation of pure PSe is approximately 60 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4: Matrix-assisted laser desorption/ionization—time of flight (MALDI-TOF) mass spectra of (a) 5′-6C5G4C3G2C1G-3′ (wild type) and (b) 5′-6CPSe5G4C3G2C1G-3′ (slower eluting diastereomer).

Similar content being viewed by others

References

  1. Kim, S.-H., Shin, W.-C. & Warrant, R.W. Heavy metal ion-nucleic acid interaction. Methods Enzymol. 114, 156–167 (1985).

    Article  CAS  Google Scholar 

  2. Holbrook, S.R. & Kim, S.-H. Crystallization and heavy-atom derivatives of polynucleotides. Methods Enzymol. 114, 167–176 (1985).

    Article  CAS  Google Scholar 

  3. Rould, M.A. Screening for heavy-atom derivatives and obtaining accurate isomorphous differences. Methods Enzymol. 276, 461–472 (1997).

    Article  CAS  Google Scholar 

  4. Tereshko, V. et al. Detection of alkali metal ions in DNA crystals using state-of-the-art X-ray diffraction experiments. Nucleic Acids Res. 29, 1208–1215 (2001).

    Article  CAS  Google Scholar 

  5. Ogata, C.M., Hendrickson, W.A., Gao, X. & Patel, D.J. Crystal structure of chromomycin-DNA complex. Abstr. Am. Cryst. Assoc. Mtg. Ser. 2 17, 53 (1989).

    Google Scholar 

  6. Ennifar, E., Carpentier, P., Ferrer, J.L., Walter, P. & Dumas, P. X-ray-induced debromination of nucleic acids at the Br K absorption edge and implications for MAD phasing. Acta Cryst. D. 58, 1262–1268 (2002).

    Article  CAS  Google Scholar 

  7. Willis, M.C., Hicke, B.J., Uhlenbeck, O.C., Cech, T.R. & Koch, T.H. Photocrosslinking of 5-iodouracil-substituted RNA and DNA to proteins. Science 262, 1255–1257 (1993).

    Article  CAS  Google Scholar 

  8. Du, Q. et al. Internal derivatization of oligonucleotides with selenium for X-ray crystallography using MAD. J. Am. Chem. Soc. 124, 24–25 (2002).

    Article  CAS  Google Scholar 

  9. Teplova, M. et al. Covalent incorporation of selenium into oligonucleotides for X-ray crystal structure determination via MAD: proof of principle. Biochimie 84, 849–858 (2002).

    Article  CAS  Google Scholar 

  10. Carrasco, N., Buzin, Y., Tyson, E., Halpert, E. & Huang, Z. Selenium derivatization and crystallization of DNA and RNA oligonucleotides for X-ray crystallography using multiple anomalous dispersion. Nucleic Acids Res. 32, 1638–1646 (2004).

    Article  CAS  Google Scholar 

  11. Moroder, H., Kreutz, C., Lang, K., Serganov, A. & Micura, R. Synthesis, oxidation behavior, crystallization and structure of 2′-methylseleno guanosine containing RNAs. J. Am. Chem. Soc. 128, 9909–9918 (2006).

    Article  CAS  Google Scholar 

  12. Höbartner, C. & Micura, R. Chemical synthesis of selenium-modified oligoribonucleotides and their enzymatic ligation leading to an U6 SnRNA stem-loop segment. J. Am. Chem. Soc. 126, 1141–1149 (2004).

    Article  Google Scholar 

  13. Höbartner, C. et al. Syntheses of RNAs with up to 100 nucleotides containing site-specific 2′-methylseleno labels for use in X-ray crystallography. J. Am. Chem. Soc. 127, 12035–12045 (2005).

    Article  Google Scholar 

  14. Wilds, C.J., Pattanayek, R., Pan, C., Wawrzak, Z. & Egli, M. Selenium-assisted nucleic acid crystallography: use of DNA phosphoroselenoates for MAD phasing of a DNA structure. J. Am. Chem. Soc. 124, 14910–14916 (2002).

    Article  CAS  Google Scholar 

  15. Egli, M. et al. Crystal structure of homo-DNA and nature's choice of pentose over hexose in the genetic system. J. Am. Chem. Soc. 128, 10847–10856 (2006).

    Article  CAS  Google Scholar 

  16. Yang, W., Hendrickson, W.A., Crouch, R.J. & Satow, Y. Structure of ribonuclease H phased at 2 Å resolution by MAD analysis of the selenomethionyl protein. Science 249, 1398–1405 (1990).

    Article  CAS  Google Scholar 

  17. Doublié, S. Production of selenomethionyl proteins in prokaryotic and eukaryotic expression systems. In Macromolecular Crystallography Protocols: Preparation and Crystallization of Macromolecules Vol. 1 (ed. Doublié, S.) 91–108 (Humana Press, Totowa, NJ, 2006).

    Chapter  Google Scholar 

  18. Hendrickson, W.A. Synchrotron crystallography. Trends Biochem. Sci. 25, 637–643 (2001).

    Article  Google Scholar 

  19. Hendrickson, W.A., Horton, J.R. & LeMaster, D.M. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J. 9, 1665–1672 (1990).

    Article  CAS  Google Scholar 

  20. Pallan, P.S. & Egli, M. Selenium modification of nucleic acids: preparation of oligonucleotides with incorporated 2′-SeMe-uridine for crystallographic phasing of nucleic acid structures. Nat. Protoc. 2, 647–651 (2007).

    Article  CAS  Google Scholar 

  21. Serganov, A. et al. Structural basis for Diels-Alder ribozyme catalyzed carbon-carbon bond formation. Nat. Struct. Mol. Biol. 12, 218–224 (2005).

    Article  CAS  Google Scholar 

  22. Mori, K. et al. Phosphoroselenoate oligodeoxynucleotides: synthesis, physico-chemical characterization, anti-sense inhibitory properties and anti-HIV activity. Nucleic Acids Res. 17, 8207–8219 (1989).

    Article  CAS  Google Scholar 

  23. Carrasco, N. & Huang, Z. Enzymatic synthesis of phosphoroselenoate DNA using thymidine 5′-(alpha-P-seleno)triphosphate and DNA polymerase for X-ray crystallography via MAD. J. Am. Chem. Soc. 126, 448–449 (2004).

    Article  CAS  Google Scholar 

  24. Carrasco, N., Caton-William, J., Brandt, G., Wang, S. & Huang, Z. Efficient enzymatic synthesis phosphoroselenoate RNA by using adenosine 5′-(alpha-P-seleno)triphosphate. Angew. Chem. Int. Ed. 45, 94–97 (2006).

    Article  CAS  Google Scholar 

  25. Guga, P., Maciaszek, A. & Stec, W.J. Oxathiaphospholane approach to the synthesis of oligodeoxyribonucleotides containing stereodefined internucleotide phosphoroselenoate function. Org. Lett. 7, 3901–3904 (2005).

    Article  CAS  Google Scholar 

  26. Armarego, W.L.F. & Perrin, D.D. (eds.) In Purification of Laboratory Chemicals Butterworth-Heineman, The Bath Press, Bath, Great Britain (Fourth Ed. 1996).

    Google Scholar 

  27. Sproat, B. et al. An efficient method for the isolation and purification of oligoribonucleotides. Nucleosides & Nucleosides, 14, 255–273 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. National Institutes of Health (Grant R01 GM55237 to M.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Egli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pallan, P., Egli, M. Selenium modification of nucleic acids: preparation of phosphoroselenoate derivatives for crystallographic phasing of nucleic acid structures. Nat Protoc 2, 640–646 (2007). https://doi.org/10.1038/nprot.2007.74

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.74

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing