Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Profiling of microRNA expression by mRAP

Abstract

MicroRNA (miRNA) amplification profiling (mRAP) is a sensitive method for the determination of miRNA expression profiles. The method relies on a long, optimized 5′ adaptor and the SMART (switching mechanism at the 5′ end of RNA templates of reverse transcriptase) reaction to yield miRNA-derived cDNAs flanked by synthesized oligomers at each end. The cDNAs are PCR-amplified with primers corresponding to the oligomers, and the products are concatamerized for nucleotide sequencing. The expression level of each miRNA can be estimated from the frequency of the occurrence of its sequence in the data set, provided that sufficient clones of the cDNAs are sequenced. This method potentially yields millions of miRNA-derived clones from as few as 1 × 104 cells, thus allowing the characterization of miRNA expression profiles with small quantities of starting material such as those available for fresh clinical specimens or organs of developing embryos. This protocol can be completed in 10 d.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Example of size selection of small RNAs.
Figure 2: Schematic representation of the reactions that constitute the microRNA (miRNA) amplification profiling (mRAP) method.
Figure 3: Example of isolation of the cDNA fraction from the dimer and trimer by-products of PCR.
Figure 4: Example of size selection of concatamers.
Figure 5: Example of a nucleotide sequence of one insert obtained from Jurkat cells by the microRNA (miRNA) amplification profiling (mRAP) procedure.

Similar content being viewed by others

References

  1. Filipowicz, W. RNAi: the nuts and bolts of the RISC machine. Cell 122, 17–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Hammond, S.M. Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Lett. 579, 5822–5829 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Hannon, G.J. RNA interference. Nature 418, 244–251 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Mattick, J.S. & Makunin, I.V. Small regulatory RNAs in mammals. Hum. Mol. Genet. 14, R121–R132 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Lee, Y., Jeon, K., Lee, J.T., Kim, S. & Kim, V.N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 21, 4663–4670 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Hutvágner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).

    Article  PubMed  Google Scholar 

  8. Ketting, R.F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Lau, N.C., Lim, L.P., Weinstein, E.G. & Bartel, D.P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Lee, R.C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Pasquinelli, A.E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Knight, S.W. & Bass, B.L. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293, 2269–2271 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bernstein, E. et al. Dicer is essential for mouse development. Nat. Genet. 35, 215–217 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Yang, W.J. et al. Dicer is required for embryonic angiogenesis during mouse development. J. Biol. Chem. 280, 9330–9335 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Lee, R.C., Feinbaum, R.L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Zhao, Y., Samal, E. & Srivastava, D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436, 214–220 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Zhao, Y. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129, 303–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. He, L. et al. A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hayashita, Y. et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 65, 9628–9632 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735–739 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Cummins, J.M. et al. The colorectal microRNAome. Proc. Natl. Acad. Sci. USA 103, 3687–3692 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mineno, J. et al. The expression profile of microRNAs in mouse embryos. Nucleic Acids Res. 34, 1765–1771 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, C.G. et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc. Natl. Acad. Sci. USA 101, 9740–9744 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miska, E.A. et al. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol. 5, R68 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Thomson, J.M., Parker, J., Perou, C.M. & Hammond, S.M. A custom microarray platform for analysis of microRNA gene expression. Nat. Methods 1, 47–53 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Nelson, P.T. et al. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat. Methods 1, 155–161 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Babak, T., Zhang, W., Morris, Q., Blencowe, B.J. & Hughes, T.R. Probing microRNAs with microarrays: tissue specificity and functional inference. RNA 10, 1813–1819 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun, Y. et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res. 32, e188 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Barad, O. et al. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res. 14, 2486–2494 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Chen, C. et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33, e179 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tang, F. et al. 220-plex microRNA expression profile of a single cell. Nat. Protoc. 1, 1154–1159 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Takada, S. et al. Mouse microRNA profiles determined with a new and sensitive cloning method. Nucleic Acids Res. 34, e115 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mano, H. & Takada, S. mRAP, a sensitive method for determination of microRNA expression profiles. Methods 43, 118–122 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Ronaghi, M. Pyrosequencing sheds light on DNA sequencing. Genome Res. 11, 3–11 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank laboratory members for discussion as well as Mika Otani, Kyoko Nakamura and Sayaka Aoyagi for help in preparation of the manuscript. The present work was supported in part by a grant for Third-Term Comprehensive Control Research for Cancer from the Ministry of Health, Labor and Welfare of Japan, and by a grant for Scientific Research on Priority Areas 'Applied Genomics' from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Mano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takada, S., Mano, H. Profiling of microRNA expression by mRAP. Nat Protoc 2, 3136–3145 (2007). https://doi.org/10.1038/nprot.2007.457

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.457

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing