Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Generation of iPSC-derived human forebrain organoids assembling bilateral eye primordia

Abstract

Induced pluripotent stem cell-derived brain organoids enable the developmental complexities of the human brain to be deconstructed. During embryogenesis, optic vesicles (OVs), the eye primordium attached to the forebrain, develop from diencephalon. However, most 3D culturing methods generate either brain or retinal organoids individually. Here we describe a protocol to generate organoids with both forebrain entities, which we call OV-containing brain organoids (OVB organoids). In this protocol, we first induce neural differentiation (days 0–5) and collect neurospheres, which we culture in a neurosphere medium to initiate their patterning and further self-assembly (days 5–10). Then, upon transfer to spinner flasks containing OVB medium (days 10–30), neurospheres develop into forebrain organoids with one or two pigmented dots restricted to one pole, displaying forebrain entities of ventral and dorsal cortical progenitors and preoptic areas. Further long-term culture results in photosensitive OVB organoids constituting complementary cell types of OVs, including primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections and electrically active neuronal networks. OVB organoids provide a system to help dissect interorgan interactions between the OVs as sensory organs and the brain as a processing unit, and can help model early eye patterning defects, including congenital retinal dystrophy. To conduct the protocol, experience in sterile cell culture and maintenance of human induced pluripotent stem cells is essential; theoretical knowledge of brain development is advantageous. Furthermore, specialized expertise in 3D organoid culture and imaging for the analysis is needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the four-stage OVB organoid differentiation from human iPSCs.
Fig. 2: Overview of preparing iPSCs for a successful differentiation into OVB organoids.
Fig. 3: Overview of OVB organoid generation stages and characterizations.
Fig. 4: Initial characterization of OVB organoids.
Fig. 5: Tracing experiment using labeled CTB.
Fig. 6: OVB organoids reveal visual pathway cell populations.

Similar content being viewed by others

Data availability

Source data are provided with the original paper5. Any other data are available from the corresponding author. The data presented here have not been published previously.

References

  1. Mariani, J. & Vaccarino, F. M. Breakthrough moments: Yoshiki Sasai’s discoveries in the third dimension. Cell Stem Cell 24, 837–838 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Giandomenico, S. L., Sutcliffe, M. & Lancaster, M. A. Generation and long-term culture of advanced cerebral organoids for studying later stages of neural development. Nat. Protoc. 16, 579–602 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Bergmann, S. et al. Blood-brain-barrier organoids for investigating the permeability of CNS therapeutics. Nat. Protoc. 13, 2827–2843 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gabriel, E. et al. CPAP promotes timely cilium disassembly to maintain neural progenitor pool. EMBO J. 35, 803–819 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gabriel, E. et al. Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell 28, 1740–1757.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Gopalakrishnan, J. The emergence of stem cell-based brain organoids: trends and challenges. BioEssays 41, e1900011 (2019).

    Article  PubMed  Google Scholar 

  7. Ramani, A. et al. SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J. 39, e106230 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sloan, S. A., Andersen, J., Pașca, A. M., Birey, F. & Pașca, S. P. Generation and assembly of human brain region-specific three-dimensional cultures. Nat. Protoc. 13, 2062–2085 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Quadrato, G. et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545, 48–53 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goranci-Buzhala, G. et al. Rapid and efficient invasion assay of glioblastoma in human brain organoids. Cell Rep. 31, 107738 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Birey, F. et al. Assembly of functionally integrated human forebrain spheroids. Nature 545, 54–59 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huschke, E. Uber einige streitpunkte aus der anatomie des auges [German]. Z. Opthalmol. 4, 273–295 (1835).

    Google Scholar 

  13. Pander, H. Beiträge zur Entwickelungsgeschichte des Hühnchens im Eye [German] (1817).

  14. Adelmann, H. Marcello Malpighi and the Evolution of Embryology Vol. 3 (Cornell Univ. Press, 1966).

  15. Zhong, X. et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat. Commun. 5, 4047 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Capowski, E. E. et al. Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines. Development 146, dev171686 (2019).

    PubMed  PubMed Central  Google Scholar 

  17. Nakano, T. et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10, 771–785 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Cowan, C. S. et al. Cell types of the human retina and its organoids at single-cell resolution. Cell 182, 1623–1640.e34 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vergara, M. N. et al. Three-dimensional automated reporter quantification (3D-ARQ) technology enables quantitative screening in retinal organoids. Development 144, 3698–3705 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Meyer, J. S. et al. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells 29, 1206–1218 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Eldred, K. C. et al. Thyroid hormone signaling specifies cone subtypes in human retinal organoids. Science 362, eaau6348 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Eldred, K. C. & Reh, T. A. Human retinal model systems: strengths, weaknesses, and future directions. Dev. Biol. 480, 114–122 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Fligor, C. M. et al. Extension of retinofugal projections in an assembled model of human pluripotent stem cell-derived organoids. Stem Cell Rep. 16, 2228–2241 (2021).

    Article  CAS  Google Scholar 

  24. Graw, J. Eye development. Curr. Top. Dev. Biol. 90, 343–386 (2010).

    Article  PubMed  Google Scholar 

  25. Rao, R. C., Stern, J. H. & Temple, S. The eyeball’s connected to the brain ball. Cell Stem Cell 28, 1675–1677 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Fuhrmann, S. Eye morphogenesis and patterning of the optic vesicle. Curr. Top. Dev. Biol. 93, 61–84 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Adler, R. & Canto-Soler, M. V. Molecular mechanisms of optic vesicle development: complexities, ambiguities and controversies. Dev. Biol. 305, 1–13 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dupacova, N., Antosova, B., Paces, J. & Kozmik, Z. Meis homeobox genes control progenitor competence in the retina. Proc. Natl Acad. Sci. USA 118, e2013136118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mann, I. C. The Development of the Human Eye 1st edn (Univ. Press, 1928).

  30. O’Rahilly, R. The early development of the eye in staged human embryos. Contrib. Embryol. 38, 1–42 (1966).

    Google Scholar 

  31. O’Rahilly, R. The prenatal development of the human eye. Exp. Eye Res. 21, 93–112 (1975).

    Article  PubMed  Google Scholar 

  32. Gabriel, E. & Gopalakrishnan, J. Generation of iPSC-derived human brain organoids to model early neurodevelopmental disorders. J. Vis. Exp. 14, 55372 (2017).

    Google Scholar 

  33. Gabriel, E. et al. Recent zika virus isolates induce premature differentiation of neural progenitors in human brain organoids. Cell. Stem Cell. 20, 397–406.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, W. et al. Modeling microcephaly with cerebral organoids reveals a WDR62-CEP170-KIF2A pathway promoting cilium disassembly in neural progenitors. Nat. Commun. 10, 2612 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rosen, D. & Mahabadi, N. Embryology, Optic Cup (StatPearls Publishing LLC, updated 8 May 2022); https://www.ncbi.nlm.nih.gov/books/NBK545150/

  36. Cvekl, A. & Wang, W. L. Retinoic acid signaling in mammalian eye development. Exp. Eye Res. 89, 280–291 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Janesick, A., Wu, S. C. & Blumberg, B. Retinoic acid signaling and neuronal differentiation. Cell. Mol. Life Sci. 72, 1559–1576 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Morizane, A., Doi, D., Kikuchi, T., Nishimura, K. & Takahashi, J. Small-molecule inhibitors of bone morphogenic protein and activin/nodal signals promote highly efficient neural induction from human pluripotent stem cells. J. Neurosci. Res. 89, 117–126 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Jin, M., Yuan, Q., Li, S. & Travis, G. H. Role of LRAT on the retinoid isomerase activity and membrane association of Rpe65. J. Biol. Chem. 282, 20915–20924 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Hu, J. & Bok, D. The use of cultured human fetal retinal pigment epithelium in studies of the classical retinoid visual cycle and retinoid-based disease processes. Exp. Eye Res. 126, 46–50 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Francis, P. J. Genetics of inherited retinal disease. J. R. Soc. Med. 99, 189–191 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Takagi, S. et al. Evaluation of transplanted autologous induced pluripotent stem cell-derived retinal pigment epithelium in exudative age-related macular degeneration. Ophthalmol. Retin. 3, 850–859 (2019).

    Article  Google Scholar 

  43. Dahl-Jensen, S. & Grapin-Botton, A. The physics of organoids: a biophysical approach to understanding organogenesis. Development 144, 946–951 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. He, Z. et al. Lineage recording in human cerebral organoids. Nat. Methods 19, 90–99 (2022).

    Article  PubMed  Google Scholar 

  45. Hu, S. et al. Effects of cellular origin on differentiation of human induced pluripotent stem cell-derived endothelial cells. JCI Insight 1, e85558 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Phetfong, J. et al. Cell type of origin influences iPSC generation and differentiation to cells of the hematoendothelial lineage. Cell Tissue Res. 365, 101–112 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Bardy, C. et al. Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro. Proc. Natl Acad. Sci. USA 112, E2725–E2734 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Slembrouck-Brec, A. et al. Reprogramming of adult retinal Müller glial cells into human-induced pluripotent stem cells as an efficient source of retinal cells. Stem Cells Int. 2019, 7858796 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Karch, C. M. et al. A comprehensive resource for induced pluripotent stem cells from patients with primary tauopathies. Stem Cell Rep. 13, 939–955 (2019).

    Article  CAS  Google Scholar 

  50. Baharvand, H., Salekdeh, G. H., Taei, A. & Mollamohammadi, S. An efficient and easy-to-use cryopreservation protocol for human ES and iPS cells. Nat. Protoc. 5, 588–594 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Rivera, T., Zhao, Y., Ni, Y. & Wang, J. Human-induced pluripotent stem cell culture methods under cGMP conditions. Curr. Protoc. Stem Cell Biol. 54, e117 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Klingberg, A. et al. Fully automated evaluation of total glomerular number and capillary tuft size in nephritic kidneys using lightsheet microscopy. J. Am. Soc. Nephrol. 28, 452–459 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Maiorano, N. A. & Hindges, R. Restricted perinatal retinal degeneration induces retina reshaping and correlated structural rearrangement of the retinotopic map. Nat. Commun. 4, 1938 (2013).

    Article  PubMed  Google Scholar 

  54. Crish, S. D., Sappington, R. M., Inman, D. M., Horner, P. J. & Calkins, D. J. Distal axonopathy with structural persistence in glaucomatous neurodegeneration. Proc. Natl Acad. Sci. USA 107, 5196–5201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Foxton, R., Osborne, A., Martin, K. R., Ng, Y. S. & Shima, D. T. Distal retinal ganglion cell axon transport loss and activation of p38 MAPK stress pathway following VEGF-A antagonism. Cell Death Dis. 7, e2212 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hou, M. et al. Age-related visual impairments and retinal ganglion cells axonal degeneration in a mouse model harboring OPTN (E50K) mutation. Cell Death Dis. 13, 362 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stoeckel, K., Schwab, M. & Thoenen, H. Role of gangliosides in the uptake and retrograde axonal transport of cholera and tetanus toxin as compared to nerve growth factor and wheat germ agglutinin. Brain Res. 132, 273–285 (1977).

    Article  CAS  PubMed  Google Scholar 

  58. Conte, W. L., Kamishina, H. & Reep, R. L. Multiple neuroanatomical tract-tracing using fluorescent alexa fluor conjugates of cholera toxin subunit B in rats. Nat. Protoc. 4, 1157–1166 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Huberman, A. D., Dehay, C., Berland, M., Chalupa, L. M. & Kennedy, H. Early and rapid targeting of eye-specific axonal projections to the dorsal lateral geniculate nucleus in the fetal macaque. J. Neurosci. 25, 4014–4023 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mikkelsen, J. D. Visualization of efferent retinal projections by immunohistochemical identification of cholera toxin subunit B. Brain Res. Bull. 28, 619–623 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Yao, F. et al. Did you choose appropriate tracer for retrograde tracing of retinal ganglion cells? The differences between cholera toxin subunit B and fluorogold. PLoS ONE 13, e0205133 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chen, Y. et al. Cited2 is required for the proper formation of the hyaloid vasculature and for lens morphogenesis. Development 135, 2939–2948 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Eiraku, M. & Sasai, Y. Self-formation of layered neural structures in three-dimensional culture of ES cells. Curr. Opin. Neurobiol. 22, 768–777 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Parfitt, D. A. et al. Identification and correction of mechanisms underlying inherited blindness in human iPSC-derived optic cups. Cell Stem Cell 18, 769–781 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Susaimanickam, P. J. et al. Generating minicorneal organoids from human induced pluripotent stem cells. Development 144, 2338–2351 (2017).

    CAS  PubMed  Google Scholar 

  66. Foster, J. W. et al. Cornea organoids from human induced pluripotent stem cells. Sci. Rep. 7, 41286 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hallam, D. et al. Human-induced pluripotent stem cells generate light responsive retinal organoids with variable and nutrient-dependent efficiency. Stem Cells 36, 1535–1551 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Kim, S. et al. Generation, transcriptome profiling, and functional validation of cone-rich human retinal organoids. Proc. Natl Acad. Sci. USA 116, 10824–10833 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zerti, D. et al. IGFBPs mediate IGF-1’s functions in retinal lamination and photoreceptor development during pluripotent stem cell differentiation to retinal organoids. Stem Cells 39, 458–466 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Kuwahara, A. et al. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat. Commun. 6, 6286 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Reichman, S. et al. Generation of storable retinal organoids and retinal pigmented epithelium from adherent human ips cells in xeno-free and feeder-free conditions. Stem Cells 35, 1176–1188 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Gagliardi, G. et al. Characterization and transplantation of CD73-positive photoreceptors isolated from human iPSC-derived retinal organoids. Stem Cell Rep. 11, 665–680 (2018).

    Article  CAS  Google Scholar 

  73. Sullivan-Brown, J., Bisher, M. E. & Burdine, R. D. Embedding, serial sectioning and staining of zebrafish embryos using JB-4 resin. Nat. Protoc. 6, 46–55 (2011).

    Article  PubMed  Google Scholar 

  74. Gu, L., Cong, J., Zhang, J., Tian, Y. Y. & Zhai, X. Y. A microwave antigen retrieval method using two heating steps for enhanced immunostaining on aldehyde-fixed paraffin-embedded tissue sections. Histochem. Cell Biol. 145, 675–680 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Risso, D., Ngai, J., Speed, T. P. & Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32, 896–902 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bodenhofer, U., Kothmeier, A. & Hochreiter, S. APCluster: an R package for affinity propagation clustering. Bioinformatics 27, 2463–2464 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Albanna, W. et al. Electroretinographic assessment of inner retinal signaling in the isolated and superfused murine retina. Curr. Eye Res. 42, 1518–1526 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the SPP2127-GO 2301/5-2 ‘Gene and Cell-Based Therapies to Counteract Neuroretinal Degeneration’ (J.G. and E.G.) and by the Fritz Thyssen Stiftung (E.G). V.B. acknowledges support by the Volkswagen Foundation (Freigeist—A110720) and the Deutsche Forschungsgemeinschaft SPP2127-BU 2974/4-1, EXC-2151-390873048-Cluster of Excellence—ImmunoSensation2 at the University of Bonn.

Author information

Authors and Affiliations

Authors

Contributions

J.G. and E.G.: conception and protocol design. The rest of the authors have contributed their expertise in the respective methods of the protocol. E.G.: organoid generation and characterization; G.P. and V.B.: scRNA-seq analysis; W.A. and T.S.: ERGs; A.P. and N.J.: RNA-seq analyses; A.R. and A.M.: 3D imaging; M.G.R. and G.C.: TEM and analysis; O.G.: iPSCs, organoids and data analysis; C.M.K.: iPSC lines and data analysis.

Corresponding author

Correspondence to Jay Gopalakrishnan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using the protocol

Gabriel, E. et al. EMBO J. 35, 803–819 (2016): https://doi.org/10.15252/embj.201593679

Gabriel, E. et al. Cell Stem Cell 20, 397–406.e5 (2017): https://doi.org/10.1016/j.stem.2016.12.005

Gabriel, E. et al. Cell Stem Cell 28, 1740–1757.e8 (2021): https://doi.org/10.1016/j.stem.2021.07.010

Supplementary information

Supplementary Video 1

Microinjection of Cholera toxin B (CTB-488 and CTB-647) to label axon-like projections. Representative movie of volume-rendered optic vesicles from specimen shown in Fig. 5c microinjected with CTB-488 and CTB-647 at two distinct sites. The injection sites are marked with arrows (00:03 min). Individual channels (GFP and Cy5) have been shown to highlight the distribution of injected toxins. The converging nature of optic tracts is demonstrated by the strong co-localization of axons labeled by both CTB-488 and CTB-647. Scale bar, 200 μm. The representative movie, cell line IMR-90.

Supplementary Table 1

Visual pathway genes

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabriel, E., Albanna, W., Pasquini, G. et al. Generation of iPSC-derived human forebrain organoids assembling bilateral eye primordia. Nat Protoc 18, 1893–1929 (2023). https://doi.org/10.1038/s41596-023-00814-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00814-x

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing