Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A continuous fluorescence resonance energy transfer angiotensin I-converting enzyme assay

Abstract

Angiotensin I-converting enzyme (ACE) is involved in various physiological and physiopathological conditions; therefore, the measurement of its catalytic activity may provide essential clinical information. This protocol describes a sensitive and rapid procedure for determination of ACE activity using fluorescence resonance energy transfer (FRET) substrates containing o-aminobenzoic acid (Abz) as the fluorescent group and 2,4-dinitrophenyl (Dnp) as the quencher acceptor. Hydrolysis of a peptide bond between the donor/acceptor pair generates fluorescence that can be detected continuously, allowing quantitative measurement of the enzyme activity. The FRET substrates provide a useful tool for kinetic studies and for ACE determination in biological fluids and crude tissue extracts. An important benefit of this method is the use of substrates selective for the two active sites of the enzyme, namely Abz-SDK(Dnp)P-OH for N-domain, Abz-LFK(Dnp)-OH for C-domain and Abz-FRK(Dnp)P-OH for somatic ACE. This methodology can be adapted for determinations using a 96-well fluorescence plate reader.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the FRET peptide mechanism with the Abz/Dnp donor/acceptor pair.
Figure 2
Figure 3
Figure 4: Determination of total hydrolysis of Abz-FRK(Dnp)P-OH by ACE.
Figure 5: Michaelis–Menten curve for the hydrolysis of Abz-FRK(Dnp)-P-OH by purified rabbit lung ACE.
Figure 6: Plasma ACE determination.

Similar content being viewed by others

References

  1. Skeggs, S.L.T., Jr., Kahn, J.R. & Shumway, N.P. The preparation and function of the hypertensin-converting enzyme. J. Exp. Med. 103, 295–299 (1956).

    Article  CAS  Google Scholar 

  2. Yang, H.Y.T., Erdös, E.G. & Levin, Y. A dipeptidyl carboxypeptidase that converts angiotensin I and inactivates bradykinin. Biochem Biophis Acta 214, 374–376 (1970).

    CAS  Google Scholar 

  3. Dorer, F.E., Kahn, J.R., Lentz, K.E., Levine, M. & Skeggs, L.T. Hydrolysis of bradykinin by angiotensin-converting enzyme. Circ. Res. XXXIV, 824–827 (1974).

    Article  Google Scholar 

  4. Rousseau, A., Michaud, A., Chauvet, M.-T., Lenfant, M. & Corvol, P. The homoregulatory peptide N-acetyl-Ser-Asp-Pro is a natural and specific substrate of N-terminal active site of angiotensin converting enzyme. J. Biol. Chem. 270, 3656–3661 (1995).

    Article  CAS  Google Scholar 

  5. Jaspard, E., Wei, L. & Alhenc-Gelas, F. Differences in the properties and enzymatic specificities of the two active sites of angiotensin I-converting enzyme (kinase II). Studies with bradykinin and other natural peptides. J. Biol. Chem. 268, 9496–9503 (1993).

    CAS  PubMed  Google Scholar 

  6. Soubrier, F. et al. Two putative active centers in human angiotensin I-converting enzyme. Proc. Natl. Acad. Sci. USA. 85, 9386–9390 (1988).

    Article  CAS  Google Scholar 

  7. Bernstein, K.E., Martin, B.M., Edwards, A.S. & Bernstein, E.A. Mouse angiotensin converting enzyme is a protein composed of two homologous domains. J. Biol. Chem. 264, 11945–11951 (1989).

    CAS  PubMed  Google Scholar 

  8. Lattion, A.-L., Soubrier, F., Allegrini, J., Hubert, C., Corvol, P. & Alhenc-Gelas, F. The testicular transcript of angiotensin I-converting enzyme encodes for the ancestral, non-duplicated form of the enzyme. FEBS Lett. 252, 99–104 (1989).

    Article  CAS  Google Scholar 

  9. Ehlers, M.R.W., Fox, E.A., Strydom, D.J. & Riordan, J.F. Molecular cloning of human testicular angiotensin-converting enzyme: the testis isoenzyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme. Proc. Natl. Acad. Sci. USA 86, 7741–7745 (1989).

    Article  CAS  Google Scholar 

  10. Wei, L. et al. Expression and characterization of recombinant human angiotensin I-converting enzyme. Evidence for a C-terminal transmembrane anchor and for a proteolytic processing of the secreted recombinant and plasma enzymes. J. Biol. Chem. 266, 5540–5546 (1991).

    CAS  PubMed  Google Scholar 

  11. Beldent, V., Michaud, A., Wei, L., Chauvet, M.T. & Corvol, P. Proteolytic release of human angiotensin-converting enzyme. J. Biol. Chem. 268, 26428–26434 (1993).

    CAS  PubMed  Google Scholar 

  12. Wei, L., Alhenc-Gelas, F., Corvol, P. & Clauser, E. The two homologous domains of angiotensin I-converting enzyme are both catalytically active. J. Biol. Chem. 266, 9002–9008 (1991).

    CAS  PubMed  Google Scholar 

  13. Deddish, P.A., Jackman, H.L., Skidgel, R.A. & Erdos, E.G. Differences in the hydrolysis of enkephalin congeners by the two domains of angiotensin converting enzyme. Biochem. Pharmacol. 53, 1459–1463 (1997).

    Article  CAS  Google Scholar 

  14. Wei, L., Clauser, E., Alhenc-Gelas, F. & Corvol, P. The two homologous domains of human angiotensin I-converting enzyme interact differently with competitive inhibitors. J. Biol. Chem. 267, 13398–13405 (1992).

    CAS  PubMed  Google Scholar 

  15. Foster, T. Intermolecular energy migration and fluorescence. Ann. Phys. 2, 55–75 (1948).

    Article  Google Scholar 

  16. Sapsford, K.E., Berti, L. & Medintz, I.L. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor–acceptor combinations. Angew. Chem. Int. Ed. Engl. 45, 4562–4589 (2006).

    Article  CAS  Google Scholar 

  17. Carmel, A. & Yaron, A. An intramolecularly quenched fluorescent tripeptide as a fluorogenic substrate of angiotensin-I-converting enzyme and of bacterial dipeptidyl carboxypeptidase. Eur. J. Biochem. 87, 265–273 (1978).

    Article  CAS  Google Scholar 

  18. Araujo, M.C. et al. Internally quenched fluorogenic substrates for angiotensin I-converting enzyme. J. Hypertens. 17, 665–672 (1999).

    Article  CAS  Google Scholar 

  19. Araujo, M.C. et al. Peptidase specificity characterization of C- and N-terminal catalytic sites of angiotensin I-converting enzyme. Biochemistry 39, 8519–8525 (2000).

    Article  CAS  Google Scholar 

  20. Chagas, J.R., Juliano, L. & Prado, E.S. Intramolecularly quenched fluorogenic tetrapeptide substrates for tissue and plasma kallikreins. Anal. Biochem. 192, 419–425 (1991).

    Article  CAS  Google Scholar 

  21. Dive, V. et al. RXP 407, a phosphinic peptide, is a potent inhibitor of angiotensin I converting enzyme able to differentiate between its two active sites. Proc. Natl. Acad. Sci. USA 96, 4330–4335 (1999).

    Article  CAS  Google Scholar 

  22. Bersanetti, P.A. et al. Positional-scanning combinatorial libraries of fluorescence resonance energy transfer peptides for defining substrate specificity of the angiotensin I-converting enzyme and development of selective C-domain substrates. Biochemistry 43, 15729–15736 (2004).

    Article  CAS  Google Scholar 

  23. Alves, M.F. et al. A continuous fluorescent assay for the determination of plasma and tissue angiotensin I-converting enzyme activity. Braz. J. Med. Biol. Res. 38, 861–868 (2005).

    Article  CAS  Google Scholar 

  24. Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  25. Eloyd, J.B.F. Standards in Fluorescence Spectroscopy (Chapman & Hall, London, 1981).

    Google Scholar 

  26. Liu, Y. et al. Use of a fluorescence plate reader for measuring kinetic parameters with inner filter effect correction. Anal. Biochem. 267, 331–335 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian agencies Fundação de Amparo à Pesquisa do Estado de São Paulo (grant no 2003/09994-7), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (grant no. 470.905/04-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward D Sturrock.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carmona, A., Schwager, S., Juliano, M. et al. A continuous fluorescence resonance energy transfer angiotensin I-converting enzyme assay. Nat Protoc 1, 1971–1976 (2006). https://doi.org/10.1038/nprot.2006.306

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.306

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing