Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation and square wave electroporation of retinal explant cultures

Abstract

This protocol details organotypic cultures of developing mouse, monkey and human retinas, which can be maintained for up to 2 weeks. Intact retinas are placed on polycarbonate filters floating on explant culture medium and fed every day with previously prepared retinal conditioned medium. Developing mouse retinas from E12.5 to P12 have been successfully cultured using this protocol as well as retinas from the equivalent stages of human and monkey development. Although this protocol does not require any special equipment, it provides a relatively high throughput. Retinal explant cultures lend themselves to complex pharmacological and genetic manipulations that are currently not feasible in vivo. A detailed procedure for square wave electroporation of retinal explants is also included to provide a high-throughput means to alter gene expression in the developing retina. This protocol for the preparation of retinal conditioned explant medium requires 4 d. Other steps of this protocol can be completed in 2 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Retinal dissection and explant cultures.
Figure 2: Flowchart of the protocol showing three experimental designs.
Figure 3: Square wave electroporation for explant culture experiments.
Figure 4: In vivo square wave electroporation.

Similar content being viewed by others

References

  1. Gahwiler, B.H. Organotypic cultures of neural tissue. Trends Neurosci. 11, 484–489 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Gahwiler, B.H., Capogna, M., Debanne, D., McKinney, R.A. & Thompson, S.M. Organotypic slice cultures: a technique has come of age. Trends Neurosci. 20, 471–477 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Seigel, G.M. The golden age of retinal cell culture. Mol. Vis. 5, 4 (1999).

    CAS  PubMed  Google Scholar 

  4. Araki, M. Developmental potency of cultured pineal cells: an approach to pineal developmental biology. Microsc. Res. Tech. 53, 33–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Kasal, C.A., Menaker, M. & Perez-Polo, J.R. Circadian clock in culture: N-acetyltransferase activity of chick pineal glands oscillates in vitro. Science 203, 656–658 (1979).

    Article  CAS  PubMed  Google Scholar 

  6. Feigenspan, A., Bormann, J. & Wassle, H. Organotypic slice culture of the mammalian retina. Vis. Neurosci. 10, 203–217 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Ogilvie, J.M., Speck, J.D., Lett, J.M. & Fleming, T.T. A reliable method for organ culture of neonatal mouse retina with long-term survival. J. Neurosci. Methods 87, 57–65 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Sassoe-Pognetto, M., Feigenspan, A., Bormann, J. & Wassle, H. Synaptic organization of an organotypic slice culture of the mammalian retina. Vis. Neurosci. 13, 759–771 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Mears, A.J. et al. Nrl is required for rod photoreceptor development. Nat. Genet. 29, 447–452 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Dyer, M.A. et al. Retinal degeneration in Aipl1-deficient mice: a new genetic model of Leber congenital amaurosis. Brain Res. Mol. Brain Res. 132, 208–220 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Akhmedov, N.B. et al. A deletion in a photoreceptor-specific nuclear receptor mRNA causes retinal degeneration in the rd7 mouse. Proc. Natl. Acad. Sci. USA 97, 5551–5556 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Furukawa, T., Morrow, E.M., Li, T., Davis, F.C. & Cepko, C.L. Retinopathy and attenuated circadian entrainment in Crx-deficient mice. Nat. Genet. 23, 466–470 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Burmeister, M. et al. Ocular retardation mouse caused by Chx10 homeobox null allele: impaired retinal progenitor proliferation and bipolar cell differentiation. Nat. Genet. 12, 376–384 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, J. et al. Rb regulates proliferation and rod photoreceptor development in the mouse retina. Nat. Genet. 36, 351–360 (2004).

    Article  PubMed  Google Scholar 

  15. Clarke, A.R. et al. Requirement for a functional Rb-1 gene in murine development. Nature 359, 328–330 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Lee, E.Y. et al. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359, 288–294 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature 359, 295–300 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Dyer, M.A. & Cepko, C.L. p57(Kip2) regulates progenitor cell proliferation and amacrine interneuron development in the mouse retina. Development 127, 3593–3605 (2000).

    CAS  PubMed  Google Scholar 

  19. Morrow, E.M., Belliveau, M.J. & Cepko, C.L. Two phases of rod photoreceptor differentiation during rat retinal development. J. Neurosci. 18, 3738–3748 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lillien, L. & Cepko, C. Control of proliferation in the retina: temporal changes in responsiveness to FGF and TGF alpha. Development 115, 253–266 (1992).

    CAS  PubMed  Google Scholar 

  21. Donovan, S.L., Schweers, B., Martins, R., Johnson, D. & Dyer, M.A. Compensation by tumor suppressor genes during retinal development in mice and humans. BMC Biol. 4, 14 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dyer, M.A. & Cepko, C.L. Control of Muller glial cell proliferation and activation following retinal injury. Nat. Neurosci. 3, 873–880 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Martins, R.A., Linden, R. & Dyer, M.A. Glutamate regulates retinal progenitors cells proliferation during development. Eur. J. Neurosci. 24, 969–980 (2006).

    Article  PubMed  Google Scholar 

  24. Sage, J., Miller, A.L., Perez-Mancera, P.A., Wysocki, J.M. & Jacks, T. Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature 424, 223–228 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Laurie, N.A. et al. Inactivation of the p53 pathway in retinoblastoma. Nature 444, 61–66 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Altshuler, D., Lo Turco, J.J., Rush, J. & Cepko, C. Taurine promotes the differentiation of a vertebrate retinal cell type in vitro. Development 119, 1317–1328 (1993).

    CAS  PubMed  Google Scholar 

  27. Alexiades, M.R. & Cepko, C. Quantitative analysis of proliferation and cell cycle length during development of the rat retina. Dev. Dyn. 205, 293–307 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Belliveau, M.J., Young, T.L. & Cepko, C.L. Late retinal progenitor cells show intrinsic limitations in the production of cell types and the kinetics of opsin synthesis. J. Neurosci. 20, 2247–2254 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Belliveau, M.J. & Cepko, C.L. Extrinsic and intrinsic factors control the genesis of amacrine and cone cells in the rat retina. Development 126, 555–566 (1999).

    CAS  PubMed  Google Scholar 

  30. Morrow, E.M., Furukawa, T., Lee, J.E. & Cepko, C.L. NeuroD regulates multiple functions in the developing neural retina in rodent. Development 126, 23–36 (1999).

    CAS  PubMed  Google Scholar 

  31. Alexiades, M.R. & Cepko, C.L. Subsets of retinal progenitors display temporally regulated and distinct biases in the fates of their progeny. Development 124, 1119–1131 (1997).

    CAS  PubMed  Google Scholar 

  32. Ezzeddine, Z.D., Yang, X., DeChiara, T., Yancopoulos, G. & Cepko, C.L. Postmitotic cells fated to become rod photoreceptors can be respecified by CNTF treatment of the retina. Development 124, 1055–1067 (1997).

    CAS  PubMed  Google Scholar 

  33. Guillemot, F. & Cepko, C.L. Retinal fate and ganglion cell differentiation are potentiated by acidic FGF in an in vitro assay of early retinal development. Development 114, 743–754 (1992).

    CAS  PubMed  Google Scholar 

  34. Young, T.L. & Cepko, C.L. A role for ligand-gated ion channels in rod photoreceptor development. Neuron 41, 867–79 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Dyer, M.A. & Cepko, C.L. p27Kip1 and p57Kip2 regulate proliferation in distinct retinal progenitor cell populations. J. Neurosci. 21, 4259–4271 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dyer, M.A., Livesey, F.J., Cepko, C.L. & Oliver, G. Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina. Nat. Genet. 34, 53–58 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Matsuda, T. & Cepko, C.L. Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc. Natl. Acad. Sci. USA 101, 16–22 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Levine, E.M., Roelink, H., Turner, J. & Reh, T.A. Sonic hedgehog promotes rod photoreceptor differentiation in mammalian retinal cells in vitro. J. Neurosci. 17, 6277–6288 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, Y., Dakubo, G.D., Thurig, S., Mazerolle, C.J. & Wallace, V.A. Retinal ganglion cell-derived sonic hedgehog locally controls proliferation and the timing of RGC development in the embryonic mouse retina. Development 132, 5103–5113 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Hicks, D., Heidinger, V., Mohand-Said, S., Sahel, J. & Dreyfus, H. Growth factors and gangliosides as neuroprotective agents in excitotoxicity and ischemia. Gen. Pharmacol. 30, 265–273 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. LaVail, M.M. et al. Multiple growth factors, cytokines, and neurotrophins rescue photoreceptors from the damaging effects of constant light. Proc. Natl. Acad. Sci. USA 89, 11249–11253 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Abe, M. et al. Circadian rhythms in isolated brain regions. J. Neurosci. 22, 350–356 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, H. et al. Light-dependent redistribution of visual arrestins and transducin subunits in mice with defective phototransduction. Mol. Vis. 9, 231–237 (2003).

    CAS  PubMed  Google Scholar 

  44. Saito, T. In vivo electroporation in the embryonic mouse central nervous system. Nat. Protoc. 1, 1552–1558 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants (to M.A.D.) from the National Institutes of Health, Cancer Center Support from the National Cancer Institute, the American Cancer Society, Research to Prevent Blindness, the Pearle Vision Foundation, the International Retinal Research Foundation and the American Lebanese Syrian Associated Charities (ALSAC). M.A.D. is a Pew Scholar. This work was also supported by grants (to S.L.D.) from Fight for Sight and the Gerwin Fellowship Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A Dyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1

Dissection of retinae from 6 P0 pups. (MOV 25438 kb)

Supplementary Video 2

Transfer immediately after dissection 3–4 dissected retinae with a small volume (50 μl) of culture medium to a membrane on the 12-well dish (1 retina per membrane) using a sterile disposable transfer pipette. (MOV 4650 kb)

Supplementary Video 3

Electroporation of dissected retina in the Petri dish electrode chamber. Transfer retina using a sterile disposable transfer pipette. (MOV 2781 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donovan, S., Dyer, M. Preparation and square wave electroporation of retinal explant cultures. Nat Protoc 1, 2710–2718 (2006). https://doi.org/10.1038/nprot.2006.454

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.454

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing